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Motivation

• Fluctuation relations discussed so far are static
• There is analogy with classical thermodynamics (e.g., efficiency
of Carnot engines): optimal efficiency reached for infinitely slow
transformations

• Some old results for efficiency at maximum power:

ηmaxP ≃ 1−
√
Tc
Th

Curzon and Ahlborn, 1975
• Can we obtain results involving time, speed, power?
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A toy model

Asymmetric random walk as a toy model of a molecular motor

• Position of the molecule: n ∈ Z, x = nd

• Transition rates: R± = Rn±1,n

• Steps are tightly bound to ATP hydrolysis: Chemical ATP
imbalance: ∆µ

• There is an applied force f : Work against the force: −fd
• Thermodynamic consistency:

R+

R−
= e(∆µ−fd)/kBT = eA/kB
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Master equation

• Equation for pn+,n−(t), n±: # steps in ± direction:

d

dt
pn+,n−(t) = R+pn+−1,n−(t)+R−pn+,n−−1(t)−(R+ +R−) pn+,n−(t)

• Solution: ± steps are independent Poisson processes:

pn+,n−(t) =
(R+t)

n+

n+!

(R−t)
n−

n−!
e−(R++R−)t

• Therefore

⟨n⟩ = ⟨n+⟩ − ⟨n−⟩ = (R+ −R−) t = J t⟨
(n− ⟨n⟩)2

⟩
= ⟨n+⟩+ ⟨n−⟩ = (R+ +R−) t = 2Dt

• Mean rate of entropy production:

Ṡi = kB (R+ −R−) log
R+

R−
= J A
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Large deviations

• For large values of t

pn+,n−(t) ≍ e−t ω(ν+,ν−)

where
ν± =

n±
t

and

ω(ν+, ν−) = ν+ log
ν+
R+

− ν+ +R+ + ν− log
ν−
R−

− ν− +R−

• Uncertainty in n: since
⟨
n2
⟩
− ⟨n⟩2 ∝ t ∝ ⟨n⟩ we can use the

Fano factor

F = lim
t→∞

⟨
n2
⟩
− ⟨n⟩2

⟨n⟩
=

2D

J
=
R+ +R−

R+ −R−
= coth

(
A

2kB

)
from which it follows

F ≥ 2kB
A

• The Fano factor is directly observable…
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Entropy production

• On the other hand we have for the relative uncertainty

ϵ2 =

⟨
n2
⟩
− ⟨n⟩2

⟨n⟩2
=

2D

J2t

• Total entropy produced:

C = Ṡi t

• Therefore

Cϵ2 =
Ṡi2D

J2
=
JA 2D

J2
= A coth

(
A

2kB

)
≥ 2kB

• Ṡi is harder to observe…
• The inequality is saturated close to equilibrium and close to the
stall force (f ≃ ∆µ/d), when A→ 0
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Observables

• Markov chain X(t) ∈ {x}, transition rates R = (Rxx′)

• Observe for duration t: empirical density p̄ = (p̄x)

p̄x =
τx
t

=
1

t

∫ t

0

dt′ δxX(t′)

• We have ⟨p̄x⟩ = pssx if R is t-independent
• Empirical current: nxx′ = #(x′ −→ x) n = (nxx′)

Jxx′ =
nxx′ − nx′x

t

• Note that by probability conservation the current J must be
defined to satisfy

∑
x Jxx′ = 0 ∀x′, by adding nx(0)x(t)

• Traffic:
Txx′ =

1

t
(nxx′ + nx′x)

• We have

Jxx′ = ⟨Jxx′⟩ = Rxx′pssx′ −Rx′xp
ss
x

Txx′ = ⟨Txx′⟩ = Rxx′pssx′ +Rx′xp
ss
x 7



Observables

• Distances: define (dαxx′) with dαx′x = −dαxx′

• Then one gets the generalized current

J α =
1

t

∑
xx′

nxx′dαxx′

• In particular: Fluctuating entropy production rate:

dσxx′ = kB log
Rxx′

Rx′x
= Axx′ ⟨J σ⟩ = Ṡi
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Rate functions

For Markov processes, one cannot directly evaluate the Cramér
function for p̄ in general

• Look at the joint pdf P (p̄, n, t|R, p0)
• Define the auxiliary rates R̂ = (R̂xx′), R̂xx′ = nxx′/p̄x′ , such that
p̄ = pss(R̂) and ⟨nxx′⟩R̂ = nxx′

• Define γ̂x =
∑
x′ R̂x′x

• Then
P (τ, n, t|R, x0)
P (τ, n, t|R̂, x0)

= exp

(
−
∑
x

τx (γx − γ̂x) +
∑
xx′

nxx′ log
Rxx′

R̂xx′

)
• By multiplying by P (τ, n, t|R̂, x0)/P (psst, R psst, t|R, x0) and
averaging over x0 we get

P (τ, n, t|R)
P (psst, R pss, t|R)

= exp

(
−
∑
x

τx (γx − γ̂x) +
∑
xx′

nxx′ log
Rxx′

R̂xx′

)

×
∑
x0
P (τ, n, t|R̂, x0)px0(t0)∑

x0
P (psst, R pss, t|R, x0)px0

(t0)
(tends to const!) 8



Rate functions

• Thus
P (τ, n, t|R) ≍ e−tω(τ/t,n/t)

with

ω
(τ
t
,
n

t

)
=

1

t

[∑
x

−(γx − γ̂x)τx +
∑
xx′

nxx′ log
Rxx′

R̂xx′

]

• Translate back into p̄, J , T :

ω (p̄,J , T ) =
∑
xx′

[
Jxx′ + Txx′

2

(
log

Jxx′ + Txx′

2Rxx′ p̄x′
− 1

)
+Rxx′pssx′

]
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Contractions

The contraction principle:

• Given Pn(x, y) ≍ e−nω(x,y):

Pn(x) ≍ E−nω(x) ω(x) = min
y
ω(x, y)

“Any large deviation is done in the least unlikely of all the
unlikely ways! ” Ellis, 1985

Thus, since Jx′x = −Jxx′ and Tx′x = Txx′ we obtain

ω(p̄,J ) = min
T

ω(p̄,J , T ) = ω(p̄,J , T ∗)

with
T ∗
xx′

2 = J 2
xx′ + 4Rxx′Rx′xp̄xp̄x′

Gallavotti-Cohen symmetry:

ω(p̄,J )− ω(p̄,−J ) = −
∑
xx′

Jxx′ log
Rxx′ p̄x′

Rx′xp̄x
= −Ṡi(J )/kB
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Bounds on current fluctuations

• Hard to get rid of p̄…
• Bound on the rate function: p̄ −→ pss:

ω(p̄,J ) ≤ ω(pss,J ) =
∑
x′<x

Jxx′ log
Jxx′ +

√
J 2
xx′ + T ∗

xx′
2 − J ss

xx′
2

J ss
xx′ + T ss

xx′

−
√
J 2
xx′ + T ∗

xx′
2 − J ss

xx′
2 + T ss

xx′

]
• The bound satisfies the symmetry

ω(pss,J )−ω(pss,−J ) = −
∑
x′<x

Jxx′ log
T ss
xx′ + J ss

xx′

T ss
xx′ − J ss

xx′︸ ︷︷ ︸
Ṡss
xx′/J ss

xx′

= −Ṡi(J )/kB
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Bounds on current fluctuations

• Remember that an upper bound on ω means a lower bound on
the fluctuations

• Universal global bound (Gingrich et al., 2016):

kBω(J ) ≤
∑
x′<x

Ṡss
xx′ (Jxx′ − J ss

xx′)
2

4J ss
xx′

2

• For the general current: choose Jxx′ = J ss
xx′J α/J α,ss, then

kBω(J α) ≤ Ṡi(J α − J α,ss)2

4J α,ss2

• Similar bounds hold for p̄
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Examples

Rate functions for currents jd in a 4-state model with distances d
randomly chosen in [−1, 1] (colored) and for the entropy production
(dashed black)
Inset: Distance from bound

Gingrich et al., 2016 11



Examples

Current fluctuations in the ASEP model with L = 15: α = 1.25,
β = 0.5, γ = 0.5, δ = 1.5, p = 1, q = 0.5

(Exact solution in the steady state via a matrix technique)
Gingrich et al., 2016
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Thermodynamic uncertainty relations

• Reading off the rate function: uncertainty for the current
J α = Xα/t:

ϵ2α =

⟨
(Xα − Jα,sst)

2
⟩

(J ss,αt)2
≃ 2Dα

J ss,α2t

and thus, since ∆Si = Ṡit,

∆Siϵ
2
α =

2ṠiDα

J ss,α2 ≥ 2kB

• ∆Si is hard to measure…
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Thermodynamic uncertainty relations

• Molecular motors:
• Out-power: pout = f v =

∑
xx′ fJxx′ dxx′

• In-power: pin = ∆µATP nATP/t

• Entropy production:

Ṡi =
1

T

(
pin − pout

)
• Efficiency:

η =
pout

pin
=

pout

pout + Ṡi/T
=

f v

f v + Ṡi/T
≤ 1

1 + kBT v/(Df)︸ ︷︷ ︸
observable!

• Bound independent on microscopic details…
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Kinesin

Please cite this article in press as: U. Seifert, Stochastic thermodynamics: From principles to the cost of precision, Physica A (2017),
https://doi.org/10.1016/j.physa.2017.10.024.
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Fig. 2. Randomness parameter r ⌘ 2D/vd for kinesin as experimentally measured in [36] as a function of ATP-concentration (for a fixed force f = 3.59 pN,
left panel) and of load force (for fixed cATP = 2 mM, right panel). The colored area shows the corresponding theoretical bound (72). At, e.g., 2 pN load force
(right panel), these experimental data imply that this motor thus converts ATP to mechanical power with an efficiency of at most 45% for these conditions.

7. Thermodynamic uncertainty relation: The cost of precision and thermodynamic inference

7.1. Formulation

In significantly larger generality than for the asymmetric randomwalk discussed above in Section 5.1, the thermodynamic
uncertainty relation provides a universal bound on the precision of any biomolecular process. In a NESS, with each stationary
current js↵ = P

i<jd
↵
ij j

s
ij, see (54), there is associated a fluctuating ‘‘output’’X↵ = P

ijnijd↵
ij withmean hX↵i = js↵t . Fromvariance

and mean of this output in the long-time limit, we define its precision

✏2
↵ ⌘ h(X↵ � js↵t)

2i/(js↵t)2 ! 2D↵/(js↵
2t) for large t, (69)

where D↵ is the dispersion of the process. On the other hand running this process for a time t generates on average C = � t
entropy, which is the thermodynamic cost associated with it. The thermodynamic uncertainty relation

lim
t!1 C✏2

↵ = 2�D↵/js↵
2 � 2 (70)

holds for any Markov process. Thus, precision in the outcome of any such process requires a minimum cost.
This relation was formulated as a conjecture in [23] based on analytical results in limiting cases and on extensive

numerics for networks with random rates. With the bound (68) on the rate function, the proof follows trivially using
D↵ = 1/[2I 00(js↵)] [28]. It holds even for a finite time t with ✏↵(t) [32,33] and, in a variant, for discrete time [34].

7.2. Thermodynamic inference for a molecular motor

The thermodynamic uncertainty relation can be used to infer physical properties of biomolecular systems from the
observation of fluctuations even if the underlying biochemical or enzymatic network is not (fully) known as we will now
illustrate for a molecular motor running against a constant force f at a mean velocity v with dispersion D.

Any such motor delivers a mean output power Pout = f v = P
i<jfj

s
ijdij, where dij denotes the distance the motor steps in

a transition i ! j along its track against the force. The corresponding fluctuating current jout is a genuine current to which
the uncertainty relationwill be applied below. Likewise, this motor is powered by the consumption of ATP leading to amean
input power P in that is typically not directly accessible.

In a NESS, the entropy production rate, i.e., the rate of wasted free energy, can then be written as

� = �(P in � Pout). (71)

The thermodynamic efficiency of such amotor ⌘ ⌘ Pout/P in fulfills a universal bound set by the thermodynamic uncertainty
relation (70) applied to the output current that can be obtained through a simple algebraic transformations as [35]

⌘ = Pout

Pout + �/�
= vf

vf + �/�
 1

1 + v/(Df �)
. (72)

The intriguing aspect of this bound arises from the fact that v,D and f are experimentally accessible quantities. No
knowledge of the underlying network, i.e., of the specific reaction scheme is necessary for applying this bound. There could
be idle cycles where ATP is used without advancing the motor. It is not even necessary to know the free energy difference
�µ associatedwith the ATP hydrolysis. In Fig. 2, this bound is evaluatedwith experimental data for a kinesinmotor reported
in [36].

Randomness parameter r = 2D/vd for kinesin as a function of
ATP-concentration (for a fixed force f = 3.59 pN)

Seifert, 2018 Data from Visscher et al., 1999
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Kinesin
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illustrate for a molecular motor running against a constant force f at a mean velocity v with dispersion D.

Any such motor delivers a mean output power Pout = f v = P
i<jfj

s
ijdij, where dij denotes the distance the motor steps in

a transition i ! j along its track against the force. The corresponding fluctuating current jout is a genuine current to which
the uncertainty relationwill be applied below. Likewise, this motor is powered by the consumption of ATP leading to amean
input power P in that is typically not directly accessible.

In a NESS, the entropy production rate, i.e., the rate of wasted free energy, can then be written as

� = �(P in � Pout). (71)

The thermodynamic efficiency of such amotor ⌘ ⌘ Pout/P in fulfills a universal bound set by the thermodynamic uncertainty
relation (70) applied to the output current that can be obtained through a simple algebraic transformations as [35]

⌘ = Pout

Pout + �/�
= vf

vf + �/�
 1

1 + v/(Df �)
. (72)

The intriguing aspect of this bound arises from the fact that v,D and f are experimentally accessible quantities. No
knowledge of the underlying network, i.e., of the specific reaction scheme is necessary for applying this bound. There could
be idle cycles where ATP is used without advancing the motor. It is not even necessary to know the free energy difference
�µ associatedwith the ATP hydrolysis. In Fig. 2, this bound is evaluatedwith experimental data for a kinesinmotor reported
in [36].

Randomness parameter r = 2D/vd for kinesin for fixed ATP
concentration 2mM

Seifert, 2018 Data from Visscher et al., 1999
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Fluctuations of the first-passage time

• Current statistics: fix Tobs, measure J (integrated current):

ṠiTobs
⟨
∆J 2

⟩
⟨J ⟩2

≥ 2kB

• First-passage time T : fix Jthr, measure T : J (T ) = Jthr

Ṡi

⟨
∆T 2

⟩
⟨T ⟩

≥ 2kB

Fundamental Bounds on First Passage Time Fluctuations for Currents

Todd R. Gingrich⇤ and Jordan M. Horowitz
Physics of Living Systems Group, Department of Physics,

Massachusetts Institute of Technology, 400 Technology Square, Cambridge, MA 02139

Current is a characteristic feature of nonequilibrium systems. In stochastic systems, these currents
exhibit fluctuations constrained by the rate of dissipation in accordance with the recently discovered
thermodynamic uncertainty relation. Here, we derive a conjugate uncertainty relationship for the
first passage time to accumulate a fixed net current. More generally, we use the tools of large-
deviation theory to simply connect current fluctuations and first-passage-time fluctuations in the
limit of long times and large currents. With this connection, previously discovered symmetries and
bounds on the large-deviation function for currents are readily transferred to first passage times.

Introduction.—Thermodynamics constrains the fluctu-
ations of nonequilibrium systems, as evidenced by a grow-
ing collection of universal predictions connecting dissipa-
tion to fluctuations. Examples include the fluctuation
theorems [1–7], nonequilibrium fluctuation-dissipation
theorems [8–14], and, more recently, the thermodynamic
uncertainty relation [15–17]. Remarkably, all these re-
sults can be viewed through one unifying lens, namely
large-deviation theory [18]. In fact, over the past two
decades this formalism has proven to be an essential tool
for characterizing the dynamical fluctuations of nonequi-
librium systems [19–26].

Recently, these techniques have revealed a universal
inequality between the far-from-equilibrium fluctuations
in current—such as the flow of particles, energy or en-
tropy—with the near-equilibrium fluctuations predicted
by linear-response theory [16]. A useful corollary is the
thermodynamic uncertainty relation [15], which o↵ers a
fundamental trade-o↵ between typical current fluctua-
tions and dissipation [27]. Specifically, a nonequilibrium
Markov process generating an average time-integrated
current hJi during a long observation time T

obs

has
a variance Var(J) constrained by the mean entropy-
production rate � (with Boltzmann’s constant k

B

= 1):

Var(J)

hJi2 � 2

T
obs

�
. (1)

Thus, reducing fluctuations comes with an energetic cost.
A significant body of recent work has analyzed such

current fluctuations for a fixed observation time [15, 16,
28–35]. In this Letter, we consider the complementary
problem, analyzing the fluctuations of first passage times
T to reach a large threshold time-integrated current J

thr

(see Fig. 1). We show that properties of the first pas-
sage time distribution for asymptotically large J

thr

fol-
low simply from knowledge of the current fluctuations.
This conjugate relationship between fixed-time and fixed-
current trajectory ensembles mirrors the study of inverse
or adjoint processes in queuing theory [36–38], and it ex-
tends Garrahan’s work on first passage time fluctuations
of dynamical activity—a monotonically increasing count-
ing variable [39, 40]—to current variables which can grow

FIG. 1. The distribution of integrated current J for a long
observation time T

obs

and the distribution for first passage
time T to a large threshold current J

thr

are two faces of
the same distribution over trajectories. Hence, recent results
describing the asymptotic form of the current distribution
P (J |T

obs

) naturally yield corresponding results for the asymp-
totic form of the first passage time distribution F (T |J

thr

).

or shrink. By relating the conjugate problems, we are
able to transform inequalities governing current fluctua-
tions into associated inequalities for passage-time fluctua-
tions, as well as o↵er fresh insight into recent predictions
for entropy-production first passage times [41–44]. For
instance, we show that the distribution for the time T
to first hit a large threshold current J

thr

must satisfy a
corresponding uncertainty relation:

Var(T )

hT i2 � 2

hT i� . (2)

The two faces of the thermodynamic uncertainty re-
lationship can be viewed as two ways to infer a bound
on the entropy-production rate—one utilizing the current
fluctuations in a fixed-time ensemble and the other uti-
lizing the time fluctuations in a fixed-current ensemble.
Though these two sets of fluctuations contain equivalent
information, we emphasize that the physical measure-
ments are quite distinct.
Setup.— To make the notions concrete, we focus our

presentation on nonequilibrium systems that can be mod-
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Fluctuations of the first-passage time

• Large-deviation functions: for the current J = j Tobs

P (J |Tobs) ≍ e−Tobsω(J /Tobs)

ψ(λ) = lim
Tobs→∞

1

Tobs
log
⟨
e−λJ ⟩ = −min

j
(λ j + ω(j))

• Define ψ+(λ) : ψ
′(λ) > 0, ψ−(λ) : ψ

′(λ) < 0

• For the first-passage time T = |Jthr| t: distinguish Jthr > 0 (+)

from Jthr < 0 (−)

F(T |Jthr) ≍

{
e−Jthrϕ+(T /Jthr), (+)

eJthrϕ−(T /|Jthr|), (−)

g±(µ) = − lim
Jthr→±∞

1

Jthr
log
⟨
e−µT

⟩
14



Results

• Large-deviation function for t = T / |Jthr|:

ϕ±(t) = t ω

(
j=± 1

t

)
g±(µ) = ψ−1

± (µ)

• Heuristic argument: For large J the most likely first-passage
time is just given by the condition J (T ) = Jthr

• Now for any large J

P (T =t J) =

∫
Dx δ(T − t J)P(x)

≍
∫

dJ δ(T − t J) e−T ω(J/T ) ≃ e−Jt ω(1/t)

15



Results

• Generating function: by saddle-point integration

g±(µ) = −min
t

(µ t+ ϕ±(t))

ψ±(λ) = −min
j≷0

(λ j + ψ±(j))

• Denote by j∗ the value of j corresponding to minimum and set
t∗ = 1/j∗, then, e.g.,

g+(ψ+(λ)) = − [− (λ j∗ + ω+(j
∗)) t∗ + ϕ+(t

∗)]

= −
[
−λ− t∗ ω+

(
1

t∗

)
+ t∗ω+

(
1

t∗

)]
= λ

15



Results
3

FIG. 2. large-deviation rate functions (left) are related
to SCGFs (right) by Legendre-Fenchel transform. Current
statistics (top) and first passage time statistics (bottom) are
connected by inversion. Branches corresponding to positive
currents are plotted with solid red lines, while the negative-
current branches are plotted with dashed blue lines.

We now turn to the implications of Eq. (4). For any
generalized current, its long-time fluctuations are con-
strained by the entropy-production rate via Eq. (1). This
constraint actually follows from an inequality on the
large-deviation rate function,

I(j)  (j � hji)2

4hji2 � ⌘ I
bnd

(j). (7)

Translating to first passage time fluctuations, we have

�
+

(t)  (t� hti)2

4t
� ⌘ �

bnd

(t), (8)

after noting that the typical behavior hji = 1/hti does not
depend on the choice of ensemble – fixed T

obs

versus fixed
J
thr

. Equation (2) follows since the large J
thr

variance is
computed in terms of derivatives of the large-deviation
function as Var(T ) = J

thr

/�00
+

(hti) [18]. Thus, dissipation
is a fundamental constraint to controlling first passage
time fluctuations as well as current fluctuations.

Together Eqs. (7) and (8) point to a remarkable prop-
erty of the stochastic evolution of currents, which is best
appreciated by normalizing the large-deviation forms
e�T

obs

I
bnd

(j) and e�J
thr

�
bnd

(t). For currents, we have a
Gaussian distribution

P
bnd

(j) =

s
T
obs

�

4⇡ hji2
exp

"
�T

obs

(j � hji)2�
4 hji2

#
, (9)

whereas the first passage time distribution is an inverse
Gaussian

F
bnd

(t) =

s
J
thr

� hti2

4⇡t3
exp

"
�J

thr

(t� hti)2 �
4t

#
. (10)

Remarkably, these are the distributions we would have
predicted if we had simply treated the evolution of the
current as a one-dimensional di↵usion process with con-
stant drift hji and di↵usion coe�cient �/hji2 [48]. This
observation suggests that while the precise dynamics of
the currents is generally complex, there is a simple aux-
iliary di↵usion process that constrains it, reminiscent of
the universal form observed for the stochastic evolution of
the entropy production as a drift-di↵usion process [7, 44].
First passage time fluctuations for negative current

and the fluctuation theorem.— We have focused primar-
ily on first passage times to reach a (typical) positive
current. We can also consider the first passage time to
the exponentially suppressed negative currents that arise
due to trajectories that appear to run backwards in time.
The distribution for the time to reach J

thr

< 0 scales ac-
cording to ��(t), which can be related to  �(�) (see
Fig. 2). This connection is especially interesting when  
posses a symmetry that relates its two branches  

+

and
 �, because this naturally translates to a relationship
between �

+

and ��.
Generically,  � vanishes at some �⇤. For certain cur-

rents it also satisfies  
+

(�) =  �(�⇤ � �). As an ex-
ample, the fluctuation theorem implies such a symmetry
with �⇤ = 1 for the entropy production (itself a general-
ized current) [6]. Symmetry of  yields a corresponding
symmetry in g±: g

+

(µ) = �g�(µ) + �⇤. Taking the
Legendre-Fenchel transform gives

�
+

(t) = ��(t)� �⇤, (11)

indicating that �
+

and �� di↵er by a constant o↵set
when the SCGF symmetry is present. Equation (11)
must be interpreted carefully, as it compares large-
deviation functions for two di↵erent distributions. Typi-
cally, large-deviation rate functions are shifted such that
their minimum equals zero. In this case, a symmetri-
cal  implies that �

+

and �� are identical, and the
large-current first passage time distribution F (T |J

thr

)
is the same for both positive and negative J

thr

. While
the constant o↵set in Eq. (11) does not a↵ect the form
of F (T |J

thr

), it reflects the fact that the probability of
reaching |J

thr

| exceeds that of reaching � |J
thr

| by a fac-
tor of e�

⇤|J
thr

|. Using the same methods as those in this
Letter, Saito and Dhar reached similar conclusions for
the case that the generalized current is the entropy pro-
duction [42], and Neri et al. have proven a correspond-
ing fluctuation theorem for entropy production stopping
times using Martingale theory [43]. Our result, Eq. (11),
extends more generally to any current satisfying a SCGF

Dictionary: I −→ ω Gingrich and Horowitz, 2017
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Implications

• Since ∀j one has

ω(j) ≤ (j − ⟨j⟩)2

4 ⟨j⟩2
Ṡi/kB = ωbnd(j)

we have
ϕ+(t) ≤

(t− ⟨t⟩)2

4t
Ṡi/kB

• By evaluating the variance via⟨
∆T 2

⟩
=

Jthr
ϕ′′(⟨t⟩)

we obtain a bound for the Fano factor:

⟨∆T ⟩2

⟨T ⟩
≥ 2kB

Ṡi
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Implications

Toy model for an assisted isomerization: R⇋ E∗ ⇋ P , E ⇋ E∗ 4
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FIG. 3. Markov model for the conversion of a reactant R
to product P mediated by enzyme E. The large-deviation
function for the time to reach a particular net current from
R to P , �

+

(t), is bounded by �
bnd

(t). Additionally, �
+

(t) is
inferred from numerical sampling of 106 trajectories for vari-
ous choices of J

thr

using rates: krxn

12

= 2, krxn

21

= 0.1, ktherm

12

=
0.3, ktherm

21

= 0.001, kfuel

12

= 0.001, kfuel

21

= 1.

symmetry about �⇤, including the example of the next
section.

Illustrative example.— To demonstrate the bounds in
a more explicit context, we solve for the large-deviation
behavior of a minimal model for an enzyme-mediated re-
action from reactant R to product P . The enzyme can
be either in a ground state E or an activated state E⇤,
and the E $ E⇤ transformations proceed via one of three
pathways: (1) the enzyme exchanges heat with a thermal
bath, (2) the enzyme accepts free energy by converting an
activated fuel molecule F ⇤ into a deactivated form F , or
(3) the activated enzyme converts R ! P . Each of these
pathways proceeds forward or backward, as depicted in
Fig. 3, with six rate constants defining the model. We
follow the net transformations of R into P as the ac-
cumulated current J , so the first passage time can be
interpreted as the time to generate J product molecules.

The analytical solution of this model using standard
methods is outlined in the SM. Figure 3 graphically shows
the large-deviation function bound, Eq. (8), as well as
the uncertainty bound, Eq. (2) (see inset). The analyti-
cal calculations are supplemented by trajectory sampling
with finite J

thr

, the results of which are plotted with col-
ored markers in Fig. 3. Motivated by the t�3/2 prefactor
in Eq. (10), we extract estimates for �

+

(t) from the sam-
pled trajectories by first approximating F (T |J

thr

) with a
histogram and then computing

�est
+

(t) = � 1

J
thr

✓
lnF (tJ

thr

|J
thr

) +
3

2
ln t

◆
+ C

o↵

, (12)

where C
o↵

is a constant o↵set used to set the minimum
of �est

+

to zero. We observe that the large-deviation form
(and, consequently, the thermodynamic uncertainty rela-
tion) remain valid even for small J

thr

.
Conclusion.— In the large-deviation limit, we have

shown that current fluctuations with fixed observation

time are intimately related to the fluctuations in first pas-
sage times to large current. As a result, we have seen how
the thermodynamic uncertainty relation and the fluctu-
ation theorem for entropy production naturally lead to
a universal symmetry and bounds on first passage time
fluctuations. Tighter-than-quadratic bounds on current
large-deviation fluctuations [28, 30, 31] also readily trans-
late to corresponding first passage time bounds.

Practically, we anticipate that it will be useful to con-
vert between fixed-time and fixed-current ensembles since
some experiments are more naturally suited to one than
the other. For example, imagine we seek a dissipation
bound for the enzyme-mediated reaction in Fig. 3. Fluc-
tuations in product formation after time T

obs

could be
measured spectroscopically, assuming Beer’s law and a
calibrated mapping from fluorescence intensity to prod-
uct concentration. But the fixed J

thr

ensemble o↵ers an
advantage. By measuring first passage time fluctuations
to reach a fixed fluorescence intensity, the mapping be-
tween fluorescence and concentration could be avoided
altogether. More ambitiously, we expect the fluctuating
time ensemble to be a natural way to analyze the role of
dissipation in Brownian clocks [49–53].

Sketch of a proof for Eq. (4).— The main result,
Eq. (4), consists of two relations: one connects the large-
deviation rate function I with �±, the other connects  
with g. Here we sketch a proof of g±(µ) =  �1

± (µ). The
relationship between I and �± follows by applying the
Gärtner-Ellis theorem to compute I from  and �± from
g±. More details are presented in the SM.

The basic strategy is to express both g and  in terms
of spectral properties of a tilted rate matrix W(�), whose
elements are given by Wij(�) = Wije��dij . The first half
of this connection is well known; the largest eigenvalue
of W(�) is the SCGF  (�). [6]. Expressing g in terms of
the tilted rate matrix requires a slightly more involved
calculation following the general strategy of [40, 42].

Let Fij(T |J) be the distribution of times T to first ac-
cumulate J current with a jump to i, conditioned upon
a start in j. We connect Fij to the transition prob-
ability Pij(J, T ) to go from j ! i in time T , hav-
ing accumulated current J via the renewal equation:

P(J, T ) =
R T
0

dtP(0, T � t) · F(t|J), written in matrix
notation. The convolution is simplified by Laplace trans-
form (denoted with a tilde) to convert from T to µ, ulti-
mately yielding e�Jg±(µ) ⇣ he�µT i = F̃ (µ|J) ⇣ P̃(J, µ).
Furthermore, P̃(J, µ) can be expressed in terms of the
tilted rate matrix via an inverse Laplace transform of
b̃P(�, µ) = 1/(W(�) � µI), where the caret denotes a
Laplace transform from J to �. Using complex analysis
to perform the inverse transform, we obtain e�Jg±(µ) ⇣
e
¯�J , where �̄ =  �1

+

(µ) for J > 0 and �̄ =  �1

� (µ) for
J < 0. Hence, g± and  ± are inverses.

We gratefully acknowledge the Gordon and Betty
Moore Foundation for supporting TRG and JMH
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Sketch of a proof

• Basic results can be derived in the simple asymmetric random
walk

dpn
dt

= R+pn−1 +R−pn+1 − (R+ +R−)pn = (L p)n

• Fn(t): probability of reaching n for the first time on t if starting
from 0 at time 0

• Then, if t′ is the last time the walker visited the origin,

pn(t) = δ0nδ(t) +

∫ t

0

dt′ Fn(t− t′) p0(t
′)

and, defining Ψ(λ, t) =
⟨
e−λJ

⟩
d

dt
Ψ(λ, t) = −ψ(λ)Ψ(λ, t)

ψ(λ) = R+e
λ +R−e

−λ − (R+ +R−)

(In general, a matrix equation…)

17



Sketch of a proof

• Taking the Laplace transform wrt time:

F̃n(µ) =
p̃n(µ)

p̃0(µ)

Ψ̃(λ, µ) =

∫ ∞

0

dt e−µtΨ(λ, t) =
1

ψ(λ)− µ

• Now
e−ng±(µ) ≍

⟨
e−µT

⟩
= F̃ (µ|n) ≍ p̃n(µ)

and
p̃n(µ) =

∫ +i∞

−i∞

dz

2πi
ezn Ψ̃(z, µ) = e−λ

∗n

where
ψ(λ∗) = µ

17



Evaluation of large-deviation functions

• Large fluctuations are rare: How to evaluate their probability?
• In Statistical Mechanics one uses biased ensembles:

p∗x = e(∆F−∆Ex)/kBT peqx ∆F = −kBT
⟨
e−∆Ex/kBT

⟩eq
︸ ︷︷ ︸

hard!

• In dynamics one typically has biased Liouvillians Lµ that to not
conserve normalization:

etLµΨ ∼ e−tψ(µ)Ψ∗

• One can exploit lack of normalization to evaluate ψ(µ)

Giardinà et al., 2006
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The setting

We consider a Markov chain in discrete time:

x = (x0, x1, . . . , xt, . . .)

Master equation:

px(t+ 1) =
∑
x′

Uxx′px′(t) = (L p)x
∑
x′

Ux′x = 1 ∀x

Observables:

• Empirical frequencies:

p̄x(T ) =
1

T

T −1∑
t=0

δxxt

• Currents:

J(T ) =

T −1∑
t=0

dxt+1xt

19



Large-deviation functions

For large values of T :

P

(
J

T
= j

)
=
⟨
δ
(
dxT xT −1

+ · · ·+ dx1x0
− j T

)⟩
=

∫ +i∞

−i∞

dλ

2πi
e−T (ψ(λ)+λ j)

where
ψ(λ) = − lim

T →∞

1

T
log
⟨
eλJ

⟩
Therefore

P (J, T ) ≍ e−T ω(j) ω = −min
λ

(ψ(λ) + λ j)

20



Biased dynamics

Define

Ũx′x = eλdx′xUx′x

Ψx(λ) =
⟨
δxx(T ) e

λJ
⟩

then Ψ satisfies

d

dt
Ψx =

∑
x′

Ũxx′Ψx′ = (LλΨ)x

and we expect
Ψx(T ) ∼ e−T ψ(λ)Ψ∗

x

21



Birth-death process

Define
γx =

∑
x′

Ũx′x U ′
x′x = Ũx′x/γx

then (
eT Lλ

)
x′x

=
∑

xT −1,...,x1

U ′
xxT −1

γxT −1
· · ·U ′

x1x0
γx0

Define a population of L clones undergoing a birth-death process:
At each time step:

• Cloning step: px(T + 1
2 ) = γx px(t) by reproducing (or killing)

copies of x: population goes from L to (L+G)

• Displacement: px(t+ 1) =
∑
x′ U ′

xx′px′(t+ 1
2 )

• Population control: clone all individuals with rate
Mt = L/(L+G)

Then
log (MTMT −1 · · ·M1) ≃ T ψ(λ)

22



Results: TASEP

that the configurations rapidly become inhomogeneous,
exhibiting an alternation of a regions with high density
with regions of slow density, as in traffic jams or in shock
waves. The high-density regions eventually coalesce into a
single one. The figure does not quite represent the evolu-
tion of a shock (because of Remark 2 above), but rather the
configuration at the end of the time interval for time
intervals ending at progressively longer times. As pre-
dicted by the theory for this value of the density, the shock
does not drift, although different initial conditions lead to
different shock positions. Bottom of Fig. 1 shows the case
! ! "30, and density 0.3: we see that the shock has a net
drift to the right, again as predicted by the theory [3].
Finally, in Fig. 2 we show the numerical results obtained
for "#!$, and compare them to the analytic ones of
Ref. [3]. The agreement is excellent, and the numerical
effort corresponds to tens of minutes of a personal com-
puter time.

A deterministic system: The Lorentz Gas and the
Gallavotti-Cohen theorem.—This system consists of a
number of particles (in our case only one) moving inside
a billiard as in Fig. 3, with periodic boundary conditions.

The particle is under the action of a force field ~E, and is
subject to a deterministic thermostat that keeps the velocity
modulus constant j ~vj ! 1. Between bounces, the equations
of motion are

!x i ! "Ei % ##t$ _xi; i ! 1; 2; ##t$ !
X
i
Ei _xi:

(19)

We wish to compute the generating function of the dissi-
pated work QT !

RT
0 ##t$dt, and check the Gallavotti-

Cohen theorem, which states that P#QT$=P#"QT$ !
exp#QT$, which is equivalent, thanks to Eq. (4), to the
symmetry of "#!$ around ! ! " 1

2 .
The dynamics is deterministic, and hence cloned sys-

tems will evolve together and perform a poor sampling. To
get around this problem, we introduce a small stochastic
noise, and check the stability of results in the limit of small
noise. We evolve the system for macroscopic intervals T ,
and clone with a factor Kt ! e!"T #t$, where "T #t$ !Rt%T
t ##t$dt is the total dissipated work over the interval.

Before each deterministic step of time T , clones are given
random kicks of variance # in position and/or velocity
direction. The time interval T and the noise intensity # are
chosen so that twin clones have a chance to separate during
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FIG. 2 (color online). Plot of "#!$ vs ! for the TASEP at
density one-half. Numerical results and analytic results of
Ref. [3], with points and solid line, respectively.

FIG. 3 (color online). The billiard. The radii are R1 ! 0:39,
R2 ! 0:79. We also show an example of trajectory for the
external field ~E ! #1; 0$.

FIG. 1. Space-time diagram for a ring of N ! 100 sites.
Top: ! ! "50 and density 0.5; the shock is dense and does
not advance. Bottom: ! ! "30 and density 0.3; the shock drifts
to the right.

PRL 96, 120603 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
31 MARCH 2006

120603-3

λ = −50, ρ = 0.5
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Results: TASEP

that the configurations rapidly become inhomogeneous,
exhibiting an alternation of a regions with high density
with regions of slow density, as in traffic jams or in shock
waves. The high-density regions eventually coalesce into a
single one. The figure does not quite represent the evolu-
tion of a shock (because of Remark 2 above), but rather the
configuration at the end of the time interval for time
intervals ending at progressively longer times. As pre-
dicted by the theory for this value of the density, the shock
does not drift, although different initial conditions lead to
different shock positions. Bottom of Fig. 1 shows the case
! ! "30, and density 0.3: we see that the shock has a net
drift to the right, again as predicted by the theory [3].
Finally, in Fig. 2 we show the numerical results obtained
for "#!$, and compare them to the analytic ones of
Ref. [3]. The agreement is excellent, and the numerical
effort corresponds to tens of minutes of a personal com-
puter time.

A deterministic system: The Lorentz Gas and the
Gallavotti-Cohen theorem.—This system consists of a
number of particles (in our case only one) moving inside
a billiard as in Fig. 3, with periodic boundary conditions.

The particle is under the action of a force field ~E, and is
subject to a deterministic thermostat that keeps the velocity
modulus constant j ~vj ! 1. Between bounces, the equations
of motion are

!x i ! "Ei % ##t$ _xi; i ! 1; 2; ##t$ !
X
i
Ei _xi:

(19)

We wish to compute the generating function of the dissi-
pated work QT !

RT
0 ##t$dt, and check the Gallavotti-

Cohen theorem, which states that P#QT$=P#"QT$ !
exp#QT$, which is equivalent, thanks to Eq. (4), to the
symmetry of "#!$ around ! ! " 1

2 .
The dynamics is deterministic, and hence cloned sys-

tems will evolve together and perform a poor sampling. To
get around this problem, we introduce a small stochastic
noise, and check the stability of results in the limit of small
noise. We evolve the system for macroscopic intervals T ,
and clone with a factor Kt ! e!"T #t$, where "T #t$ !Rt%T
t ##t$dt is the total dissipated work over the interval.

Before each deterministic step of time T , clones are given
random kicks of variance # in position and/or velocity
direction. The time interval T and the noise intensity # are
chosen so that twin clones have a chance to separate during
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FIG. 2 (color online). Plot of "#!$ vs ! for the TASEP at
density one-half. Numerical results and analytic results of
Ref. [3], with points and solid line, respectively.

FIG. 3 (color online). The billiard. The radii are R1 ! 0:39,
R2 ! 0:79. We also show an example of trajectory for the
external field ~E ! #1; 0$.

FIG. 1. Space-time diagram for a ring of N ! 100 sites.
Top: ! ! "50 and density 0.5; the shock is dense and does
not advance. Bottom: ! ! "30 and density 0.3; the shock drifts
to the right.

PRL 96, 120603 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
31 MARCH 2006

120603-3

λ = −30, ρ = 0.3
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Results: TASEP

that the configurations rapidly become inhomogeneous,
exhibiting an alternation of a regions with high density
with regions of slow density, as in traffic jams or in shock
waves. The high-density regions eventually coalesce into a
single one. The figure does not quite represent the evolu-
tion of a shock (because of Remark 2 above), but rather the
configuration at the end of the time interval for time
intervals ending at progressively longer times. As pre-
dicted by the theory for this value of the density, the shock
does not drift, although different initial conditions lead to
different shock positions. Bottom of Fig. 1 shows the case
! ! "30, and density 0.3: we see that the shock has a net
drift to the right, again as predicted by the theory [3].
Finally, in Fig. 2 we show the numerical results obtained
for "#!$, and compare them to the analytic ones of
Ref. [3]. The agreement is excellent, and the numerical
effort corresponds to tens of minutes of a personal com-
puter time.

A deterministic system: The Lorentz Gas and the
Gallavotti-Cohen theorem.—This system consists of a
number of particles (in our case only one) moving inside
a billiard as in Fig. 3, with periodic boundary conditions.

The particle is under the action of a force field ~E, and is
subject to a deterministic thermostat that keeps the velocity
modulus constant j ~vj ! 1. Between bounces, the equations
of motion are

!x i ! "Ei % ##t$ _xi; i ! 1; 2; ##t$ !
X
i
Ei _xi:

(19)

We wish to compute the generating function of the dissi-
pated work QT !

RT
0 ##t$dt, and check the Gallavotti-

Cohen theorem, which states that P#QT$=P#"QT$ !
exp#QT$, which is equivalent, thanks to Eq. (4), to the
symmetry of "#!$ around ! ! " 1

2 .
The dynamics is deterministic, and hence cloned sys-

tems will evolve together and perform a poor sampling. To
get around this problem, we introduce a small stochastic
noise, and check the stability of results in the limit of small
noise. We evolve the system for macroscopic intervals T ,
and clone with a factor Kt ! e!"T #t$, where "T #t$ !Rt%T
t ##t$dt is the total dissipated work over the interval.

Before each deterministic step of time T , clones are given
random kicks of variance # in position and/or velocity
direction. The time interval T and the noise intensity # are
chosen so that twin clones have a chance to separate during
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FIG. 2 (color online). Plot of "#!$ vs ! for the TASEP at
density one-half. Numerical results and analytic results of
Ref. [3], with points and solid line, respectively.

FIG. 3 (color online). The billiard. The radii are R1 ! 0:39,
R2 ! 0:79. We also show an example of trajectory for the
external field ~E ! #1; 0$.

FIG. 1. Space-time diagram for a ring of N ! 100 sites.
Top: ! ! "50 and density 0.5; the shock is dense and does
not advance. Bottom: ! ! "30 and density 0.3; the shock drifts
to the right.

PRL 96, 120603 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
31 MARCH 2006

120603-3

Dictionary: µ(λ) −→ −ψ(λ), ρ = 0.5

There is absolute irreversibility (no GC symmetry)
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Results: Lorenz gas

that the configurations rapidly become inhomogeneous,
exhibiting an alternation of a regions with high density
with regions of slow density, as in traffic jams or in shock
waves. The high-density regions eventually coalesce into a
single one. The figure does not quite represent the evolu-
tion of a shock (because of Remark 2 above), but rather the
configuration at the end of the time interval for time
intervals ending at progressively longer times. As pre-
dicted by the theory for this value of the density, the shock
does not drift, although different initial conditions lead to
different shock positions. Bottom of Fig. 1 shows the case
! ! "30, and density 0.3: we see that the shock has a net
drift to the right, again as predicted by the theory [3].
Finally, in Fig. 2 we show the numerical results obtained
for "#!$, and compare them to the analytic ones of
Ref. [3]. The agreement is excellent, and the numerical
effort corresponds to tens of minutes of a personal com-
puter time.

A deterministic system: The Lorentz Gas and the
Gallavotti-Cohen theorem.—This system consists of a
number of particles (in our case only one) moving inside
a billiard as in Fig. 3, with periodic boundary conditions.

The particle is under the action of a force field ~E, and is
subject to a deterministic thermostat that keeps the velocity
modulus constant j ~vj ! 1. Between bounces, the equations
of motion are

!x i ! "Ei % ##t$ _xi; i ! 1; 2; ##t$ !
X
i
Ei _xi:

(19)

We wish to compute the generating function of the dissi-
pated work QT !

RT
0 ##t$dt, and check the Gallavotti-

Cohen theorem, which states that P#QT$=P#"QT$ !
exp#QT$, which is equivalent, thanks to Eq. (4), to the
symmetry of "#!$ around ! ! " 1

2 .
The dynamics is deterministic, and hence cloned sys-

tems will evolve together and perform a poor sampling. To
get around this problem, we introduce a small stochastic
noise, and check the stability of results in the limit of small
noise. We evolve the system for macroscopic intervals T ,
and clone with a factor Kt ! e!"T #t$, where "T #t$ !Rt%T
t ##t$dt is the total dissipated work over the interval.

Before each deterministic step of time T , clones are given
random kicks of variance # in position and/or velocity
direction. The time interval T and the noise intensity # are
chosen so that twin clones have a chance to separate during
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FIG. 2 (color online). Plot of "#!$ vs ! for the TASEP at
density one-half. Numerical results and analytic results of
Ref. [3], with points and solid line, respectively.

FIG. 3 (color online). The billiard. The radii are R1 ! 0:39,
R2 ! 0:79. We also show an example of trajectory for the
external field ~E ! #1; 0$.

FIG. 1. Space-time diagram for a ring of N ! 100 sites.
Top: ! ! "50 and density 0.5; the shock is dense and does
not advance. Bottom: ! ! "30 and density 0.3; the shock drifts
to the right.

PRL 96, 120603 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
31 MARCH 2006

120603-3

Definition of the model: a small noise is added to enhance
dispersion
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Results: Lorenz gas

time T , and this depends on the chaotic properties of the
system. In the present case, we checked that 0:1 ! T ! 1
allows for a few collisions, which guarantees clone diver-
sity for 10"3 ! ! ! 10"4.

In Fig. 4 we show the results of !#"$ for "3 ! " ! 2,
and for ~E % #E; 0$ with E % 1; 2, corresponding to very
large current deviations.

Diversity in a population of reproducing units is main-
tained by a balance between the natural loss due to sam-
pling fluctuations and the increase introduced by mu-
tations, represented in our case by noise [23]. Thus, if the
noise level is too small in the billiard case, most of the
clones correspond to too close configurations, and our
results become noisy and unreliable. The same phenome-
non explains why all clones exhibit shocks in essentially
the same position for any given run in the TASEP (since
they share a common ancestor), but we found that in this
case the phenomenon poses no problem for the sampling,
since the current does not depend on the position of the
shock.

In conclusion, we have shown that sampling methods
based on a modified dynamics with clones can be used to
efficiently compute the large deviations function, in times
and within ranges of values that cannot be reached in a
direct simulation.

We wish to thank B. Derrida for his encouragement and
suggestions, and S. Tanase-Nicola for making us aware of
Ref. [22]. C. G. thanks ESPCI for kind hospitality and
acknowledges NWO-Project No. 613000435 for financial
support. L. P. thanks the LPTMS, Université Paris-Sud, for
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[9] G. M. Schütz, in Phase Transitions and Critical Phe-
nomena, edited by C. Domb and J. Lebowitz (Academic
Press, London, 2000), Vol. 19, p. 1.

[10] H. Spohn, Large Scale Dynamics of Interacting Particles
(Springer-Verlag, Berlin, 1991); C. Kipnis and C. Landim,
Scaling Limits of Interacting Particle Systems (Springer-
Verlag, Berlin, New York, 1999).

[11] D. J. Evans, E. G. D. Cohen, and G. P. Morriss, Phys. Rev.
Lett. 71, 2401 (1993); D. J. Evans and D. J. Searles, Phys.
Rev. E 50, 1645 (1994).

[12] G. Gallavotti and E. G. D. Cohen, Phys. Rev. Lett. 74,
2694 (1995); J. Stat. Phys. 80, 931 (1995).

[13] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997); Phys.
Rev. E 56, 5018 (1997).

[14] J. Kurchan, J. Phys. A 31, 3719 (1998).
[15] J. L. Lebowitz and H. Spohn, J. Stat. Phys. 95, 333 (1999).
[16] See D. Evans and D. Searles, Adv. Phys. 51, 1529 (2002);

and the corresponding chapter of G. Gallavotti, Statistical
Mechanics: A Short Treatise, Texts and Monographs in
Physics (Springer Verlag, Berlin, 1999), http://ipparco.
roma1.infn.it/pagine/libri.html.

[17] J. P. Eckmann, C. A. Pillet, and L. Rey-Bellet, J. Stat.
Phys. 95, 305 (1999); L. Rey-Bellet and L. E. Thomas,
Ann. Henri Poincaré 3, 483 (2002).
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Summary

• Several results involving fluctuations, dissipation, and speed
• Largely independent of system details
• It is essential to maintain thermodynamic consistency

Aspect not discussed in these lectures:

• Quantum systems
• Complex reaction networks
• Generalizations (evolution, finance,…)

… to be continued…
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Thank you!
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