
ar
X

iv
:2

00
3.

14
10

2v
2 

 [
q-

bi
o.

PE
] 

 5
 A

pr
 2

02
0

Social distancing versus early detection and contacts tracing in epidemic management

Giuseppe Gaeta

Dipartimento di Matematica, Universita’ degli Studi di Milano

via Saldini 50, 20133 Mlano (Italy)

and
SMRI, 00058 Santa Marinella (Italy)

giuseppe.gaeta@unimi.it
(Dated: 30/3/2020)

Different countries – and sometimes different regions within the same countries – have adopted
different strategies in trying to contain the ongoing COVID-19 epidemic; these mix in variable
parts social confinement, early detection and contact tracing. In this paper we discuss the different
effects of these ingredients on the epidemic dynamics; the discussion is conducted with the help
of two simple models, i.e. the classical SIR model and the recently introduced variant (A-SIR,
arXiv:2003.08720) which takes into account the presence of a large set of asymptomatic infectives.

I. INTRODUCTION

Different countries are tackling the ongoing COVID-
19 epidemics with different strategies. Awaiting for a
vaccine to be available, the three tools at our disposal
are contact tracing, early detection and social distancing.
These are not mutually exclusive, and in fact they are
used together, but the accent may be more on one or the
other.

Within the framework of classical SIR [1–5] and SIR-
type models, one could say (see below for details) that
these strategies aim at changing one or the other of the
basic parameters in the model.

In this note we want to study – within this class of
models – what are the consequences of acting in these
different ways. We are interested not only in the peak of
the epidemics, but also in its duration.

In fact, it is everybody’s experience in these days that
social distancing – with its consequence of stopping all
kind of economic activities – has a deep impact on our
life, and in the long run is producing impoverishment
and thus a decline in living conditions of a large part of
population. We all want to survive to COVID, but if
we are successful in this it would be better not to die of
hunger or of some related illness in the next year.

In the present study we will not specially focus on
COVID, but discuss the matter in general terms and by
means of general-purpose models.

Our Examples and numerical computations will how-
ever use data and parameters applying to the current
COVID epidemic in Northern Italy, in order to have re-
alistic examples and figures; we will thus use data and
parameters arising from our analysis of epidemiological
data in the early phase of this epidemic [6]. Unavoidably,
we will also here and there refer to the COVID case.

This work was triggered by the work of M. Cadoni [7]
on time scaling in the SIR model; the credit for pointing
out the relevance of acting on one or the other of the
classical SIR model parameters should go to him.

II. THE SIR MODEL

In the SIR model [1–5], a population of constant size
(this means the analysis is valid over a relatively short
time-span, or we should consider new births and also
deaths not due to the epidemic) is subdivided in three
classes: Susceptibles, Infected (and by this also Infec-
tives), and Removed. The infected are supposed to be
immediately infective (if this is not the case, one consid-
ers so called SEIR model to take into account the delay),
and removed may be recovered, or dead, or isolated from
contact with susceptibles.
The equations governing the SIR dynamics are nonlin-

ear, and explicitly written as

dS/dt = −αS I

dI/dt = αS I − β I (1)

dR/dt = β I .

These should be considered, in physicists’ language, as
mean field equations; they hold under the (surely not
realistic) assumption that all individuals are equivalent,
and that the numbers are sufficiently large to disregard
fluctuations around mean quantities.
Note also that the last equation amounts to a simple

integration, R(t) = R0+β
∫ t

t0
I(y)dy; thus we will mostly

look at the first two equations in (1).
We also stress, however, that epidemiological data can

only collect time series for R(t): so this is the quantity
to be compared to experimental data [2].
With (1), S(t) is always decreasing until there are in-

fectives. The second equation in (1) immediately shows
that the number of infectives grows if S is above the epi-
demic threshold

γ = β/α . (2)

Thus to stop an epidemic once the numbers are too large
to isolate all the infectives, we have three (non mutually
exclusive) choices within the SIR framework:

(a) Wait until S(t) falls below the epidemic threshold;
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(b) Raise the epidemic threshold above the present
value of S(t) by decreasing α;

(c) Raise the epidemic threshold above the present
value of S(t) by increasing β.

In practice, any State will try to both raise β and lower
α, and if this is not sufficient await that S falls below the
attained value of γ.
In order to understand how this is implemented, it is

necessary to understand what α and β represent in con-
crete situations.
The parameter β represents the removal rate of infec-

tives; its inverse β−1 is the average time the infectives
spend being able to spread the contagion. In the context
of COVID, raising β means lowering the time from infec-
tion to isolation, hence from infection to detection of the
infected state.
The parameter α represents the infection rate, and as

such it includes many thing. It depends both on the infec-
tion vector characteristics (how easily it spreads around,
and how easily it infects a healthy individual who gets in
contact with it), but is also depends on the occasions of
contacts between individuals. So, roughly speaking, it is
proportional to the number of close enough contacts an
individual has with other ones per unit of time. It follows
that – if properly implemented – social distancing results
in reducing α.
Each of these two actions presents some problem. The

mean time for the appearance of symptoms of COVID
is a bit over five days [8], and the first symptoms are
usually quite weak. So early detection is possible only
by fast tracing and laboratory checking of all the con-
tacts of those who are known to be infected. This has a
moderate cost (especially if compared to the cost of an
Intensive Care hospital stay) but requires an extensive
organization.
On the other hand, social distancing is cheap in imme-

diate terms, but produces a notable strain of the societal
life, and in practice – as many of the contacts are actu-
ally work related – requires to stop as many production
and economic activities as possible, i.e. has a formidable
cost in the medium and long run. Moreover, it cannot
be pushed too far, as a number of activities and services
(e.g. those carrying food to people, urgent medical care,
etc.) can not be stopped.
Let us come back to (1); using the first two equations,

we can study I in terms of S, and find out that

I = I0 + (S0 − S) − γ log(S0/S) . (3)

As we know that the maximum I∗ of I will be reached
when S = γ, this allows immediately to determine the
epidemic peak. In practice, I0 is negligible and S0 corre-
sponds to the whole population, S0 = N ; thus

I∗ = N − γ − γ log(N/γ) . (4)

Note that only γ appears in this expression; that is, rais-
ing β or lowering α produces the same effect as long as
we reach the same γ.
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FIG. 1: Different effect of acting on the α or the β parameter.
The SIR equations (1) are numerically integrated and I(t)
plotted in arbitrary units for given initial conditions and α, β
parameters (solid), the maximum I∗ being reached at t = t∗.
Then they are integrated for the same initial condition but
raising β by a factor ϑ = 3/2 (dashed) with maximum Iβ =
rI∗ reached at time tβ = σβt∗; and lowering α by the same
factor ϑ = 3/2 (dotted) with maximum Iα = Iβ reached at
time tα = σαt∗. Time unit is one day, α = (4/3) ∗ 10−8,
β = 1/7; these parameters arise from our fitting of data from
the early phase of COVID epidemics in Northern Italy [6, 9];
the population of the most affected area in the initial phase is
about 20 million, that of the whole Italy is about 60 million.
The numerical simulation is ran with N = 6 ∗ 107; it results
r = 0.74, σα = 1.63, σβ = 1.09, I∗ = 3.08 ∗ 107, t∗ = 26.4;
note that σα/σβ = 3/2 = ϑ.

On the other hand, this simple formula does not tell
us when the epidemic peak is reached, but only that it
is reached when S has the value γ. But if measures are
taken, these should be effective for the whole duration
of the epidemic, and it is not irrelevant – in particular if
the social and economic life of a nation is stopped – to
be able to evaluate how long this will be for.
Acting on α or on β to get the same γ will produce

different timescales for the dynamics; see Figure 1, in
which we have used values of the parameters resulting
from our fit of early data for the Northern Italy COVID-
19 epidemic [6, 9].
This observation can be made more precise considering

the scaling properties of (1). In fact, consider the scaling

α → λα , β → λβ , t → λ−1 t . (5)

It is clear that under this scaling γ remains unchanged,
and also the equations are not affected; thus the dynam-
ics is the same but with a different time-scale.
The same property can be looked at in a slightly differ-

ent way. First of all, we note that one can write α = β/γ;
moreover, α appears in (1) only in connection with S, and
it is more convenient to introduce the variable

ϑ := S/γ . (6)

Now, let us consider two SIR systems with the same ini-
tial data but different sets of parameters, and let us for
ease of notation just consider the first two equations of
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each. Thus we have the two systems

γ−1 dϑ/dt = −β ϑ I , dI/dt = β (ϑ− 1) I ; (7)

γ̃−1 dϑ̃/dt = −β̃ ϑ̃ Ĩ , dĨ/dt = β̃ (ϑ̃− 1) Ĩ . (8)

We can consider the change of variables (λ > 0)

β̃ = λ β̃ := β̂ , t → λ−1 t := τ . (9)

With this, (8) becomes

λ γ̃−1 (dϑ̃/dτ) = −λβ̂ ϑ̃ Ĩ , λ(dĨ/dτ) = λβ̂ (ϑ̃− 1) Ĩ .

We can thus eliminate the factor λ in both equations.

However, if we had chosen λ = β̃/β, we get β̂ = β; if
moreover γ̃ = γ, the resulting equation is just

γ−1 dϑ̃/dτ = −β ϑ̃ Ĩ , dĨ/dτ = β (ϑ̃− 1) Ĩ . (10)

But we had supposed the initial data for {S, I} and for

{S̃, Ĩ} (and hence also for ϑ and ϑ̃) to be the same. We
can thus directly compare (10) with (7).

We observe that {ϑ̃, Ĩ} have thus exactly the same dy-
namics – but in terms of the rescaled time τ – as {ϑ, I}
in terms of the original time t. In particular, if the max-

imum of I is reached at time t∗, the maximum of Ĩ is
reached at τ∗ = t∗, and hence at

t̃∗ = λ τ∗ = λ t∗ . (11)

More precise analytical results on the timescale change
induced by a rescaling of the α and β parameters have
recently been obtained by M. Cadoni (personal commu-
nication) [7].

III. A-SIR MODEL

One of the striking aspects of the ongoing COVID-19
epidemic is the presence of a large fraction of asymp-
tomatic infected, and hence infectives; note that here
we will always use “asymptomatic” as a shorthand for
“asymptomatic or paucisymptomatic”, as also people
with very light symptoms will most likely escape to clin-
ical detection of COVID – and actually most frequently
will not even think of consulting a physician.[23]

A. The model and its parameters

In order to take this aspect into account, we have re-
cently formulated a variant of the SIR model [9] in which
together with known infectives I(t), and hence known
removed R(t), there are unregistered infectives J(t) and
unregistered removed U(t). Note that in this case re-
moval amounts to healing; so while the removal time β−1

for known infected corresponds to the time from infection
to isolation (thus in general slightly over the incubation

time Ti ≃ 5.1 days for COVID), the removal time η−1 for
unrecognized infects will correspond to incubation time
plus healing time.
In the model, it is supposed that symptomatic and

asymptomatic infectives are infective in the same way.
This is not fully realistic, as one may expect that some-
body having the first symptoms will however be more
retired, or at east other people will be more careful in
contacts; but this assumption simplifies the analysis,and
is not completely unreasonable considering that for most
of the infection-to-isolation time β−1 the symptoms do
not show up.
The equations for the A-SIR model [9] are

dS/dt = −α S (I + J)

dI/dt = α ξ S (I + J) − β I

dJ/dt = α (1− ξ) S (I + J) − η J (12)

dR/dt = β I

dU/dt = η J .

Note that here too we have a “master” system of three
equations (the first three) while the last two equations

amount to direct integrations, R(t) = R0 + β
∫ t

t0
I(y)dy,

U(t) = U0 + η
∫ t

t0
J(y)dy.

The parameter ξ ∈ [0, 1] represents the probability that
an infected individual is detected as such, i.e. falls in the
class I. In the absence of epidemiological investigations
to trace the contacts of known infectives, this corresponds
to the probability of developing significant symptoms.
In our previous work [9], some confusion about the

identification of the class J was present, as this was
sometimes considered to be the class of asymptomatic
infectives, and sometimes that of not registered ones[24].
While this is not too much of a problem considering the
“natural” situation, it becomes so when we think of ac-
tion on this situation.
Actually, and unfortunately, this confusion has a con-

sequence exactly on one of the points we want to discuss
here, i.e. the effect of a campaign of chasing the infec-
tives, e.g. among patients with light symptoms or within
social contacts of known infectives; let us thus discuss
briefly this point.
If J is considered to be the set of asymptomatic virus

carriers, then a raise in the fraction of these who are
known to be infective, and thus isolated, means that the
average time for which asymptomatic infectives are not
isolated is decreasing. In other words, we are lowering
η−1 and thus raising η. On the other hand, in this
description ξ is the probability that a new infective is
asymptomatic, and this depends only on the nature of
the virus and its interactions with the immune system of
the infected people; thus in this interpretation ξ should
be considered as a constant of nature, and it cannot be
changed.[25]
On the other hand, if J is the class of unknown infec-

tives, things are slightly different. In fact, to be in this
class it is needed (a) that the individual has no or very
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light symptoms; but also (b) that he/she is not traced
and analyzed by some epidemiological campaign, e.g. due
to contacts with known infected or because belonging to
some special risk category (e.g. hospital workers). In this
description, η is a constant of nature, depending on the
nature of the virus and on the response of the “average”
immune system of (asymptomatic) infected people, while
our efforts to trace asymptomatic infectives will act on
raising the probability ξ.
We want to discuss the effect of early detection of in-

fectives, or tracing their contacts, within the second men-
tioned framework. Note that a campaign of tracing con-
tacts of infectives is useful not only to uncover infectives
with no symptoms, but if accompanied by effective isola-
tion of contacts with known infectives, and thus of those
who are most likely to be infective, it will also reduce
the removal time of “standard” (i.e. symptomatic) infec-
tives, possibly to a time smaller than the incubation time
itself.

B. A glimpse at COVID matters in this respect

This approach, indeed, was taken in one of the areas of
early explosion of the contagion in Northern Italy, i.e. in
Vò Euganeo; this had the advantage of being a small com-
munity (about 3,000 residents), and all of them have been
tested twice while embargo was in operation. In fact, this
was the first systematic study showing that the number
of asymptomatic carriers was very high, quite above the
expectations [10]. Apart from its scientific interest, the
approach proved very effective in practical terms, as new
infectives were quickly traced and in that specific area
the contagion was stopped in a short time.
While testing everybody is not feasible in larger com-

munities, the “follow the contacts” approach could be
used on a larger scale, especially with the appearance of
new very quick kits for ascertaining positivity to COVID.
The model will thus react to a raising of ξ by raising

the fraction of I within the class of infectives, i.e. in
K = I + J ; but at the same time, as critical patients are
always the same, i.e. represents always the same fraction
of K, we should pay attention to the fact they will now
represent a lower fraction of I. The Chinese experience
shows that critical patients are about 10 % of hospital-
ized patients (i.e. of those with symptoms serious enough
to require hospitalization); and hospitalized patients rep-
resented about half of known infected, the other being
cured and isolated at home. Similar percentages were
observed in the early phase of the COVID epidemic in
Italy; the fraction of infectives isolated at home has af-
terwards diminished, but it is believed that this was due
to a different policy for lab exams, i.e. checking prior-
itarily patients with multiple symptoms suggesting the
presence of COVID rather than following the contacts.
Actually this policy was followed in most of Italy, but
in one region (Veneto) the tracking of contacts and lab
exams for them was pursued, and in there the percent-

ages were much more similar to those known to hold for
China.

C. Numerical simulations protocol. Parameters

and initial data

In our previous work [9] we have considered data for
the early phase of COVID epidemics in Italy, and found
that β−1 ≃ 7 best fits them while the estimate η−1 ≃ 21
was considered as a working hypothesis. This same work
found as value of the contact rate in the initial phase
α ≃ 1.13 ∗ 10−8, and we will use this in our numerical
simulations.
It should be stressed that the extraction of the param-

eter α from epidemiological data is based on the number
S0 ≃ N of susceptibles at the beginning of the epidemic,
thus α and hence γ depend on the total population. The
value given above was obtained considering N = 2 ∗ 107,
i.e. the overall population of the three regions (Lom-
bardia, Veneto and Emilia-Romagna) which were mostly
affected in the initial phase.
Our forthcoming discussion, however, does not want

to provide a forecast on the development of the COVID
epidemic in Northern Italy; we want instead to discuss
– with realistic parameters and framework – what would
be the differences if acting with different strategies in an
epidemic with the general characteristics of the COVID
one. Thus we will adopt the aforementioned parameters
as “bare” ones (different strategies consisting indeed on
acting on one or the other of these) but will apply these
on a case study initial condition; this will be given by

I0 = 10 , J0 = 90 ; R0 = U0 = 0 . (13)

One important parameter is missing from this list, i.e.
the detection probability ξ. Following Li et al. [11] we
assumed in previous work that ξ is between 1/10 and 1/7.
Later works (and a general public interview by the Head
of the Government agency handling the epidemic [12])
suggested that the lower bound is nearer to the truth;
moreover a lower ξ will give us greater opportunity to
improve things by acting on it (we will see this is not the
best strategy, so it makes sense to consider the setting
more favorable to it). We will thus run our simulation
starting from a “bare” value ξ = 1/10.[26]
As for the total size of the population, we set N =

2 ∗ 107. With these choices we get

γ = 1.26 ∗ 107 ,
S0

γ
≃ 1.58 . (14)

We would like to stress once again that we will work
with constant parameters, while in reality the parameters
are changing all the time due to the continuing efforts to
contain the epidemic. So our discussion is valid for what
concerns the effect of different actions, but the absolute
values of infected etc are by no means a forecast of what
will happen; rather they should be seen – in particular,



5

those relating to the “bare” parameters – as a projection
of what could have happened if no action was undertaken.

D. Balance between registered and unregistered

infectives

A look at eqs.12 shows that I will grow provided

ξ S

γ
>

I

I + J
=

I

K
:= x , (15)

where again γ = β/α, and we have introduced the ratio
x(t) of known infectives over total infectives. In other
words, now the epidemic threshold

γI =

(
x

ξ

)
γ (16)

depends on the distribution of infectives in the classes I
and J . Note that if x = ξ (as one would expect to happen
in early stagesof the epidemic), then γI = γ.
Needless to say, we have a similar result for J , i.e. J

will grow as far as

(1− ξ)S
α

η
>

J

I + J
=

J

K
:= y = 1− x ; (17)

thus the epidemic threshold for unregistered infectives is

γJ =

(
1− x

1− ξ

)
η

α
. (18)

For x = ξ (see above) we would have γJ = (η/β)γ < γ.
It is important to note that x is evolving in time. More

precisely, by the equations for I and J we get

dx

dt
= α ξ S − (αS + β − η) x + (β − η)x2

= αS (ξ − x) + (β − η) (x2 − x) . (19)

The behavior observed in Fig.2 can be easily under-
stood intuitively. In the first phase of the epidemic, there
is an exponential growth of both I and J ; due to the
structure of the equations, they grow with the same rate,
so their ratio remains constant; on the other hand, once
the dynamics get near to the epidemic peak, the differ-
ence in the permanence time of the two (that is, the time
individuals remain in the infect class) becomes relevant,
and we see (plots (a2) and (b2) of Fig.2) that not only the
peak for J is higher than the one for I, but it occurs at
a slightly later time. Moreover, descending off the peak
is also faster for I, as β−1 < η−1, and thus x further
decreases, until it reaches a new equilibrium while both
classes I and J go exponentially to zero.
If we look at (19) we see that for fixed S the variable

x would have two equilibria (one stable with 0 < x < 1
and one unstable with x > 1,stability following from β−
η > 0), easily determined solving dx/dt = 0. Numerical
simulations show that – apart from an initial transient
– actually x(t) stays near, but in general does not really
sticks to, the stable fixed point determined in this way.
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FIG. 2: Dynamics of x(t) in the A-SIR model. We plot x(t)
in upper plots (a1) and (b1); and I(t) (dashed curve) and
J(t) (solid curve) in lower plots (a2) and (b2). These are
considered along the solutions of the A-SIR model for α =
1.13 ∗ 10−8, β = 1/7, η = 1/14, and ξ = 1/10; in the left
column, i.e. in plots (a1) and (a2), with S0 = 2 ∗ 107 and
I0 + J0 = 10; in the right column, i.e. in plots (b1) and (b2),
for S0 = 6 ∗ 107 and I0 + J0 = 30. The scale of plots (a2) and
(b2) is chosen so that the maximum of J(t) is at level one.

E. The basic reproduction number

A relevant point should be noted here. If we consider
the sum

K(t) := I(t) + J(t) (20)

of all infectives, the A-SIR model can be cast as a SIR
model in terms of S, K, and Q = R+ U as

dS/dt = −αSK

dK/dt = αS K − BK (21)

dQ/dt = BK

where B is the average removal rate, i.e.

B = xβ + (1 − x) η .

As x varies in time, this average removal rate is also
changing. On the other hand, the basic reproduction
number (BRN)[27] ρ0 for this model will be

ρ0 =
α

B
S >

α

β
S . (22)

In other words, not taking the asymptomatic infectives
into account leads to an underestimation of the BRN. If
the standard SIR model predicts a BRN of ρ0, the A-SIR
model yields a BRN ρ̂0 given by

ρ̂0 =
β

B
ρ0 =

β

xβ + (1− x)η
ρ0 > ρ0 . (23)

This means that the epidemic will develop faster, and
possibly much faster, than what one would expect on the
basis of an estimate of ρ0 based only on registered cases,
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which in the initial phase are a subset of symptomatic
cases (as the symptoms may easily be leading to a wrong
diagnosis; in the case of COVID they lead to a diagnosis
of standard flu).
With our COVID-related values β = 1/7, η = 1/21,

and assuming that in the early phase x = ξ = 1/10, we
get

ρ̂0 =
5

2
ρ0 ; (24)

there is thus a good reason for being surprised by the
fast development of the epidemic: the actual BRN is sub-
stantially higher than the one estimated by symptomatic
infections [16].

IV. HIDDEN INFECTIVES AND EPIDEMIC

DYNAMICS

More generally, one would wonder what is the effect
of the “hidden” infectives J(t) on the dynamics of the
known infectives I(t) – which, we recall, include the rele-
vant class of seriously affected infectives – and it appears
that there are at least two, contrasting, effects:

1. On the one hand, the hidden infectives speed up
the contagion spread and hence the raise of I(t);

2. On the other hand, they contribute to group im-
munity, so the larger this class the faster (and the
lower the I level at which) the group immunity will
be reached.

The discussion above shows that the balance of these
two factors leads to a much lower epidemic peak, and a
shorter epidemic time, than those expected on the basis
of the standard SIR model (albeit in the case of COVID
these are still awful numbers).
On the other hand, we would like to understand if un-

covering a larger number of cases (thus having prompt
isolation of a larger fraction of the infectives) by early
detection, i.e. raising ξ, would alter the time-span of
the epidemic. It appears that this effect can be only
marginal, as it appears only past the epidemic peak.
We stress that this statement refers to “after incuba-

tion” analysis; if we were able to isolate cases before they
test positive – i.e. to substantially reduce β−1 – the effect
could be different. We will discuss this point, related to
contact tracing, later on.

A. Observable and “clean” observable data

An ongoing epidemic is not a laboratory experiment,
and apart from not having controlled external conditions,
i.e. constant parameters, the very collection of data is of
course not the top priority of doctors fighting to save
human lives.

There has been considerable debate on what would be
the most reliable indicator to overcome at least the sec-
ond of these problems. One suggestion is to focus on
the number of deaths; but this is itself not reliable, as
in many cases COVID is lethal on individuals which al-
ready had some medical problem, and registering these
deaths as due to COVID or to some other cause depends
on the protocol adopted, and in some case also on polit-
ical choices, e.g in order to reassure citizens (or on the
other extreme, to stress great care must be taken to avoid
contagion).
Another proposed indicator, possibly the most reliable

in order to monitor the development of the epidemic, is
that of patients in Intensive Care Units. This appears to
be sufficiently stable over different countries, and e.g. the
Italian data tend to reproduce in this respect - at least in
Regions where the sanitary system is not overstretched –
the Chinese ones.[28]
In this case, IC patients are about 20 % of the total

number of hospitalized cases; in China and for a long
time also in Italy (when protocols for choosing would-
be cases to be subject to laboratory analysis have been
stable), hospitalized cases have been about half of the
known infection cases, the other having shown only minor
symptoms and been cured (and isolated) in their home.
The other, more widely used, indicator is simply the

total number of known cases of infection. In view of the
presence of a large class of asymptomatic infectives, this
itself is strongly depending on the protocols for chasing
infectives. On the other hand, this is the most available
indicator: e.g., the W.H.O. situation reports [19] provide
these data.
Each of these indicators, thus, has advantages and dis-

advantages. We will just use the WHO data on known
infected.
In particular, in the case of COVID we expect that

with ξ0 the “bare” constant describing the probability
that an infection is detected[29], out of the class I(t) we
will have a 50% of infected with little or no symptoms
(IL), a 40% of standard care hospitalized infected (IH),
and a 10% of IC hospitalized infected (IIC). Needless to
say, this class is the most critical one, also in terms of
strain on the health system.
More generally, we say that with ξ0 the “bare” constant

describing the probability that the infection under study
is detected, there is a fraction χ0 (of the detected infec-
tions) belonging to the IIC class; that is, IIC(t) = χ0I(t).

V. MODIFYING THE PARAMETERS

We are now ready to discuss how modification of one or
the other of the different parameters (α, β, ξ) on which we
can act by various means will affect the A-SIR dynamics.
As it should be expected, this will give results similar to
those holding for the SIR model, but now we have one
more parameter to be consideredand thus a more rich set
of possible actions.
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FIG. 3: The effect of a change in ξ on the IIC class. We have
used β = 1/7, η = 1/21, and α = 1.13∗10−8 as in Fig.2, with
a total population of N = 2 ∗ 107, and ran simulations with
ξ = 1/10 (solid curve) and with ξ = 1/4 (dashed curve). The
substantial increase in ξ produces a reduction in the epidemic
peak and a general slowing down of the dynamics, but both
these effects are rather small.

A. Raising the detected fraction

A more extensive test campaign will raise ξ, say from
ξ0 to ξ1; but of course this will not change the number
of the most serious cases, as these are anyway getting
to hospital and detected as being due to the infection in
question. Thus the new fraction χ1 of detected infections
which need special care will be such that χ1ξ1 = χ0ξ0,
i.e. we have

χ1 =
ξ0
ξ1

χ0 . (25)

In order to describe the result of raising ξ, we should
thus compare plots of

IIC(t) = χ I(t) . (26)

This is what we do, indeed, in Fig.3.

B. Running ahead of the epidemic wave

Raising ξ corresponds to having more infective de-
tected, and has some advantages from the point of view
of the epidemic dynamics. In practical terms, this means
extending tests to a larger class of subjects, and be able to
isolate a larger fraction of asymptomatic infectives with
the same speed and effectiveness as symptomatic ones.
A different strategy for rapid action is also possible,

and it consists of rapid isolations of subjects who had
contacts with people known to have been infected, or
who have themselves been in contact with known infec-
tives (and so on). In other words, the strategy would be
to isolate would-be infection carriers before any symp-
tom could show up. This means that β−1 could be even
smaller than the usual infection-to-isolation time (about
seven days for COVID) for symptomatic infectives, and
even shorter than the incubation time (about five days
for COVID).[30]
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FIG. 4: The effect of a change in β on the IIC class. We have
used ξ = 1/10, η = 1/21, and α = 1.13 ∗ 10−8 as in Fig.2,
with a total population of N = 2 ∗ 107, and ran simulations
with β = 1/7 (solid curve) and with β = 1/3 (dashed curve).
The substantial increase in β produces a marked reduction
in the epidemic peak and a very slightly faster pace in the
dynamics.

We have thus ran a simulation in which ξ is not
changed, but β raises from β0 = 1/7 to β = 1/3; the
result of this is shown in Fig.4. In this case we have
a marked diminution of the epidemic peak, and a very
slight acceleration of the dynamics.

C. Social distancing

We have so far not discussed the most basic tool in
epidemic containment, i.e. social distancing. This means
acting on the parameter α by reducing it.[31]
This is a basic action to be undertaken, and in fact

it is being taken by all Nations. It is also the simplest
one to be organized (albeit with high economic and so-
cial costs in the long run) and an action which can be
taken together with other ones. No doubt this should be
immediately taken when an epidemic is starting, and ac-
companied by other measures – such as those discussed
above. But here we want to continue our study of what it
means by itself in terms of modification of the epidemic
dynamics.
It is not clear what can be achieved in terms of reduc-

tion of social contacts. In fact, once the epidemic starts
most of the dangerous contacts are the unavoidable ones,
such as those arising from essential services and produc-
tion activity (e.g. production and distribution of food or
pharmaceutical goods), contacts at home, and above all
contacts in Hospitals. Thus, after a first big leap down-
ward corresponding to closing of schools and Universities
on the one side, and a number of unessential commer-
cial activities on the other, and restrictions on travels,
it is difficult to further reduce social contacts[32], not
to say that this would have huge economic and social
costs, and also a large impact on the general health in
terms of sedentariness-related illness (and possibly men-
tal health).
We point out that there is a further obstacle to reduc-
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FIG. 5: The effect of a change in α on the IIC class. We have
used β = 1/7, ξ = 1/10, η = 1/21, with a total population
of N = 2 ∗ 107, and ran simulations with α = 1.13 ∗ 10−8

(solid curve) and with α = 8.47 ∗ 10−9 (dashed curve). The
reduction in α produces a marked reduction in the epidemic
peak and also a marked slowing down in the dynamics.

ing social contacts: as seen in the context of the simple
SIR model, reducing α will lower the epidemic peak, but
it will also slow down the whole dynamic. While this al-
lows to gain precious time to prepare Hospitals to stand
the big wave, there is some temporal limit to an extended
lockdown, and thus this tool cannot be used to too large
an extent.
We have thus ran a simulation in which β and ξ are

not changed, while α is reduced by a factor 0.75 (smaller
factors, i.e. smallerα, produce an untenable length of the
critical phase); the result of this is shown in Fig.5. In this
case we have a relevant diminution of the epidemic peak,
and also a marked slowing down in the dynamics.
An important remark is needed here. It may seem,

looking at this plot, that social distancing is less effective
than other way of coping with the epidemic. But these
simulation concern a SIR-type model; this means in par-
ticular that there is no spatial structure in our model
[2]. The travel ban is the most effective way of avoiding
the spreading of contagion from one region to the oth-
ers; while the “local” measures of social distancing can
(and should) be triggered to find a balance with other
needs, travel ban is the simplest and most effective way
of protecting the communities which have not yet been
touched by the epidemic.

D. Comparing different strategies

We can thus compare the different strategies we have
been considering. This is done in Fig.6 where we plot
together IIC(t) for all our different simulations; and in
Table I where we compare the height of the epidemic peak
– again for IIC(t) – and the time at which it is reached.
In Fig.6 we have also drawn a line representing the hy-

pothetical maximal capacity of IC units. This stresses
that not only the different actions lower the epidemic
peak, but they also – and to an even larger extent –
reduce the number of patients which can not be conve-

α β ξ max time

1.13 ∗ 10−8 1/7 1/10 44768 75

1.13 ∗ 10−8 1/7 1/4 41482 79

1.13 ∗ 10−8 1/3 1/10 20943 74

8.47 ∗ 10−9 1/7 1/10 30956 107

TABLE I: Epidemic peak (for IIC) and time for reaching it (in
days) as observed in our numerical simulations. All simulation
were ran with N = 2 ∗ 107 and η = 1/21.

niently treated.[33]
It should be stressed that the strategies of contacts

tracing and early detection are usually played together;
but as confusion could arise on this point, let us briefly
discuss it. We have tried to stress that these two ac-
tions are not equivalent: one could conduct random test-
ing, so uncovering a number of asymptomatic infectives,
and just promptly isolate them without tracing their con-
tacts;or on the other extreme one could just isolate ev-
erybody who had a (direct or indirect) contact with a
known infective, without bothering to ascertain if they
are themselves infective or not. This strategy would be
as effective in containing the contagion (and less costly
in terms of laboratory tests) than that of tracking con-
tacts, test them (after a suitable time for the infection
to develop and test give positive if this happens), and
isolate only those who really turn infective. The differ-
ence is that if we isolate everybody this would involve a
huge number of people (e.g. all those who have been in
the same supermarket the same day as an infective; and
their families and contacts etc etc); so in this context
early detection actually should be intended as early de-
tection of non-infectives, so that cautionary quarantine
can be kept reasonably short in all the cases where it is
not really needed.
Finally we recall that it is a triviality, and it was al-

ready mentioned in the Introduction, that in real situa-
tions one has not to choose between acting on one or the
other of the parameters, and all kind of actions should
be pursued simultaneously.

VI. DISCUSSION AND CONCLUSIONS

We have considered epidemic dynamics as described by
“mean field” models of the SIR type; more specifically, we
have first considered the classical Kermack-McKendrick
SIR model [1–5] and then a recently introduced modified
version of it [9] taking into account the presence of a
large set of asymptomatic – and thus most frequently not
detected – infectives. These models depend on several
parameters, and different types of measures can to some
extent change these parameters and thus the epidemic
dynamics. In particular, this action can effect two basic
characteristics of it, i.e. the height of the epidemic peak
and the time-span of the epidemic.
While it is clear that in facing a real lethal epidemics
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FIG. 6: The effect of different strategies. We plot IIC(t)
for N = 2 ∗ 107 in the ”bare” case, i.e. for α = 1.13 ∗ 10−8,
β = 1/7, ξ = 1/10, η = 1/21, and in cases where (only) one of
the parameters is changed. In particular we have the bare case
(solid line), the case where ξ is changed into ξ = 1/4 (dotted),
the case where β is changed to β = 1/3 (dashed), and that
where α is changed to α = 8.47 ∗ 10−9 (solid, blue). We also
plot a horizontal line representing a hypothetical maximal
capacity of IC units.

(such as the ongoing COVID epidemic) all actions which
can contrast it should be developed at the same time, in
this paper we have considered the result – within these
models – of different tools at our disposal, i.e. (gen-
eralized) social distancing, early detection (of asymp-
tomatic infectives) and contacts tracing (of symptomatic
and asymptomatic infectives).

It turns out that – both in the classical SIR model
and in the modified A-SIR one – social distancing is ef-
fective in reducing the epidemic peak, and moreover it
slows down the epidemic dynamics. On the other hand,
early detection of asymptomatic infectives seems to have
only a moderate effect in the reduction of the epidemic
peak for what concerns critical cases, and also a very lit-
tle effect on the temporal development of the epidemic.
In contrast, contact tracing has a strong impact on the
epidemic peak – also in terms of critical cases – and does
not substantially alter the temporal development of the
epidemic.[34]

Slowing down the epidemic dynamic can be a posi-
tive or negative feature depending on the concrete situ-
ation and on the desired effects. It is surely positive in
what concerns getting ready to face the epidemic peak,
in particular in the presence of a faltering Health Sys-
tem. On the other hand, it may be negative in that
maintaining a generalized lockdown for a long time can
have extremely serious economic and social consequences.
Balancing these two aspects is not a matter for the math-
ematician or the scientist, but for the decision maker; so
we will not comment any further about this.

It should also be recalled that our analysis was con-
ducted in terms of very simple SIR-type models, with all
their limitations. In particular, we have considered no
age or geographical or social structure, and only consid-
ered a population of “equivalent” individuals. In partic-
ular, as we have noted above, in the early stage of an

epidemic, which presumably develops in very populated
areas, a generalized travel ban can simply stop the con-
tagion to propagate to other (possibly less well equipped
in medical terms) areas; moreover, social distancing mea-
sures can be implemented very simply – basically, by a
Government order[35] – and are thus the first action to
be taken. In fact, in relation with the ongoing COVID
epidemics, one of the reproaches made to many Gov-
ernments is usually to have been too slow or too soft
in stopping crowd gatherings (and, in Europe, football
matches), surely not the contrary.
On the other hand, we hope that this study makes clear

what are the consequences of different options. In par-
ticular, our study shows that contacts tracing, followed
by prompt isolation of would-be infected people – is the
only way to reduce the impact of the epidemic without
having to live with it for an exceedingly long time. The
Veneto experience shows that this strategy can be effec-
tively implemented without hurting privacy or personal
freedom.
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Appendix A: The COVID-19 epidemics in Northern

Italy

As stated above, our discussion is of general nature,
but was triggered by the ongoing COVID-19 epidemics
in Northern Italy; this in turn provides some concrete
arena for testing our conclusions. In fact, in Italy the
competence of the Health System pertains to the regions,
so that there were slightly different strategies followed by
nearby regions.
We have considered in particular Lombardia, Veneto

and Emilia Romagna, i.e. the regions which were first
and more severely affected by the COVID epidemics.
Some debate took place, in particular between health of-
ficers of Lombardia and Veneto, about the use of labo-
ratory tests; in the end Veneto performed far more tests
(per thousand inhabitants) than Lombardia, with Emilia
in between. (Data about this can be extracted from offi-
cial sites [20] or from general press [21].)
The evolution of (registered) infections in Italy and in

these regions is depicted (in logarithmic scale) in Fig.7.
We have monitored the evolution of these by the fol-

lowing protocol (dates are based on governmental mea-
sures; the impact of these will be discussed elsewhere).
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FIG. 7: Cumulative registered cases in Italy (ITA) and ac-
tive registered cases in Lombardia (LOM), Veneto (VEN) and
Emilia-Romagna (EMI); day 1 is February 21, data go until
March 29.

ITA LOM VEN EMI

Feb 23 – Mar 1 0.34 0.29 0.37 0.51

Mar 1 – Mar 8 0.22 0.17 0.13 0.20

Mar 8 – Mar 15 0.17 0.15 0.18 0.13

Mar 15 – Mar 22 0.13 0.09 0.12 0.12

Mar 22 – Mar 29 0.08 0.05 0.07 0.08

TABLE II: The exponent A, see (A1), for Italy (ITA), Lom-
bardia (LOM), Veneto (VEN) and Emilia-Romagna (EMI),
in different weeks; see text.

The time-span of the epidemic has been divided into
weeks. For each of these weeks we have fitted data on
infectives[36] by a simple exponential

R(t) = exp[A (t− t0)] R(t0) , (A1)

and measured A in different weeks and different regions.
This should allow to follow in a quantitative way the

descent of the epidemic speed. The result of this exercise
is summarized in Table II, and show that there is little
difference between different regions.
But, these data concern registered positive and are thus

greatly influenced by the testing strategy. In Table III we
have collected some demographic data about the three
considered regions and data about the number of tests
carried out, together with the number of COVID-related
deaths. Here, together with the first and most affected
regions, we also consider Piemonte and Marche, which
were struck later but also quite heavily.

LOM VEN EMI PIE MAR

Population (∗106) 10.088 4.906 4.459 4.356 1.523

Density (inhab/km2) 423 267 199 172 162

tests (March 8) 20135 15956 4906 1681 1250

deaths (March 8) 333 20 70 13 10

tests (March 29) 107398 94784 56491 24058 10431

deaths (March 29) 6360 392 1443 684 386

tests/m (March 29) 10.65 19.32 12.67 5.52 6.85

deaths/M (March 29) 630.45 79.90 323.62 157.02 253.45

cases (cumulative) 41007 8358 13119 8206 3558

deaths/cases 0.155 0.047 0.110 0.083 0.108

TABLE III: Demographic data, number of tests and deaths
at March 8 and March 29; together with tests per thousand
inhabitants, deaths per million inhabitants and deaths per
registered case at the latter date. Data for Lombardia (LOM),
Veneto (VEN), Emilia-Romagna (EMI), Piemonte (PIE) and
Marche (MAR).

Large differences are evident in the testing policy; it
is also evident that the region performing more tests,
i.e. Veneto, also has a specially good score in saving its
COVID patients. The data for the mortality rate are of
course largely influenced by the testing policy itself, i.e.
by the fact there are more registered COVID patients.
But the really relevant data are those concerning the ra-
tio between COVID deaths and the total population: this
is not affected by the testing policy, and actually perform-
ing more tests leads to recognizing COVID as the death
cause in a larger set of cases.
In view of our discussion, we would not expect diffuse

testing by itself to give a substantial advantage. Thus
our interpretation of the specially low number of victims
in Veneto (not only compared to Lombardia, which was
probably also specially unlucky in this circumstance and
has a higher population density, but also with respect
to other regions[37] which were affected by COVID only
later) is that the winning point in their strategy was not
so much the high number of tests, but the fact they were
properly targeted, tracing contacts and isolating potential
new infectives before the infection showed up – and using
tests to ascertain if they should remain isolated or be
allowed to go back to usual life.[38]
This is even more remarkable as it was conducted with-

out the help of any personal control technology (app) or
other means interfering with privacy and personal free-
dom – and without the help of the many thousand people
working at tracing contacts in Hubei – showing that effec-
tive epidemic control is not necessarily in contrast with
personal freedom.
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fraction could be as low as ξ = 1/100. We have ascer-
tained that with this value of ξ, and assuming α ws not
changed by the restrictive measures adopted in the mean-
while, the A-SIR model fits quite well the epidemiological
data available to date. However, despite this, we do not
trust this hypothesis – at least for Italy – for various rea-
sons, such as (in order of increasing relevance): (i) A
viral infection showing effects only in 1% of affected in-
dividuals would be rather exceptional; (ii) Albeit in our
opinion the effect of social distancing measures adopted
in Italy is sometimes overestimated, we trust that there
has been some effect; (iii) if only 1% of infected people
was detected,in some parts of Italy the infected popula-
tion would be over 100%. On the other hand, the main
point made by this report [14], i.e. that only a large scale
serological study, checking if people have COVID anti-
bodies, will be able to tell how diffuse the infection is –
and should be performed as soon as possible – is by all
means true and correct. See also [15].

[27] This is usually denoted as R0, but we prefer to change
this notation in order to avoid any confusion with initial
data for the known removed R(t).

[28] We tend to use only these two countries: in one case
(Italy) the author has a direct knowledge of the epidemic
and of different side conditions which may have affected
data; in the other case (China) excellent reports by the
Chinese CDC and by WHO are available [17, 18] and
provide an established view. The situation in other Eu-
ropean countries is still evolving too fast – and subject to
many side conditions which I do not know – to be reliably
analyzed.

[29] We stress this depends on the protocol used to trigger lab-
oratory tests; in our general theoretical discussion, this
is any such protocol and we want to discuss the conse-
quences of changing this in the sense of more extensive
tests.

[30] It should be stressed that as each of these “possible in-
fected” might have a small probability of being actually
infected (depending on the kind of contacts chain lead-
ing to him/her from known infectives), here “isolation”
does not necessarily mean top grade isolation, but might
amount to a very conservative lifestyle, also – and ac-
tually, especially – within home, where a large part of
registered Chinese contagions took place.

[31] Direct measurement on the epidemiological data for
Northern Italy show that this parameter can be reduced
to about 20% of its initial value with relatively mild mea-
sures. In fact, albeit the media speak of a generalized
lockdown in Italy, the measures have closed schools and
a number of commercial activities, but for the rest are ac-
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tually more pointing at limiting leisure walk and sports –
no matter if this limitation is harmful to the immune sys-
tem, so that open-air exercise was instead recommended
in other countries, e.g. Belgium – and somewhat avoid-
ing contacts in shops or in work environment than to a
real lockdown as it was adopted in Wuhan. In fact, e.g.
public transport are still working, albeit at a reduced in-
tensity, and all kind of work which cannot be performed
in remote mode is still allowed and actually an admitted
reason to travel between different cities.

[32] A number of countries tried to further reduce these by
forbidding citizens to get out of their home; this makes
good sense in densely populated areas, but is useless in
many other areas. Moreover, citizens are usually allowed
to go to work if this cannot be made remotely. So the
same citizen who cannot have a walk alone in the woods is
then working side by side with others in chain production.
More generally, the fortunate slogan “stay home” risks
to hide to the general public that the problem is not to
seclude oneself in self-punishment, but to avoid contacts;
so that staying home is a tool, not the goal.

[33] In looking at this plot, one should remember that the
model does not really discuss permanence in IC units,
and that IIC are the infected which when detected will
require IC treatment; this may go on for a long time –
which is the reason why IC units are saturated in treat-
ing COVID patients. So the plots are purely indicative,
and a more detailed analysis (also with real parameters)
would be needed to estimate the IC needs in the different
scenarios.

[34] One point needs maybe further discussion. One may have
the impression that a tight social distancing policy is, af-
ter all, keeping people from having contacts and is thus
equivalent to isolate not only would-be infectives but ev-
erybody; thus this should be equally effective: actually,
if people were isolated each in a different box for two or
three weeks, the epidemic should stop. The point is that

a “no contacts for everybody” policy is simply not feasi-
ble: ill people need help, people living in cities need to
buy food, a number of essential services simply cannot
be stopped.

[35] Albeit if we look at the goal of these measures, i.e. reduc-
ing the occasion of exchanging the virus, a substantial
role would be played by individual protection devices,
such as facial masks; or, in many European countries,
these were simply not available to the general public –
and in some cases neither to medical operators – thus
substantially reducing the impact of these measures.

[36] Note that, following the format in which data are pro-
vided, nationwide data are cumulative, while regional
data concern only “active”infections, i.e. do not include
those who are dead or recovered

[37] In this respect, one should note that the data for Emilia-
Romagna are also heavily depending on the Department
of Piacenza, which is next to Lodi and Codogno, i.e. the
first center of contagion in Italy, but for some reason was
not included in the first “red area”.

[38] It should be thought that also the different model of re-
lations between Hospitals and general medicine doctors
played a relevant role. By now, somebody with flu symp-
toms has a much higher probability of being infected
with COVID than with flu, so that (as at some point
in Wuhan) one can safely rely on clinical detection of
COVID infection. The problem is how patients with this
diagnosis and light symptoms are handled. This point
is most relevant, but not the subject of a mathematical
modeling paper, so we will not pursue it. On the other
hand, I cannot avoid to express the opinion that the real
winning point of this regional strategy was (possibly to-
gether with some luck, always needed in real life) to follow
the indications of a most reliable team working on epi-
demics control at Padua University and Imperial College,
and trust them.


