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1 Introduction

There is increasing evidence that one of the most difficult problems in trying
to control the ongoing COVID-19 epidemic is the presence of a large cohort
of asymptomatic infectives. The initial estimates were that registered infectives
would be between 1/3 and 1/4 of the actual infectives [1]; there have been claims
(in the famous speech by the British Government scientific advisers) that this
ratio could be as little as 1/10. In a recent contribution [2] Li et al. estimate
that 86% of infections remain undetected; in other words only about 1/7 of the
infections are detected and can thus be isolated.

In the first part of this note we develop a SIR-type model taking into account
the presence of asymptomatic, or however undetected, infective, and the sub-
stantially long time these spend being infective and not isolated; this is called
A-SIR, the A standing indeed for asymptomatic. We also discuss how, in such
a model, the parameters can be estimated having only data from the first part
of the epidemic dynamics.

Our main interest is in understanding how relevant it can be to uncover
asymptomatic infectives and promptly isolate them; we then study (numerically)
how the dynamics is affected by a reduction of the infective time-span for this
class.

In the second part of the note, we apply our model to the COVID-19 epi-
demics in Northern Italy, i.e. we estimate the model parameters from a fit of
data in the first decade of March, and see how the model performs in reproduc-
ing the data of the following days March 10 through 17 (in which the further
restrictive measures by the Italian Government taken on March 8 could not yet
display their effect). The A-SIR model outperforms the standard SIR model in
this respect.
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We also run full time simulations of the model; these are not so significant,
as the effective parameters of the model are and will continue to be changing
due to containment measures and public awareness, but this allows us to get an
estimate on what would be the epidemic peak and the time span of the epidemic
of no actions were taken. These estimate are – for the parameters which best fit
the present situation – about one third of those for the SIR model as far as the
height of the epidemic peak is concerned, and about half for what concerns the
time scale of the epidemics. Moreover, the model suggests that an overwhelming
part of the population will have been in contact with the virus – most of them
with no or very little symptoms – so that if permanent immunity is gained by
the immune system of infected, and the virus does not mutate too quickly, one
would be confident that there will be no second run of COVID in next year.

Finally, we also consider the situation in which the restrictive measures are
taken into account by a “reduction factor”, and discuss on the one hand how a
prompt isolation of asymptomatic infectives would change the dynamics in this
framework, and on the other what the time-scale could be in this context.

We start by recalling some basic facts about the (well known) SIR model,
and discuss how this can be fitted against the data available in the first phase
of an epidemic. We then discuss the new A-SIR model, and repeat the same
type of discussion in that context (we will find that parameters present in the
two models are fitted in the same way from available data). In the last part of
the note we will apply our discussion to the COVID-19 epidemics in Northern
Italy.

2 The SIR model

The SIR model for the dynamics of an infective epidemic providing permanent
immunity to those who have already been infected and recovered [?, ?, 5] de-
scribes a homogeneous and isolated population of N individuals by partitioning
them into three classes: each individual can be either susceptible (S), infected
and infective (I), or removed (R) from the epidemic dynamics, i.e. either re-
covered, dead, or isolated. We denote by S(t), I(t) and R(t) the populations of
these classes at time t; by assumption, S(t) + I(t) +R(t) = N for all t.

The model is described by the equations

dS/dt = − αS I (1)

dI/dt = αS I − β I (2)

dR/dt = β I . (3)

In the following, the parameter

γ = β/α (4)

will have a special relevance.
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2.1 Epidemic dynamics, epidemic peak and total number

of infections

It is immediately apparent that in the SIR model the number of infected will
grow as long as

S > γ ; (5)

thus γ is also known as the epidemic threshold. The epidemic can develop only
if the population is above the epidemic threshold.

The parameters α and β describe the contact rate and the removal rate; they
depend both on the characteristics of the pathogen and on social behavior. For
example, a prompt isolation of infected individuals is reflected in raising β, a
reduction of social contacts is reflected in lowering α, and both these actions raise
the epidemic threshold γ. If this is raised above the level of the total population
N , the epidemic stops (which means the number of infected individuals starts
to decrease, albeit new individuals will still be infected). The same effect can
be obtained by reducing the population N (keeping α and β constant), i.e.
by partitioning it into non-communicating compartments, each of them with a
population below the epidemic threshold.1

One can easily obtain the relation between I and S by considering (1) and
(2), eliminating dt; these provide

dI/dS = − 1 +
γ

S
. (6)

Upon elementary integration this yields

I = I0 + (S0 − S) + γ log(S/S0) ; (7)

with I0, S0 the initial data for I(t) and S(t); in ordinary circumstances, i.e.
unless there are naturally immune individuals, S0 = N − I0 ≃ N . (Note that
we always write “log” for the natural logarithm.)

As we know (see above) that the maximum I∗ of I will be reached when
S = γ, we obtain from this an estimate of this maximum (note that we do not
have an analytical estimate of the time needed to reach this maximum); writing
γ = σN (with σ < 1) this reads

I∗ = (1− σ)N − σN log(1/σ) = [1 − σ − σ log(1/σ)] N . (8)

It follows from (8) that increasing γ, even if we do not manage to take it
above the population N , leads to a reduction of the epidemic peak; if we are
sufficiently near to the epidemic threshold, this reduction can be rather relevant
also for a relatively moderate reduction of α and thus increase of γ.

The formula (7) also allows to obtain an estimate for another parameter
describing the severity of the epidemics, i.e. the total number of individuals

J∞ =

∫ T0

0

I(t) dt

1Albeit strictly speaking these predictions only hold within the SIR model, and surely the
exact value of the threshold refers to this model only, the mechanism at play is rather general,
and similar behaviors are met in all kind of epidemic models.
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which are infected over the whole span of the epidemics2. In fact, the epidemic
is extinct (at an unknown time t = T0) when I = 0; the number of susceptibles
S∞at this stage is provided there by the (lower) root of the equation

I0 + (S0 − S) + γ log(S/S0) = 0 ;

as I0 is in general rather small, and – unless some individuals are either vaccined
for or naturally immune to the disease – S0 = N , we can simply look at

(N − S∞) + γ log(S∞/N) = 0 . (9)

This is a transcendental equation, but it is easily solved numerically if γ is
known. The sought for number of overall infected individuals I∞ is of course
provided by

I∞ = N − S∞ . (10)

Remark 1. Another key quantity is the speed at which the epidemic dynamics
develops, and in particular the time t∗ at which I reaches its maximum value I∗, and
the time t∞ needed for I to get to zero (and S(t∞) = S∞, of course). In this case one
can not get an analytical estimate, but it is possible to describe how this depends on
the values of α and β for a given population level N and initial conditions {S0, I0, R0}.
In fact, the equations (1), (2), (3) are invariant under the scaling

α → λα , β → λ β , t → λ−1 t . (11)

Note that the inverse scaling of β and t is enforced by the very physical meaning of β,
which is the inverse of the characteristic time for the remotion of infectives.

The meaning of (11) is that if we manage to reduce α by a factor λ, even in the case

β is also reduced and thus γ remains unchanged, the speed of the epidemic dynamics

is also reduced by a factor λ. On the other hand, it is clear from (1) that reducing α

reduces the speed at which new infective appear; if the removal rate β is unchanged,

this will make that I grows slower and reaches a lower level. See Figure 2 in this

regard. ⊙

2.2 Early dynamics

The SIR equations are nonlinear, and an analytical solution of them turns out
to be impossible; they can of course be numerically integrated with any desired
precision if the initial conditions and the value of the parameters are known.
In the case of well known infective agents (e.g. for the flu virus) the parameters
are known with good precision, and indeed Health Agencies are able to forecast
the development of seasonal epidemics with good precision. Unfortunately this
is not the case when we face a new virus, as for COVID-19.

Moreover, when we first face a new virus we only know, by definition, the
early phase of the dynamics, so parameters should be extracted from such data.

2At least when this is short enough, i.e. if one can disregard deaths and new births; in
particular the latter provide new fuel to the susceptible class and thus if the epidemic goes on
for a long time related terms should be included in the model.
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We will thus concentrate on this initial phase, with I(t) and R(t) rather small,
and try to obtain approximate analytical expressions for the dynamics; the
purpose will be to estimate the parameters α and β – and thus also the epidemic
threshold γ – in this case.

Albeit we do not expect, for various reasons, the SIR model to provide a
good description of the dynamics when the infection produces a large number of
asymptomatic carriers, having an estimate of these parameters will be needed
to compare the predictions which one would extract from the standard SIR
model in such circumstances with those obtained by the modified model we will
consider later on.

2.3 KMK approximate equations and their exact solution

In the case of “small epidemics” there is a way to obtain an analytical expression
for the solutions to the SIR equations; this is associated to the names of Kermack
and McKendrick [6], and we will therefore refer to it as the KMK method.

What matters more here, the expression obtained in this way is also an
analytical expression holding in the initial phase of any epidemics, small or large,
i.e. – as we will discuss in a moment – until R(t) ≪ γ. Thus such an analytical
expression can be compared to epidemiological data and used to estimate the
unknown parameters α and β, and hence the fundamental parameter γ. Once
this is done, the model can be studied numerically (or, if we are – as has to
be hoped – in the favorable situation where N ≃ γ, one can set predictions
on the basis of the “small SIR epidemic” model) – recalling of course that the
SIR model itself is far too simple to be reliable in a situation where the actions
undertaken have heavy consequences on public health – in order to have some
kind of estimate of the length of the epidemics and of other relevant outcomes,
such as the numbers I∗ and J∞ considered above.

It should be noted that we do not have certain knowledge about the number
of infective people at each time; the best we can have is the number of people
who are hospitalized or however registered by the health system. Assuming that
infective people are immediately isolated, this provides an estimate (actually
from below) of R(t). Thus we should be able to compare the predictions for
the removed class with epidemiological data, and in order to do this we should
focus on R(t). We stress that his problem was already clear to Kermack and
McKendrick [6], see e.g. the discussion in Murray [5], and that we will basically
follow their idea albeit with a relevant difference, which will allow for a simpler
fit of the data.

Putting together (1) and (3), we have

dS

dR
= −

S

γ
, (12)

which of course provides

S(R) = S0 e−(R−R0)/γ . (13)
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We can proceed similarly with (2) and (3), getting

dI

dR
= − 1 +

S

γ
, (14)

where now S should be thought of as a function of R through (13). Solving this
equation we get

I(R) = I0 + S0 (1 − exp[−(R−R0)/γ]) − (R − R0) . (15)

We are however interested in the temporal dynamics of the model. In order to
do this, we can substitute for I = I(R) using (15) in (3); moreover we will look
at the variable

P (t) := R(t) − R0 , (16)

which of course satisfies P (0) = 0 and dP/dt = dR/dt. In this way we have

I(P ) = I0 + S0

(
1 − e−P/γ

)
− P . (17)

Plugging now this into (3), we finally get

dP

dt
= b

[
I0 + S0

(
1 − e−P/γ

)
− P

]
. (18)

This is a transcendental equation and can not be solved exactly. However,
as long as P/γ ≪ 1, i.e. as long as R(t) is well below the epidemic threshold,
we can replace the exponential by (a suitable truncation of) its Taylor series
expansion.

Remark 2. In textbook discussions, it is usually required to consider a second or-

der Taylor expansion; this guarantees that counter-terms preventing the exponential
explosion of R(t) (and thus the violation of the condition R(t) ≪ γ) are present, and
allows to obtain an analytical expression for R(t) valid at all times. This is, more
precisely, in the form

R(t) =
α2

S0

[
φ + k1 tanh

[
k1β

2
t − k2

] ]
, (19)

where we have written φ := (S0/γ − 1) and k1 and k2 are explicitly given by

k1 =
√

φ2 + 2(S0/γ2)(N − S0) ; k2 = k−1

1 arctanh(φ) . (20)

As we assume there is natural immunity, we can take S0 ≈ N , obtaining k1 ≈ φ and
hence slightly simpler complete expressions. ⊙

Remark 3. In particular, in this case the maximum of R′(t) – and hence of I(t), see
(3) – is obtained at time

t∗ =
2 arctanh(φ)

β φ2
;

as our result holds for the “small epidemics”, φ is small and we can write

t̃∗ ≃
2

β φ
+

2

3

φ

β
.
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Note that t∗ is therefore rapidly decreasing with φ (for small φ). On the other hand,
looking back at (8), and noticing that in terms of the notation used there σ = 1/(1+φ),
we obtain immediately that I∗ grows with φ.3 ⊙

2.4 Small time solution of the KMK equations

However, here we are less ambitious: we can in any case only fit the initial phase
of the epidemic, which shows an exponential increase of R(t), and correspond-
ingly we can expand the exponential in (18) at first order in P/γ. This yields
the equation

dP

dt
= β

[
I0 +

(
S0

γ
− 1

)
P

]
. (21)

which is immediately solved to give, with initial condition P (0) = 0,

P (t) = I0
exp[β (S0/γ − 1) t] − 1

(S0/γ − 1)
. (22)

Introducing the parameter, which we stress is not assumed to be small,

φ :=
S0

γ
− 1 , (23)

the above is more simply written as

P (t) =
I0
φ

[
eβ φ t − 1

]
, (24)

and finally we get

R(t) = R0 +
I0
φ

[
eβ φ t − 1

]
. (25)

As expected this – at difference with (19) – is not saturating but just expanding
exponentially, and thus cannot be valid for all times,but only for t sufficiently
small.

The expression (25) can then be expanded in series to give the small t ex-
pression of the solution, which can be fitted against experimental data thus
determining (some of) the parameters.

Remark 4. It is relevant – for the following of our discussion – to note that the
solution (25) can be obtained also in a different way, i.e. noticing that in the initial
phase of the epidemic the number of susceptibles vary very little and can thus be

3This also means that if one would be able to tune the parameters α and β (and hence φ)
there would be a contrast between trying to have a low I∗ and hence a small φ, and trying not
to have the epidemic running for too long – which can be devastating on social and economic
grounds. If,on the other way, the priority from the temporal point of view is on slowing down
the epidemic, e.g. to have the time to prepare the health system facing the peak, a small φ
should be pursued.
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considered as constant, S(t) ≃ S0. Within his approximation, and writing again
φ = (S0/γ − 1), the SIR equations reduce to

{
dI/dt = β φ I
dR/dt = β I ;

(26)

this is a linear system, and it is promptly solved to yield indeed (25).

Note this approach is actually simpler than the one followed above (so the reader

may wonder why we have not taken this immediately), but on the one hand the

procedure given above is along the lines of the tradition of SIR analysis, and on the

other hand having seen that derivation gives us more confidence that a rough approach

as this one provides the same results as a more refined one; this will be of use dealing

with more complex models, where the Kermack-McKendrick approach can not be

followed, see Section 3.2 below. ⊙

2.5 Fitting the SIR parameters

Note that the solution (25) depends on three parameters, i.e. β, I0 and φ, which
in turn depends on the known number S0 ≃ N and γ. None of the parameters
{β, φ, I0} is known, but β can somehow be estimated as it corresponds to the
inverse of the typical removal time (for trivial infections, this corresponds to the
time of healing; in the case of COVID it is the time from infection to isolation),
and similarly once we fix a time t = 0 the number I0 can be estimated a
posteriori looking at epidemiological data for the next few days and depending
on our estimate of β.

In order to estimate the parameters on the basis of the measurements of
R, we can work either on R itself, or on its logarithm. That is,we have two
alternative ways to proceed.

(1) Working on the time series for R(t).
We fit the time series around t0 by

R(t) = r0 + r1 t +
1

2
r2t

2 ; (27)

Having these coefficients rk, we can compare with the series expansion for R(t)
given by (25), which is just

R(t) = R0 + (β I0) t +
1

2

(
β2 I0 φ

)
t2 . (28)

We obtain easily that – using also the definition of φ (23) – our parameters and
the associated parameter γ are given by

R0 = r0 , I0 =
r1
β

, φ =
r2
r1 β

; γ =
βS0r1

βr1 + r2
. (29)

(2) Working on the time series for log[R(t)].
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As R(t) grows – in the early phase – in a substantially exponential way, one
usually deals with data in logarithmic form; that is one has a fit for log[R(t)],
say of the form4

log[R(t)] = A + B t +
1

2
C t2 . (30)

Comparing with the series expansion of log[R(t)] for R as in (25), i.e.

log[R(t)] = log(R0) + β
I0
R0

t −
1

2

(
β I0
R0

)2 (
1− φ

R0

I0

)
t2 , (31)

we obtain that the I0, φ andγ parameters can be estimated as

R0 = eA , I0 =
B

β
eA , φ =

B2 + 2C

β B
; γ =

βS0B

βB +B2 + 2C
. (32)

3 A model with asymptomatic infectives

It may happen to have an epidemic such that a rather large fraction of infected
people are actually asymptomatic, but still fully infective, as it appears to be
the case for COVID-19.5

A little reflection shows that the presence of a large population of asymp-
tomatic infectives, or however of infectives which show only very mild symptoms,
easily thought not to be related with the concerned infective agent, changes the
dynamics in two – contrasting – ways:

1. On the one hand, they are a formidable vehicle of contagion, as they have
no reason to take special precautions, and get in contact with a number
of people which themselves do not take the due precautions (which would
be taken in the case of an individual with evident symptoms);

2. On the other hand, assuming once the infection is ceased they have ac-
quired permanent immunity, they contribute to group immunity reached
once the population of susceptibles falls below the epidemic threshold.

We are thus going to study how the SIR dynamics is altered by the presence
of a large class of asymptomatic infectives.

Remark 5. An obvious but important Remark is in order here. If we find out that

known infectives are only a fraction ξ < 1 of the total infectives, this means that on the

one hand the mortality rate (number of deceased over number of infected) is actually

smaller by the same factor. On the other hand, the total number of infected persons

4Obviously all series expansions could be performed at higher orders as well, but we believe
this would have little sense, as in the early phase of an epidemic one is by definition dealing
with a limited set of data, and already including second order fitting is questionable.

5Actually in this case the exact meaning of this “fully” is not completely clear. While there
is a generalized consensus on the fact that infection can be transmitted by asymptomatic
people, and a fortiori by people with very weak symptoms, it is not certain if they are as
infective as people having more serious symptoms.
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is increased by a factor ξ−1, so that it looks more difficult to stop the spread of the

epidemics, and the final number of infected will be quite large. In this respect, one

should however remember that the total number of casualties does not depend only

on the total number of individuals with symptoms (in China this ratio was around

2% [7]) but also on the number of patients needing Intensive Care (in China this was

estimated at 20 % of hospitalized patients [7]) and on the availability of such care;

from this point of view, slowing down the pace of the epidemics can substantially lower

the death toll. ⊙

3.1 The A-SIR model

We will formulate a very simplified model, where infective people are either
symptomatic or asymptomatic. A more refined subdivision of their state would
be more realistic, but the discussion of this simple case will suffice to show how
to proceed in a more general setting.

In our model we still assume permanent immunity of individuals who have
been infected and recovered, and constant population. We will have suscep-
tibles S(t) in a unique class, but two classes of infected and infective people:
symptomatic I(t) and asymptomatic J(t); and similarly two classes of removed
people: registered removed R(t) and unregistered removed (those who were
passing unnoticed through the infection) U(t). Symptomatic infectives are re-
moved by the epidemic dynamics through isolation (in hospital or at home)
at a removal rate β (thus with typical delay β−1, while asymptomatic people
are removed from the epidemic dynamics through spontaneous recovery, at a
recovery rate η ≪ β, thus after a typical time η−1 ≫ β−1.

We assume that both classes of infected people are infective in the same way,
and that an individual who gets infected passes with probability ξ to the class
I and with probability (1− ξ) to the class J .6

Our model, which we will call A-SIR (Asymptomatic-SIR) will then be

dS/dt = −α S (I + J)

dI/dt = α ξ S (I + J) − β I

dJ/dt = α (1− ξ)S (I + J) − η J (33)

dR/dt = β I

dU/dt = η J .

Note that the last two equations amount to an integral, i.e. are solved by

R(t) = R0 + β

∫ t

0

I(τ) dτ , U(t) = U0 + η

∫ t

0

J(τ) dτ . (34)

6In the case of COVID-19, it s known that the incubation time is about 5.1 days; assum-
ing that symptomatic infection is promptly recognized and swiftly treated, epidemiological
and clinical data suggest the approximate values (note that asymptomatic removal time η−1

includes both the incubation time and the healing time) β−1
≃ 5 − 7, η−1

≃ 14 − 21 for
the removal and recovery rates; the value of ξ is more controversial, as mentioned in the
Introduction.
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Moreover, the total population N = S + I + J +R+ U is constant.
Some general considerations can be done immediately. First of all, we note

that I(t) will increase as far as the condition

α ξ S (I + J) > β I

is satisfied; that is, as far as

S > γ1 :=
1

ξ

β

α

I

I + J
. (35)

Thus the epidemic threshold (for symptomatic patients) γ1 depends both on the
fixed parameters ξ, α, β and on the variable ratio x(t) of known infective over
total infective,

x(t) :=
I(t)

I(t) + J(t)
. (36)

Similarly, the number of asymptomatic infectives J(t) will grow as far as

α (1 − ξ)S (I + J) > η J

is satisfied, i.e. as far as

S > γ2 :=
1

1− ξ

η

α

J

I + J
. (37)

Again the epidemic threshold (for asymptomatic patients) γ2 depends both on
the fixed parameters ξ, α, η and on the variable ratio y(t) = 1−x(t) of asympto-
matic – and thus “hidden” – infectives over total infectives,

y(t) :=
J(t)

I(t) + J(t)
. (38)

Note that
γ1
γ2

=

(
1− ξ

ξ

) (
β

η

) (
I

J

)
.

As we expect on the one hand to have ξ < 1/2 and β > η, but on the other
hand I < J , we cannot claim there is a definite ordering between γ1 and γ2;
this means that we will have situations where I declines and J is still growing,
but the opposite is also possible.

We expect that in the very first phase –when the different removal times
have not yet shown their effects – we have

J ≃
1− ξ

ξ
I ;

under this condition, we get

γ1
γ2

≃
β

η
> 1 .
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The evolution law for the quantities x and y can be obtained through simple
computations; using the equations (33) and y = 1− x, we get

dx/dt = αξS − (αS + β − η)x + (β − η)x2 ; (39)

and similarly for y(t).
Note that – as we assume b > η – for a given S the x dynamics has an

attractive fixed point in

x0 =
(αS + β + η)

2 (β − η)

(
1 −

√
1 −

4αS ξ (β − η)

(αS + β + η)2

)
.

3.2 Early dynamics

It is quite clear that we can not go through the Kermack-McKendrick procedure
to obtain approximate equations valid in the case of “small epidemics”, not even
through the simplified (first rather than second order) procedure valid only for
the initial times we have used above.

We can however go through the even simpler approach mentioned in Remark
4 (and which we have seen there produces the same results as the KMK proce-
dure). With S(t) ≃ S0, the above equations reduce to a linear system of four
equations with constant coefficients, or more precisely to a “master” system of
two equations

dI

dt
= (α ξ S0 − β) I + (α ξ S0)J (40)

dJ

dt
= [α (1 − ξ)S0] I + [α (1− ξ)S0 − η]J (41)

plus two auxiliary equations amounting to a direct integration, which are just
(34).

As for the two equations, (40) and (41), we can get their solution in explicit
form by means of some standard algebra; they are slightly involved and we do
not report them here.

With these, we can compute R(t) and U(t); their explicit expressions are
also quite involved, and we do not report them here.

3.3 Fitting the parameters

We can now proceed as in Section 2.5, i.e. series expand R(t) in order to fit the
parameters7. From the explicit expression of R(t) we get

R(t) ≃ R0 + β I0 t +
1

2
β [α(I0 + J0)S0ξ − βI0] t2 ; (42)

log[R(t)] ≃ log(R0) + β
I0
R0

t

7It should be stressed that, by definition, we only have access to the R(t) time series. So
we can only estimate the parameters by using this.
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+
1

2

β[α(I0 + J0)R0S0ξ − βI0(I0 +R0)]

R2
0

t2 . (43)

Comparing these with the generic form of the fits (27) and (30), which we
repeat here for convenience of the reader,

R(t) ≃ r0 + r1 t +
1

2
r2 t

2 ,

log[R(t)] ≃ A +B t +
1

2
C t2 ,

we can express the parameters I0 and γ = β/α. Note that we can not express
both γ and J0 with the same fitting, as both of them only appear in the coeffi-
cient of the quadratic term8. Note also that in this context γ is not any more
the epidemic threshold, as discussed in Section 3.1; the time-varying epidemic
threshold γ1 = (γ/ξ)[I/(I + J)] = (γ/ξ)x(t) is however expressed in terms of γ,
so that it makes sense to fit it.

Actually, since new infected are with probability ξ in the class I and with
probability (1 − ξ) in the class J , it is natural to set as initial conditions

J0 =

(
1− ξ

ξ

)
I0 ; (44)

with this assumption, we have

γ1 = γ . (45)

It should be noted that actually if we want to fit γ we need to have some estimate
on J0 (while I0 can be fitted from first order coefficient in the series for R(t) or
log[R(t)]); to this aim we will use consistently (44).

In particular, using the fit of R we get (through this assumption)

R0 = r0 , I0 =
r1
β

, γ =
β r1 S0

(β r1 + r2)
. (46)

Using instead the fit of log[R(t)], and again the assumption (??), we get

R0 = eA , I0 =
B eA

β
, γ =

β S0B

β B + B2 + 2C
. (47)

It is immediate to check that these expressions – which we recall were ob-
tained under the assumption (44) for J0 – are exactly the same as for the SIR
model; see (29) and (32).

Once the parameters are estimated, the nonlinear equations (33) can be
solved numerically.

8One could try to fit higher order truncation of the Taylor series, but –as already remarked
– this would not be reliable in the presence of a short time series.
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4 Comparing SIR and A-SIR dynamics.

The COVID-19 epidemics in Northern Italy

As discussed above, we are not able to extract relevant analytical predictions
from the nonlinear A-SIR equations; thus the only way to compare the predic-
tions of this model with those of a standard SIR model (or actually variations
on it, such as the SEIR model [5]) – and thus see how the presence of a large
class of asymptomatic infectives affects the dynamics – is at present by running
numerical simulations, i.e. numerically integrate the SIR and the A-SIR equa-
tions for coherent sets of parameters. By coherent here we mean “extracted
from the same time series for R(t) in the early phase of the epidemics”.

We thus need a concrete given set of data to be used for the comparison.
We will use those for the ongoing COVID-19 epidemics in Northern Italy.

4.1 Epidemiological data

The data for the cumulative number of registered infected communicated by the
Italian Health System is reported in Table I for the first part of March. One
should note, in this respect, that the first cases in Italy (apart from sporadic
cases) were discovered on February 21. The public awareness campaign started
immediately, the first local mild restrictive measures were taken a few days later
(February 24), and more restrictive measures involving the most affected areas
were taken on March 19. A more stringent set of measures went into effect for
the whole nation on March 8.

Thus the epidemics developed with varying parameters. Moreover, as the
incubation time for COVID ranges from 2 to 10 days, with a mean time of 5.1
days [1], there is a notable delay in the effect of any measure. In this sense,
our fits cannot give any kind of prediction on the future development of the
actual epidemic dynamics, and should rather be seen as a case study for the
comparison between SIR and A-SIR model. On the other hand, we will explore
several possibilities concerning the main control parameter, and see how these
would change the dynamics starting from the parameters resulting from the fit
with the real data.

day Mar 1 Mar 2 Mar 3 Mar 4 Mar 5 Mar 6
R 1694 1835 2502 3089 3858 4636

day Mar 7 Mar 8 Mar 9 Mar 10 Mar 11 Mar 12
R 5883 7375 9172 10149 12462 15113

day Mar 13 Mar 14 Mar 15 Mar 16 Mar 17 Mar 18
R 17660 21157 24747 27980 31506 35713

Table I. Cumulative number of COVID-19 registered infect in Italy in the first part

9Due to a leak of information, a number of people fled from the most affected area before
the prohibition to do so went into effect; this has most probably pushed the spreading of the
infection in different regions.
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of March [8, 9]. In our fits, t = 0 corresponds to March 5 and (ti, tf ) to the period

March 1 through March 10.

4.2 Fit of the data

For our fitting, we will consider the data of the period March 1 through March
10, denoted in the following as ti and tf respectively; this leaves us some later
days to compare the functions obtained through the fit with subsequent evolu-
tion.

The best direct fit of R(t) through a quadratic function

R(t) ≈ r0 + r1 t +
1

2
r2 t

2 := f(t) (48)

is obtained with the constants

r0 = 3862.32 , r1 = 966.54 , r2 = 80.35 . (49)

The fit is reasonably good in the considered time interval (ti, tf ), but fails com-
pletely for t < ti (in Figure 1 we use data from February 24 on) and is rather
poor for t > tf . This is not surprising, as we know that R(t) is, in this early
phase, growing through a slightly corrected exponential law, see (25).10

Let us then look at the fit of log[R(t)] as

log[R(t)] ≈ A + B t +
1

2
C t2 := F (t) . (50)

In this case the best fit is obtained with the constants

A = 8.26648 , B = 0.221083 , C = −0.00430354 . (51)

In this case the fit is very good not only within (ti, tf ) but also outside it, at
least for the time being. We will thus work only with this (exponential) fit.
Note that in Figure 1 we consider data for R(t), and correspondingly plot the
function

F(t) := exp[F (t)] . (52)

We will consider these numbers for the coefficients {r0, r1, r2} or for the
coefficients {A,B,C} as experimental measurements.

We can now use the formulas obtained before, both for the SIR and the
A-SIR model, to estimate the parameters of these models in terms of these fits
following the discussion in Sections 2.5 and 3.3.

10Note however that here the fit has not the goal to provide an analytical description of
R(t) for a larger interval of time, but only to estimate some parameters.
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Figure 1: Data for R(t) in the COVID epidemics in Northern Italy from Febru-
ary 24 to March 13, with fits obtained using data for March 1 through March
10. Left: polynomial (quadratic) fit (48); Right: corrected exponential fit (52).

4.3 SIR and A-SIR parameters for the COVID-19 in North-

ern Italy

We have remarked in Section 3.3 that the SIR and A-SIR models yield (under the
(44) assumption for J0) exactly the same values for the I0 and γ parameters.
Now we want to estimate these values for the data given in Section 4.2; this
amounts to a direct application of formulas (46) and (47) (or equivalently (29)
and (32), as already remarked).

The values obtained using the direct fit of R are tabulated for different values
of β in Table II.a.

We can also proceed by using the fit of log[R(t)]; the values obtained in this
way are tabulated for different values of β in Table II.b.

We remind that the delay time δ = β−1 from infection to arise of symptoms
is estimated to be around δ ≃ 5.2 [1]; thus albeit we have tabulated several
options for β, the two central columns are the relevant ones for our discussion.
In all cases, S0/γ is quite far from one and φ from zero, so one can not rely on
the “small epidemic” formulas [5].

We will thus resort to numerical integration, see next Section.

β 1/3 1/4 1/5 1/6 1/7 1/8
I0 2900 3866 4833 5799 6766 7732
φ 0.25 0.33 0.42 0.50 0.58 0.67

S0/γ 1.25 1.33 1.42 1.50 1.58 1.67

Table II.a. Parameters for the SIR and A-SIR models obtained through the SIR

quadratic local fit of R(t); see (29), (46).

β 1/3 1/4 1/5 1/6 1/7 1/8
I0 2581 3441 4301 5162 6022 6883
φ 0.55 0.73 0.91 1.09 1.28 1.46

S0/γ 1.55 1.73 1.91 2.09 2.28 2.46
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Table II.b. Parameters for the SIR and A-SIR models obtained through the SIR

modified exponential local fit of R(t); see (32), (47).

5 Numerical simulations. Timescale of the epi-

demic

We can now run numerical simulations with the SIR and the A-SIR equations
and the parameters which have been determined in the previous Section,and
which depend on the removal rate β. In all of our simulations, day one is
February 21, so the fitting period (ti, tf ) is centered around day 14.

5.1 General study

Note that in the A-SIR equation we also need to introduce the removal rate for
asymptomatic individuals, i.e. η; this is related to the time length δ = η−1 of
their infective period, which is equal to the incubation time plus the spontaneous
healing time. While the former is around β−1 ≃ 5, the latter is generally
considered to be around 14 days, albeit we know that for hospitalized patients
this may be longer. We ran a number of simulations, both for the SIR and the
A-SIR dynamics, with varying β and with η = 1/21, see Figures 2 and 4. It
should be stressed that the situation is quite different in the cases of SIR and
of A-SIR dynamics.

It is natural to look at these simulations wondering how long the epidemic
will last. This is not a well posed question, because there are restrictive mea-
sures being taken which will reduce the contact rate and thus the spread of the
epidemic – and if these show to be not sufficient one would expect new measures
are taken. So, these simulations can at their best what would be the behavior
(of the system described by the SIR or A-SIR equations, which do not neces-
sarily describe correctly the COVID epidemics) with constant coefficients. On
the other hand, they can give an idea of what should be expected in case of no
action.

It should be stressed in this context that the containment measures do not
act on β, but on α; albeit in general α = β/γ, in studying the effect of restrictive
measures it is more convenient to consider the reduction factor r. That is, if
the fit of the initial phase of the epidemic yields α0 = β0/γ0 (where γ0 is
determined through the formulas of Sections 2.5 and 3.3), we consider in later
phases a contact rate

α = r α0 , 0 < r < 1 .

At the moment in Italy we get r ≃ 0.5, albeit in some regions the analysis of
epidemic data yields r = 0.25; in these weeks Korea achieved a reduction factor
of r ≃ 0.1 [10].

We thus run also a number of simulations at fixed β and varying r; these
can give an idea of the impact of containment measures on the development of
the epidemic. See Figures 2, 4 and 6.
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However, the real concrete interest of this study is in a different point. That
is, there is considerable debate on the most appropriate way to use laboratory
exams, and in particular if there should be a generalized COVID testing, at least
of those having hadc0ntacts with known infects, or if only clinically suspect
cases should be tested. We are of course aware that the real obstacle to a
generalized testing (which should however be repeated over and over to be sure
the individual has not been infected since the last test) is of practical nature, as
testing a population of several tens of million people –not to say about China –
is unfeasible, so that this alternative is a concrete one only in small communities
(which could be isolated areas or also e.g. the community of people working in
a Hospital).

In any case, we want to study what the impact of reducing δ, thus raising
η, would be on the development of the A-SIR dynamics. This is illustrated in
Figures 4 and 6.

The results of our numerical simulations, see in particular Figure 4, suggest
that the epidemic in Northern Italy is (or more precisely, was before the lat-
ter restrictive measures went into operation) better described, in terms of our
model, by the situation with ξ ∈ (1/10, 7), β = 1/7 and η = 1/21. We will thus
devote further analysis to this setting.

5.2 More detailed study with selected parameters

As mentioned in the previous subsection, we will devote a more detailed study
to the case with β = 1/7 and ξ = 1/7 or ξ = 1/10. It should be stressed that
these parameters cannot be altered: indeed, ξ depends on the interaction of the
virus with human bodies and is thus fixed by Nature, while a removal time of
β can hardly be compressed considering that typically the first symptoms arise
after 5 days, but these are usually weak and thus receive attention (especially
in a difficult situation like the present one) only after some time.

On the other hand, it is conceivable that η−1 could somehow be compressed
if a general screening was conducted, or more simply if all individuals having
even the lightest symptoms would more rigorously isolate themselves. At the
same time, the contact rate α can be reduced by a more or less rigorous lockout;
in our discussion, this reduction is encoded in the reduction parameter r, which
yields the ratio of the achieved contact rate over the ”natural” one – i.e. the
one measured at the beginning of the epidemic.

In the case of Korea, which is similar in several respects11 (total population
ad political system) to Italy, the reduction factor was measured to be r = 0.2
at the beginning of March, and r = 0.03 at mid-March. It is thus conceivable
that similar results can be obtained in Italy; this would led the population to
be below the epidemic threshold, and thus led effectively to a stop of it (with
all due cautions concerning return infections from other countries, containment

11But has a more than double population density, 507 against 201 inhabitants per square
kilometer; both countries have wide fluctuations in local population density, due to the pres-
ence of substantial mountain ranges.
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Figure 2: Numerical solution of the SIR equations for different values of total
population S0, removal rate β, and reduction factor r, using for the parameters
I0 and γ the fit of eqs. (46), (47) on the basis of the data of Table I. In all cases,
the plots of I(t) – where t is measured in days – are shown for: r = 1 (solid
curve), r = 0.85 (dotted curve) and r = 0.75 (dashed curve). In all cases, the
curve for R(t) outside the fitting region but within the presently available data
does not fit at all the latter, so we are glad to say these are not predictions of
the evolution of the real COVID epidemics in Northern Italy.

19



5 10 15 20 25 30

5000

10000

15000

20000

25000

30000

35000

5 10 15 20 25 30

5000

10000

15000

20000

25000

30000

35000

S0 = 2 ∗ 107, β = 1/7 S0 = 2 ∗ 107, β = 1/5

5 10 15 20 25 30

5000

10000

15000

20000

25000

30000

35000

5 10 15 20 25 30

5000

10000

15000

20000

25000

30000

35000

S0 = 3 ∗ 107, β = 1/7 S0 = 3 ∗ 107, β = 1/5

5 10 15 20 25 30

5000

10000

15000

20000

25000

30000

35000

5 10 15 20 25 30

5000

10000

15000

20000

25000

30000

35000

S0 = 4 ∗ 107, β = 1/7 S0 = 4 ∗ 107, β = 1/5

5 10 15 20 25 30

5000

10000

15000

20000

25000

30000

35000

5 10 15 20 25 30

5000

10000

15000

20000

25000

30000

35000

S0 = 6 ∗ 107, β = 1/7 S0 = 6 ∗ 107, β = 1/5

Figure 3: Plot of the data for the COVID epidemics in Italy versus the numerical
integration of the SIR model (with r = 1) for different values of S and β. The
parameters I0 and γ were obtained through the fit of eqs. (46), (47) on the basis
of the data of Table I for the period 1-10 March; plotted data go until March
15. In all cases the prediction of subsequent data is rather poor and the error
has the wrong sign, as we expect the contact rate to be diminishing in time due
to public awareness and restrictive measures
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Figure 4: Numerical solution of the A-SIR equations for S0 = 2 ∗ 107, η =
1/21 and different values of removal rate β, symptomatic infection rate ξ, and
reduction factor r, using for the parameters I0 and γ the fit of eqs. (46), (47)
on the basis of the data of Table I. In all cases, the plots of I(t) – where t is
measured in days – are shown for: r = 1, r = 0.8, r = 0.6 and r = 0.4; the
curves for higher r are those with higher peak.
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Figure 5: Plot of the data for the COVID epidemics in Italy versus the numeical
integration of the A-SIR model(with r = 1) for S0 = 2 ∗ 107 (the total popu-
lation of the three most affected regions), η = 1/21, and various values of the
parameters β and ξ. The parameters I0 and γ were obtained through the fit of
eqs. (46), (47) on the basis of the data of Table I for the period 1-10 March;
plotted data go until March 17.
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Figure 6: Numerical solution of the A-SIR equations for S0 = 2 ∗ 107, η =
1/14 and different values of removal rate β, symptomatic infection rate ξ, and
reduction factor r, using for the parameters I0 and γ the fit of eqs. (46), (47)
on the basis of the data of Table I. In all cases, the plots of I(t) – where t is
measured in days – are shown for: r = 1, r = 0.8, r = 0.6 and r = 0.4; the
curves for higher r are those with higher peak.
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Figure 7: Plot of the data for the COVID epidemics in Italy versus the numeical
integration of the A-SIR model(with r = 1) for S0 = 2 ∗ 107 (the total popu-
lation of the three most affected regions), η = 1/14, and various values of the
parameters β and ξ. The parameters I0 and γ were obtained through the fit of
eqs. (46), (47) on the basis of the data of Table I for the period 1-10 March;
plotted data go until March 17.
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of remaining cases, etc.).12

We have thus ran several numerical simulations for these values of β and ξ,
both for a total population of N = 2 ∗ 107 (the total population of the initially
most affected regions) and for N = 6 ∗ 107 (the total population of Italy).
These give of course very similar results – if referred to the total population –
as our estimates for the parameters, and in particular for the one leading the
dynamics, i.e. γ, depend themselves on S0. Moreover, the questions discussed in
this subsection do not concern the early phase of the epidemics (which was then
limited to Northern Italy), but its future development. We will thus present the
results directly for the case N = S0 = 6 ∗ 107.

We have investigated two questions:

(A) How a reduction in the removal time for asymptomatic infectives, i.e. in
η−1, would affect – according to the A-SIR model – the dynamics and the
basic epidemiological outcomes of it in the regime where the epidemic is
taking place (i.e. for r such that the population is still above the epidemic
threshold);

(B) In the case r is low enough to make the population below the epidemic
threshold, what are the basic epidemiological outcomes predicted by the
model, again depending on various parameters including η.

The results of these numerical investigations are summarized in Table III
and Table IV respectively. We have also studied, for comparison, question (B)
in the framework of the standard SIR model. The outcomes of this study are
summarized in Table V.

12The most reliable prediction about the time-span of the epidemic and its outcome is
maybe just the one based on assuming it will roughly follow the dynamics observed in other
countries [13]; this of course assuming the measures will have the same impact.
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r I∗ t∗ R∞/S0 U∞/S0 S∞/S0

ξ = 1/7 1.0 1.9 ∗ 106 60 0.14 0.85 0.01
η = 1/21 0.8 1.4 ∗ 106 74 0.14 0.83 0.03

0.6 8.9 ∗ 105 101 0.13 0.77 0.10
0.4 3.3 ∗ 105 184 0.10 0.60 0.30

ξ = 1/10 1.0 1.3 ∗ 106 57 0.10 0.89 0.01
η = 1/21 0.8 1.0 ∗ 106 70 0.10 0.87 0.03

0.6 6.5 ∗ 105 95 0.09 0.82 0.09
0.4 2.5 ∗ 105 167 0.07 0.65 0.28

ξ = 1/7 1.0 1.6 ∗ 106 65 0.13 0.80 0.07
η = 1/14 0.8 1.1 ∗ 106 83 0.12 0.75 0.13

0.6 5.3 ∗ 105 124 0.10 0.62 0.28
0.4 5.6 ∗ 104 318 0.04 0.22 0.74

ξ = 1/10 1.0 1.1 ∗ 106 61 0.09 0.85 0.04
η = 1/14 0.8 7.8 ∗ 105 78 0.09 0.79 0.12

0.6 3.9 ∗ 105 115 0.07 0.66 0.27
0.4 5.0 ∗ 104 273 0.03 0.28 0.69

Table III. Simulations for the A-SIR model on a population of S0 = 6 ∗ 107, with

β = 1/7 and for the fitted initial conditions discussed in Section 4.2, for ξ = 1/7

and for ξ = 1/10, and for η−1 = 21 and η−1 = 14, for various values of the reduc-

tion factor r. We report the maximum of the (registered) infectives I∗, the time t∗
at which this maximum is reached, and the fraction of the initial population which

passed through the infection being registered (R∞/S0) or unknowingly (U∞/S0); the

remaining fraction of population S∞/S0 remains not covered by immunity.
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r te R∞/S0 U∞/S0

ξ = 1/7 0.2 443 8.29 ∗ 10−4 4.96 ∗ 10−3

η = 1/21 0.1 104 2.62 ∗ 10−4 1.57 ∗ 10−3

0.05 65 2.08 ∗ 10−4 1.25 ∗ 10−3

0.02 49 1.87 ∗ 10−4 1.13 ∗ 10−3

0.01 46 1.82 ∗ 10−4 109 ∗ 10−3

ξ = 1/10 0.2 539 1.02 ∗ 10−4 9.17 ∗ 10−3

η = 1/21 0.1 107 2.67 ∗ 10−4 2.40 ∗ 10−3

0.05 66 2.09 ∗ 10−4 1.88 ∗ 10−3

0.02 50 1.88 ∗ 10−4 1.69 ∗ 10−3

0.01 46 1.82 ∗ 10−4 1.64 ∗ 10−3

ξ = 1/7 0.2 121 3.38 ∗ 10−4 2.03 ∗ 10−3

η = 1/14 0.1 68 2.24 ∗ 10−4 1.34 ∗ 10−3

0.05 53 1.97 ∗ 10−4 1.18 ∗ 10−3

0.02 47 1.84 ∗ 10−4 1.11 ∗ 10−3

0.01 45 1.80 ∗ 10−4 1.08 ∗ 10−3

ξ = 1/10 0.2 126 3.47 ∗ 10−4 3.12 ∗ 10−3

η = 1/14 0.1 69 2.26 ∗ 10−4 2.03 ∗ 10−3

0.05 53 1.97 ∗ 10−4 1.77 ∗ 10−3

0.02 47 1.84 ∗ 10−4 1.66 ∗ 10−3

0.01 45 1.80 ∗ 10−4 1.63 ∗ 10−3

Table IV. Simulations for the A-SIR model on a population of S0 = 6 ∗ 107, with

β = 1/7 and for the fitted initial conditions discussed in Section 4.2, for ξ = 1/7 and

for ξ = 1/10, and for η−1 = 21 and η−1 = 14, for various values of the reduction

factor r such that the population is below the epidemic threshold. We report the

time te at which there are less than 100 known infectives, and the fraction of the

initial population which passed through the infection being registered (R∞/S0) or

unknowingly (U∞/S0).

r te R∞/S0 r te R∞/S0

0.20 57 2.29 ∗ 10−4 0.20 41 1.77 ∗ 10−4

0.10 49 1.98 ∗ 10−4 0.10 37 1.58 ∗ 10−4

0.05 46 1.87 ∗ 10−4 0.05 35 1.51 ∗ 10−4

0.02 44 1.81 ∗ 10−4 0.02 34 1.47 ∗ 10−4

0.01 44 1.79 ∗ 10−4 0.01 34 1.46 ∗ 10−4

Table V. Simulations for the standard SIR model on a population of S0 = 6 ∗ 107,

with β = 1/7 (left hand side) and β = 1/5 (right hand sid), and for the fitted initial

conditions discussed in Section 4.2, for various values of the reduction factor r such

that the population is below the epidemic threshold. We report the time te at which

there are less than 100 known infectives, and the fraction of the initial population

which passed through the infection (R∞/S0).
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6 Conclusions

Motivated by the peculiar features of the COVID epidemics, we have considered
a SIR-type model, called A-SIR model, taking into account the presence of
asymptomatic infectives.

We have analyzed the available data for the COVID-19 epidemics in North-
ern Italy in terms of the SIR and of the A-SIR models; in particular we have
fitted the model parameters based on the period 1-10 March, and considered
how these models with such parameters are performing in predicting the evo-
lution for the subsequent week, 11-17 March. As shown by Figures 3 on the
one hand, and by Figures 5, 7 on the other hand, it appears that the A-SIR
model is much better in predicting such (admittedly short time) evolution. In
particular, this is the case with the Li et al. [2] estimate ξ = 1/7 for the ratio
of clearly symptomatic versus total infections, and for the reasonable estimate
β−1 = 7 days for the time from infection to isolation for symptomatic infectives,
and η−1 = 21 for the time from infection to healing of asymptomatic infectives.

Looking at the full numerical integration of SIR and A-SIR equations for
this set of parameters13 and for a population of N = 2 ∗ 107 (which is the total
population of the three most affected regions in Northern Italy [10]), see Figures
2 and 5, we have a prediction of an epidemic peak with about 1.5 ∗ 106 infected
by the SIR model, reached after about 100 days; while for the A-SIR model the
prediction is of a peak with about 5 ∗ 105 symptomatic infectives for ξ = 1/7
and with about 3.5 ∗ 105 infectives for ξ = 1/10, in both cases reached after
about 50 days. In both cases, the mitigation measures taken at the beginning
of March – which according to our analysis led to a reduction factor r ≃ 0.6
in the contact rate [10] – would produce a halving of the epidemic peak and
a doubling of the peak time; further measures were taken one week later, and
hopefully these can stop the epidemic spread.

We have studied in more detail the case which best fits the epidemiological
data outside the period used to fix the model parameters; this corresponds
to β−1 = 7 and ξ = 1/7 (we also considered ξ = 1/10). In this framework,
two cases are possible: either the restrictive measures are only mitigating the
epidemic, or they are capable of stopping it by raising the epidemic threshold
above the population level. In the first case, a reduction of η−1 from 21 to 14
days produce a substantial lowering of the epidemic peak and also substantially
postpones its occurrence; in the second case, the effect of such a reduction may
be quite relevant if the population remains just under the threshold (see the
cases with r = 0.2 in Table IV) or nt so relevant if the reduction of the contact
rate is taking the epidemic threshold well above the population level (se the
cases with lower r in Table IV). In all cases, there is a marked difference with
the behavior of a standard SIR model with equivalent parameters.

Finally, we would like to comment on how reliable these predictions may be

13We recall once again that this corresponds to the prediction of what would have happened
– according to the models – if no action was taken; luckily we expect a substantially different
dynamics after the general lockup, and actual predictions should rather be based on the
Chinese and the Korean experiences.

28



considered. We can judge the adherence of a model to the real situation only
a posteriori, which by definition is not possible in the case of an epidemic in
its early phase. Moreover, in real world several types of measures are taken in
order to attempt to stop, or at least slow down, the epidemic dynamics; thus a
model with constant parameters, in particular constant reduction factor r, is not
realistic. It appears that one could study the evolution of the COVID epidemic
in China, which appears to have been stopped at the time being [11, 12], to
judge if the model is able to describe this evolution. In order to do this, it
would be needed to have a “mobile fit” in order to determine what has been
the evolution of r(t) (or equivalently of γ(t)) in that context, and numerically
integrate the A-SIR equations with such a varying γ to see if these describe the
evolution better (or worse) than the standard SIR model.
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