
PRX LIFE 1, 013014 (2023)

Cell Lineage Statistics with Incomplete Population Trees

Arthur Genthon ,1,2,* Takashi Nozoe ,3,4,5 Luca Peliti ,6 and David Lacoste 2

1Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
2Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France

3Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
4Research Center for Complex Systems Biology, The University of Tokyo, Tokyo 153-8902, Japan

5Universal Biology Institute, The University of Tokyo, Tokyo 113-0033, Japan
6Santa Marinella Research Institute, 00052 Santa Marinella, Italy

(Received 25 April 2023; accepted 7 August 2023; published 7 September 2023)

Cell lineage statistics is a powerful tool for inferring cellular parameters, such as division rate, death rate,
or population growth rate. Yet, in practice such an analysis suffers from a basic problem: how should we treat
incomplete lineages that do not survive until the end of the experiment? Here, we develop a model-independent
theoretical framework to address this issue. We show how to quantify fitness landscape, survivor bias, and
selection for arbitrary cell traits from cell lineage statistics in the presence of death, and we test this method using
an experimental data set in which a cell population is exposed to a drug that kills a large fraction of the population.
This analysis reveals that failing to properly account for dead lineages can lead to misleading fitness estimations.
For simple trait dynamics, we prove and illustrate numerically that the fitness landscape and the survivor bias can
in addition be used for the nonparametric estimation of the division and death rates, using only lineage histories.
Our framework provides universal bounds on the population growth rate, and a fluctuation-response relation that
quantifies the change in population growth rate due to the variability in death rate. Further, in the context of cell
size control, we obtain generalizations of Powell’s relation that link the distributions of generation times with the
population growth rate, and we show that the survivor bias can sometimes conceal the adder property, namely
the constant increment of volume between birth and division.
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I. INTRODUCTION

Cells are the fundamental object of biology. Sources of cel-
lular heterogeneity are typically blurred in bulk measurements
and can only be detected with single-cell analysis. Thanks
to advances in experimental techniques (microfluidics, im-
age analyses, sequencing, etc.), single-cell measurements are
now widely used for phenotype investigations [1,2]. However,
single-cell measurements when performed in vivo often take
the form of snapshots, which means that important dynamical
information contained in lineage trees of cell populations (or
equivalently population trees) is often lost or hidden [3].

In fact, even when temporal information about lineages is
available, as with time-lapse video microscopy, some practical
issues remain. One of them concerns lineages that terminate
before the end of the experiment. Lineages can end for various
reasons: cells can just stop dividing because of changes in
the environment, they can die [4–6], or be flushed away as
a result of dilution [7,8]. What should be done in practice
with these dead lineages: should they simply be discarded or
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should they be included in the analysis and how? Clearly, both
options are not equivalent and a wrong methodology could
lead to unwanted statistical biases. In this paper, we propose
a theoretical framework to address this issue. Our approach
is not limited to cell lineages, it could also be applied to
other types of lineage trees containing extinct lineages, which
appear, for instance, in evolution experiments.

A key idea in lineage analysis is the distinction between
the backward sampling that reflects the differences in repro-
ductive success between cells, and the forward sampling that
balances these differences [9,10]. We first review this formal-
ism in Sec. II. Then, we generalize this approach to include
dead lineages in Sec. III. This framework can be used with any
given lineage tree independently of the dynamics that generate
the tree and of the cause of early lineage ending, and it is valid
at arbitrary finite time.

Based on this framework, in Sec. IV we propose measures
of fitness landscape and survivor bias, particularly adapted
to cases where the cell traits of interest are correlated with
the cause of death. We test these ideas using experimental
data of mycobacteria subject to antibiotics [11], an analy-
sis that reveals the importance of correctly accounting for
dead lineages. These measures of fitness and survival are
very general and can be evaluated for any lineage tree. For
some simple models of population dynamics, we show that
they can also be used to infer the division and death rates
using phenotypic trajectories. These measures are further
used to theoretically quantify selection in the presence of
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(a) (b)

FIG. 1. Population trees without and with death. (a) Population tree with no death starting with N0 = 1 cell and ending with N (t ) = 10
lineages at time t . In the table, the columns indicate the number K of divisions along the lineage and the backward and forward weights.
(b) Population tree starting with N0 = 1 cell and ending with n(σ = 0, t ) = 3 dead lineages (red crosses), and N (t ) = n(σ = 1, t ) = 6 alive
lineages at time t . In the table, the survival status σ takes value 1 for surviving lineages and 0 for dead lineages. The forward probability of
survival is computed as pfor(σ = 1, t ) = 1 × 1/4 + 3 × 1/8 + 2 × 1/32 = 11/16.

death and fitness variability, and the death-induced change
in selection.

In Sec. V, we explain the analogy between our framework
and that of stochastic thermodynamics [12]. From this anal-
ysis, we deduce universal bounds on the population growth
rate in the presence of death, which we test with experimental
data, and we derive a fluctuation-response relation that relates
the change in population growth rate to the variability in death
rate.

Finally, we apply our formalism to models of cell size con-
trol in Sec. VI, where we derive modified versions of Powell’s
relation [13] in the presence of death. These relations link the
backward and forward distributions of interdivision times and
imply that cells divide faster under selection. A consequence
of death on the statistics of the adder mechanism of cell size
control [14] also follows from this approach.

II. THEORETICAL BACKGROUND FOR
COMPLETE LINEAGE TREES

In this introductory section, we review the framework pro-
posed in [9,10] to analyze lineage trees in the absence of cell
death.

From this framework, it is possible to infer fitness dif-
ferences associated with distinct states of cellular trait and
selection within a growing population from empirical lineage
tree data. For instance, time-lapse single-cell measurements
provide cellular divisions and trait time series (e.g., fluores-
cence intensity of reporter protein) in the form of lineage trees.
Because phenotypic traits temporally fluctuate, time series
branch at division in such data sets, and it is therefore not
trivial what statistics correctly report the fitness value of the
phenotypic trait.

To resolve this issue, we assign two types of prob-
ability weight to each cellular lineage l: the backward
weight ωback (l ) = N (t )−1 and the forward weight ωfor (l ) =
N−1

0 m−K (l ), where N0 and N (t ) are the numbers of cells at
initial time t = 0 and final time t , K (l ) is the number of
divisions along lineage l , and m is the constant number of
daughter cells born at division (including the mother cell). An
example of a lineage tree with the corresponding forward and
backward weights is represented in Fig. 1(a). The backward

sampling weighs the cells present at final time uniformly, thus
leading to an over-representation of cells with above-average
reproductive success. Instead, the forward weight represents
the probability of choosing a cell lineage descending the tree
from one of the ancestor cells at time t = 0 and selecting
one branch among the m possibilities with equal probability
1/m at each division. Doing so, a lineage with high reproduc-
tive success is sampled with a lower weight in the forward
sampling than in the backward sampling, in such a way as
to balance the selection effect. Therefore, the comparison
between these two samplings informs the selection undergone
by lineages, as detailed below.

Let us now consider a general cell trait S , taking values s,
which can represent a phenotype or a genotype, for example.
This trait can be any property of a lineage: a snapshot property
evaluated at a given time, an averaged trait along lineages, or
a trait trajectory, for instance. The discussion above motivates
us to compute the forward (backward) probability to pick a
lineage with K divisions and with trait value s in a forward
(backward) manner. Let n(K, s, t ) denote the number of such
lineages. We then define

pback (K, s, t ) = N (t )−1n(K, s, t ), (1)

pfor (K, s, t ) = N−1
0 m−K n(K, s, t ). (2)

The fitness of the exponentially growing population is de-
fined as its growth rate:

�t = 1

t
ln

N (t )

N0
, (3)

and using the forward and backward distributions, we obtain
another representation of population fitness:

�t = 1

t
ln〈mK 〉for, (4)

where 〈·〉for denotes the average with respect to pfor (K, s, t ).
In this representation, mK and pfor (K, s, t ) are understood as
the fitness value of a lineage and its probability distribution
prior to selection.

Since the fitness landscape is conventionally defined as the
mean fitness conditioned on a genotype or phenotypic trait, it
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is natural to define the fitness landscape of cell trait S as

ht (s) = 1

t
ln〈mK |s〉for, (5)

where 〈·|s〉for denotes the conditional average with re-
spect to pfor (K, t |s) = pfor (K, s, t )/pfor (s, t ), with pfor (s, t ) =∑

K pfor (K, s, t ). Using Eqs. (1) and (2), together with
pback (s, t ) = ∑

K pback (K, s, t ), the fitness landscape of cell
trait S is rewritten as

ht (s) = �t + 1

t
ln

pback(s, t )

pfor (s, t )
. (6)

In this alternative form, the difference ht (s) − �t between the
fitness value of a cell with trait s and the population fitness
measures the over- or under-representation of lineages with
this trait value s in the growing population as compared to the
statistics prior to selection.

To quantitatively evaluate the overall effect of selection on
the trait statistics, we define the strength of selection as the
gain in mean fitness when “turning on” selection by chang-
ing the distribution of trait S from the forward ensemble,
where differences in reproductive success are suppressed by
the weighting of the lineages, to the backward ensemble:

�S = 〈ht 〉back − 〈ht 〉for. (7)

Because �S is positively proportional to the Jeffrey diver-
gence [9], a non-negative symmetrical information-theoretic
distance between the forward and backward distributions, it
is always non-negative. If the fitness landscape is used to
determine which values s of a given cell trait S are selected
in a growing population, on the other hand, the strength of
selection is a measure of the overall selection acting on trait S ,
and it can thus be compared to other cell traits S ′ to determine
which traits are under the strongest selection, i.e., which traits
strongly correlate with lineage fitness.

Importantly, we want to emphasize that the notions of
fitness and selection introduced here are different from their
usual definitions based on division/growth rates. Usually, fit-
ness quantifies the chance to reproduce, and thus measures the
amplification over time of the proportion of some cell traits
in the population. However, this measure does not account for
the already-existing distribution of cell traits prior to selection.
The fitness landscape proposed above instead measures the
amplification of the forward (or a priori) probabilities when
cells are competing in a population.

III. A FRAMEWORK TO SAMPLE INCOMPLETE
LINEAGE TREES

The main experimental setups used to illustrate our frame-
work are represented in Fig. 2: (a), free growth; and (b),
growth in a microchannel [7]. The cell colors are an illus-
tration of the bacterial diversity, and white cells are dead. In
the microchannel, the down arrow indicates the medium flux
that carries away cells that go out of the channel, so that both
biological death and dilution can be present, while no dilution
is observed in free growth. The case of free growth does not
require cells to be far from each other; they can be strongly
coupled or in contact, as happens, for instance, in tissues. Both
cases (a) and (b) are represented by a population tree like the

(a) (b)

FIG. 2. Cartoons of two experimental setups where lineages can
end before the end of the experiment. The cell colors represent
cell heterogeneity and the white cells are dead. (a) Free growth in
bulk; cells may be far from each other or in contact as in a tissue.
(b) Cytometer setup from [7] where cells grow in a chamber open at
both ends, and they are evacuated by the flow of growth medium in
order to maintain the population constant inside the chamber.

one shown in Fig. 1(b), where the red crosses indicate death in
a broad meaning. Such a tree starts with N0 cells at time t = 0
and ends with N (t ) living cells at time t . Lineages can either
survive up to time t or die before, as indicated by σ , taking the
value 1 for alive lineages and 0 for dead lineages. Note that σ

refers to the status (dead or alive) of lineages at the final time
t , irrespective of the time of death.

When introducing death, the two samplings introduced in
Sec. II are modified in the following way. When taking a
snapshot of the population at time t , only living lineages
are present, and in the backward sampling we sample them
uniformly with weights ωback(l ) = N (t )−1δ(σ (l ) − 1), where
δ(x) is a Kronecker delta. On the other hand, starting from
t = 0 with one of the N0 initial cells and following the lin-
eages up to time t by choosing with uniform probability 1/m
one of the m daughter cell born at each division, both dead
and living lineages are sampled with the forward weights
ωfor(l ) = N−1

0 m−K (l ), where K (l ) is the number of divisions
along lineage l up to time t . We give a simple example of
how these weights are computed in practice in Fig. 1(b). A
major difference with the deathless case immediately appears:
some lineages are sampled in the forward manner but not in
the backward manner.

For a general cell trait S , the forward and backward proba-
bilities to pick a lineage with K divisions, with survival status
σ and trait value s, are modified accordingly:

pback (K, σ, s, t ) = N (t )−1n(K, σ, s, t )δ(σ − 1), (8)

pfor (K, σ, s, t ) = N−1
0 m−K n(K, σ, s, t ), (9)

where n(K, σ, s, t ) is the number of such lineages. The num-
ber of cells alive in the population at time t is now given by
N (t ) = n(σ = 1, t ) = ∑

K,s n(K, s, σ = 1, t ).
The forward probability of survival pfor(σ = 1, t ) =∑
K,s pfor(K, s, σ = 1, t ) is a central quantity in this problem.

It is a strictly decreasing function of the number of death
events, and is unaffected by divisions, therefore it tends to 0 as
t → ∞. Indeed, when a lineage with K divisions, associated
with a weight N−1

0 m−K in the forward sampling, divides in
m daughters cells all weighted N−1

0 m−(K+1), then the overall
weights of the m daughters is equal to that of the mother, and
the forward weight is conserved. On the other hand, when
a lineage dies, its forward weight disappears from the sum
over living lineages that defines pfor(σ = 1, t ), leading to a
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decrease of the latter. We then define the rate of decrease of
the forward probability of survival as

�t = 1

t
ln pfor(σ = 1, t ). (10)

Finally, we introduce the forward distribution conditioned
on survival:

p�
for(·, t ) = pfor(·, t |σ = 1). (11)

IV. QUANTIFYING FITNESS AND SELECTION
IN INCOMPLETE LINEAGE TREES

A. Disentangling fitness and survival

In the absence of death, the measure of fitness defined by
Eqs. (5) and (6), which was introduced in [9] and reviewed in
Sec. II, depends only on the correlations between the value of
the trait and the number of divisions along the lineage. When
introducing death, the frequency of the trait in the population
is the result of the correlations between this trait and the
divisions, together with the correlations between this trait and
survival. Therefore, the fitness landscape defined in Eqs. (5)
and (6) captures both fitness and survival effects. Ignoring
dead lineages and using this measure to quantify selection
could thus lead to misleading fitness estimations, as we will
demonstrate.

To disentangle the two effects, we define the fitness land-
scape in the presence of incomplete lineages as the average
fitness conditioned on the cell trait for surviving lineages only:

h�
t (s) = 1

t
ln

[∑
K

mK p�
for(K, t |s)

]
. (12)

We show in Appendix A that this fitness landscape is consis-
tent with notions of fitness proposed previously. In particular,
it recovers the historical fitness introduced in [15] for pop-
ulations undergoing stochastic phenotype switching, while
being more general because it is model-independent. When
p�

for(K, t |s) = p�
for(K, t ) for any s, then the fitness landscape is

flat and equal to �t − �t . This condition is called the condi-
tional independence of K and s knowing σ = 1. It is important
to note that the conditional independence does not imply, and
is not implied by, the regular independence between K and s.
This means in particular that a trait s can be correlated to both
K and σ , and still have a flat landscape.

As in Sec. II, by expressing p�
for(K, t |s) in Eq. (12) and

using Eqs. (8)–(11), the fitness landscape can be reshaped as

h�
t (s) = �t − �t + 1

t
ln

[
pback(s, t )

p�
for(s, t )

]
, (13)

where the marginalized trait distributions are defined as
p(s, t ) = ∑

K p(s, K, t ) (both backward and forward). By
comparing the forward and backward samplings for surviving
lineages only, we get rid of the incomplete lineages and thus
isolate selection effects from survival effects.

When combining the previous definition Eq. (13) with
Eqs. (8)–(11), the fitness landscape can also be written as

h�
t (s) = −1

t
ln

[∑
K

m−K pback(K, t |s)

]
. (14)

This formulation has a form similar to Eq. (12), but measures
the inverse linage fitness m−K averaged with respect to the
probability distribution conditioned on the cell trait and pos-
terior to selection.

We finally define the survivor bias as

h†
t (s) = ht (s) − h�

t (s) = �t + 1

t
ln

[
p�

for (s, t )

pfor (s, t )

]
, (15)

which measures the statistical difference between the ensem-
ble of all lineages and the surviving lineages only. While
this definition of survivor bias is not the only possible one,
it is reasonable to compare the two lineage ensembles using
the forward sampling in order to get rid of selection effects
and isolate survival effects. This bias is significant when
considering a trait S which is correlated with survival. One
important example is antibiotic resistance, because there, one
is interested precisely in traits that appear among surviving
bacteria in the presence of antibiotics [11]. We explore this
example in the next section.

B. Making sense of antibiotics experiments

To illustrate the importance of the distinction between h�
t ,

ht , and h†
t when analyzing experimental data, we use lineage

trees of Mycobacterium smegmatis exposed to the drug iso-
niazid (INH) [11]. After a few divisions in the absence of
the drug, the population is exposed to the drug over 6 days,
and every individual cell lineage is tracked until it is killed
or reaches the end of observation [Fig. 3(a)]. In the original
paper [11], the authors tested the hypothesis that bacterial
persistence, i.e., the survival of a small fraction of cells when
exposed to antibiotics which is not linked to a genetically
acquired resistance, was linked to the existence of persisters
that grow very slowly or do not grow at all before drug
exposure, as observed for E. coli in [1]. To do so, they com-
pared the preexposure elongation rates of persistent versus
nonpersistent cells, and observed no significant difference.
They thus concluded that the preexposure elongation rate is
not correlated with survival for M. smegmatis.

We first aim to reproduce this observation with a formalism
adapted to populations with dead lineages, and to further
study the correlation between this cell trait and selection. In
addition, we exhibit another cell trait that is correlated with
selection and survival: the logarithmic cell size at the end
of the tracking. Indeed, cell size is biologically insightful
because the fitness landscape of cell size in the absence of
death has been shown to reveal sources of stochasticity in
volume partitioning and in single-cell growth rate [16], and
to inform the mechanism of cell size control [17].

Let us first consider the preexposure elongation rate, which
is defined by the slope of logarithmic cell size over 1 h
before the INH addition. Among the 274 lineages alive or
dead by t = 72 h (from drug exposure), five lineages have
negative preexposure elongation rate, which are removed from
the analysis. The three probability distributions p�

for, pfor, and
pback of the preexposure single-cell growth rate (for lineages
extracted at t = 72 h) are relatively close to each other, as
shown in Fig. 3(b), and equivalently the landscapes h�

t , h†
t , and

ht , shown in Fig. 3(d), are all close to flat landscapes. Note
that only the dependence of the landscapes on the cell trait is

013014-4



CELL LINEAGE STATISTICS WITH INCOMPLETE … PRX LIFE 1, 013014 (2023)

(a)

(b) (c)

(d) (e)

FIG. 3. Analysis of a lineage tree with biological death. (a) Example of lineage tree of individual bacterial cells proliferating and being
killed by drug exposure [11]. The population is exposed to INH on a microfluidic device from t = 0 h, as indicated by the dashed line.
Inset: evolution of the corresponding number Nt of alive cells with time. (b), (d) Distributions and landscapes of the preexposure growth rate
(computed 1 h before drug exposure). There are no values at the rightmost bin for h�

t , ht , and h†
t because there are no alive lineages with this

value of preexposure growth rate (p�
for = pback = 0). (c),(e) Distributions and landscapes of the logarithmic cell size at the end of the lineage

(computed at t = 36 h for surviving lineages or at the time of death for lineages that died before).

important, and not the offset between the three curves, which
only comes from the different constants �t and �t used in the
definitions (13) and (15). These observations are consistent
with the analysis in [11] [Fig. 2(c), left, in this reference],
namely the flatness of the survivor bias h†

t confirms the inde-
pendence of the preexposure single-cell elongation rate with
the viability of the lineage when exposed to a drug. Further,
our framework provides an additional result: the flatness of
the fitness landscape h�

t indicates the independence between
the preexposure single-cell elongation rate and the fitness
(reproductive success) of the lineage.

Let us now consider the second cell trait, namely the
logarithmic cell size at the end of the lineage. We extracted
lineages alive at time t = 36 h and those killed before this
time, and measured the logarithmic cell size at the end of the

lineages, defined as the extraction time t = 36 h for surviving
lineages and as the time of death for dead lineages. The
corresponding probability distributions pfor, p�

for, and pback,
and landscapes h�

t , ht , and h†
t are shown in Figs. 3(c) and

3(e). This analysis reveals two results. All three landscapes
are decreasing functions of the final log-size (except for the
last point, which is not meaningful due to sampling issues),
which indicates that cell size is negatively correlated with both
fitness and survival. Moreover, the slope of the decrease of ht

is larger than that of the fitness landscape h�
t (or equivalently

the difference between pback and pfor is more important than
the one between pback and p�

for). Therefore, by looking at ht

instead of h�
t one could incorrectly infer a fitness advantage

for smaller cells that is larger than in reality, since the decrease
of ht is mainly due to the survivor bias.
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We claim that the decrease of the landscapes for the final
cell size in Fig. 3(e) truly captures fitness and survival effects,
while the variations of the same landscapes for the preexpo-
sure growth rate around their mean values in Fig. 3(d) are not
meaningful but rather the result of uncorrelated fluctuations.
To confirm this point, we plot in Fig. 7 in Appendix B the
same landscapes after shuffling the trait values among lin-
eages, thus canceling the correlations between cell trait and
number of divisions and between cell trait and survival. The
resulting landscapes are significantly flatter than the ones in
Fig. 3(e) for final cell size, while they are compatible with
the ones in Fig. 3(d) for the preexposure growth rate, which
confirms our analysis.

C. Inferring the division and death rates

In the previous sections, we showed that the fitness land-
scape and the survivor bias provide a universal framework
for the analysis of any incomplete lineage tree regardless of
its dynamics. If we now introduce a cell trait dynamics, the
fitness landscape and the survivor bias can in addition be used
for the inference of the division and death rates, under certain
conditions detailed below. This is particularly interesting since
in general the estimation of the division rate from lineage data
is a hard problem [18–20].

More specifically, let us follow a cell trait S that fluctuates
in time along the lineages, with cells dividing and dying at
rates r(s) and γ (s), respectively. These rates are defined as
follows: a cell with trait value s divides (dies) with probability
r(s)dt (γ (s)dt ) in a time interval dt . We show in Appendix A
that when (i) the cell trait s is unaltered by divisions, and
(ii) either (a) the division rate r(s) is only weakly nonlinear
or (b) the autocorrelation time of the trait dynamics is large
compared to the observation time, then

h�
t (s) = r(s), (16)

where we defined the time average along a lineage f =
t−1

∫ t
0 dt ′ f (t ′). This result can be used in the context of

stochastic gene expression, for example, where the concentra-
tion of expressed proteins is typically continuous at division
and fluctuates very little over multiple generations [21].

Moreover, when the autocorrelation time of the trait dy-
namics is large compared to the observation time, then

h†
t (s) = −γ (s). (17)

These relations show that the division (death) rate can be
extracted from the fitness landscape (survivor bias) for the
time-averaged trait value s along lineages. The two important
rates can thus be inferred from phenotypic trajectories only
when the above conditions hold.

We put this inferring method to the test by simulating
clonal cell proliferation and death processes. The cell trait S
is chosen to follow an Ornstein-Uhlenbeck process, and cells
divide and die according to division and death rates given by
Hill functions. At division, the mother cell produces m = 2
daughter cells whose initial states s are the same as that of
the mother upon division. A schematic representation of the
simulation and the plots of the division and death rates are
shown in Figs. 4(a) and 4(b). The details of the simulations
can be found in Appendix A 3.

(a)

(c)

(b)

FIG. 4. Inference of division and death rates from fitness land-
scape and survivor bias of time-averaged trait in the numerical
simulation. (a) A schematic of the population model used in the
simulation. A cell with the trait s divides with the probability r(s)dt
and dies with the probability γ (s)dt during dt . (b) Filled curve: Sta-
tionary forward probability distribution of the trait s when γ (s) = 0
(no bias). Blue solid and red dashed curves are the division rate r(s)
and death rate γ (s), given in Appendix A 3. (c) Fitness landscape
h∗

t (s̄) and survivor bias h†
t (s̄) of time-averaged trait s. We choose the

parameters so that the population size decreases like what happens
in the experimental data we analyzed in Fig. 3, and we choose t = 4,
which is shorter than the autocorrelation time of s and much shorter
than the extinction timescale. The points and the error bars represent
means and standard deviations over 100 runs, each starting with
N0 = 1000 cells.

The results of the inference are shown in Fig. 4(c), where
the autocorrelation time of the trait dynamics was chosen to
be larger than the duration of the experiment. As expected,
the inference method is successful in this limit, despite the
nonlinearity of the rates with respect to the value of the trait.

The effects of the nonlinearity of the division rate and
of the autocorrelation time on the inference of the division
rate have been investigated in [9] in the absence of death,
and conclusions are similar with death. The impact of the
autocorrelation time of the trait dynamics on the inference
of the death rate is further investigated in Appendix A 3 and
Fig. 6, where the same simulation is performed with a shorter
autocorrelation time of the trait dynamics.

D. Effect of death on selection

1. Measure of death-induced change in the strength of selection

We reviewed in Sec. II that the degree of dissimilarity
between the forward and backward distributions for a given
cell trait S is a natural measure of selection acting on this cell
trait in the absence of death. This definition was motivated
by the fact that the forward sampling is built to suppress the
differences in reproductive success among the lineages that
are present in the backward sampling.
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To generalize this definition in the presence of death while
isolating the strength of selection from survival biases, we
compute the strength of selection given in Eq. (7) for surviving
lineages only, as we did for the fitness landscape in Sec. IV A:

�S = 〈h�
t 〉back − 〈h�

t 〉�for. (18)

Then, we propose a measure of the death-induced change
in the strength of selection:


�S = �S − �◦
S , (19)

where the superscript ◦ in �◦
S indicates observables in the

absence of death. The sign of 
�S indicates whether death
increases or decreases the distance between the forward and
backward distributions, i.e., the strength of selection.

Interestingly, the interplay between intrinsic selection and
survival is explicit when focusing on trajectories S of traits
subject to a division rate γ (s). Indeed, we show in Appendix C
that 
�S can be expressed as


�S = Cov◦
back

(
h◦

t , psurv
)

〈psurv〉◦back

− Cov◦
for

(
h◦

t , psurv
)

〈psurv〉◦for

, (20)

which depends on the correlations (covariances) between the
fitness landscape in the absence of death h◦

t (s), representing
the intrinsic selection effect, and the probability of survival up
to time t for a trait trajectory s along a lineage:

psurv(s) = exp

[
−

∫ t

0
dt ′γ (s(t ′))

]
. (21)

2. Illustrative example

We illustrate the possible outcomes of this change in
selection strength by considering a simple birth and death
process with two states a and b. Cells divide and die with
state-dependent division and death rates r and γ . To avoid
extinction, we suppose that ra � γa and rb � γb, and we start
with a large even number N0 of initial cells, in which pheno-
types are equally represented: N0(a) = N0(b) = N0/2. Cells
cannot switch to the other phenotype, and at division two cells
of the same phenotype as the mother are produced. Without
loss of generality we suppose that phenotype a divides faster
than b: 
r = ra − rb > 0.

To treat this case explicitly, let us introduce the cell trait
S , taking the value s = 1 for cell state a and s = 0 for cell
state b. The number of cells in the subpopulation a evolves as
n(a, t ) = N0 exp[t (ra − γa)]/2 and similarly for the subpopu-
lation b, so the backward probability reads

pback (s, t ) = et (ra−γa )δ(1 − s) + et (rb−γb)δ(s)

et (ra−γa ) + et (rb−γb)
. (22)

Phenotypes are equally represented in the initial distribution,
and the survival probability up to time t for phenotype a
is given by exp(−tγa) (and similarly for b), therefore the
forward distribution reads

p�
for(s, t ) = e−tγaδ(1 − s) + e−tγbδ(s)

e−tγa + e−tγb
. (23)

The fitness landscape h�
t (s) is obtained by computing the ratio

of these two distributions [Eq. (13)]:

h�
t (s) = raδ(1 − s) + rbδ(s). (24)

Note that this is a simple case where the inference method
proposed in Sec. IV C is applicable. Indeed, the fitness land-
scape exactly recovers the division rate, because the trait is not
fluctuating in time.

Finally, the strength of selection is computed using
Eq. (18):

�S = raet (ra−γa ) + rbet (rb−γb)

et (ra−γa ) + et (rb−γb)
− rae−γat + rbe−γbt

e−γat + e−γbt
. (25)

In the absence of death (γa = γb = 0), the asymptotic value
of the strength of selection is controlled by the differ-
ence in reproductive rate: limt→∞ �◦

S = 
r/2. With death,
the asymptotic selection strength results from two processes:
the competition for the largest population, controlled by the
net offspring production rate r − γ , which sets the backward
trait distribution; and the competition for the smallest death
rate γ , which controls the forward trait distribution. From
Eq. (25), the possible outcomes for 
�S are


�S →
t→∞

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩


r/2 if γa > γb and ra − γa > rb − γb,

−
r/2 if γa > γb and ra − γa < rb − γb,

0 if γa > γb and ra − γa = rb − γb,

0 if γa = γb,

−
r/2 if γa < γb.

(26)
Death has no effect on selection (
�S = 0) in two sit-

uations. First, when death is uniform, γa = γb, then each
covariance in Eq. (20) is null. Second, when ra − γa = rb − γb

(which implies that γa > γb), meaning that death “shifts” the
forward and backward distributions equally, their distance
remains constant. In this last case, the covariances in Eq. (20)
are equal. Note that the critical birth-death process where
the total population is maintained constant, in contrast to the
supercritical case where it grows exponentially, is obtained
by setting ra = γa and rb = γb. Thus, in the critical case we
always have ra − γa = rb − γb, and 
�S = 0.

There is only one case where selection is increased by
death (
�S > 0): when cells that divide faster also die faster,
while keeping a larger division-death balance (i.e., γa > γb

and ra − γa > rb − γb). In that way, phenotype a remains
over-represented in the population like in the absence of death
[pback (s = 1, t ) → 1], but because it dies faster, its forward
weight vanishes [p�

for (s = 1, t ) → 0, against p◦
for (s = 1, t ) =

1/2 at all times in the absence of death]. As a consequence,
the distance between the two samplings increases.

On the other hand, selection can be decreased by death
(
�S < 0) in two cases. If the balance between division
and death favors phenotype b while maintaining a smaller
death rate for b (i.e., ra − γa < rb − γb and γa > γb), then
phenotype b dominates both samplings, which become iden-
tical [pback(s = 0, t ) → 1 and p�

for (s = 0, t ) → 1]. On the
contrary, when phenotype b has an unfavorable division-
death balance and also dies faster (i.e., γa < γb), it remains
under-represented in the population, and also becomes under-
represented in the forward sampling, so that the forward and
backward distributions become identical [pback (s = 0, t ) → 0
and p�

for (s = 0, t ) → 0]. In these two cases, the strength of
selection in the presence of death is null, and so the distance
between the two samplings is decreased by death. Note that
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this death-induced decrease in the strength of selection can be
equivalently obtained by a reduction of fitness (here fitness
is understood as division rate, since there is no phenotype
switching [22]). Indeed, 
�S = −
r/2 can be achieved
without death by instead lowering ra to rb.

One takeaway message from this analysis is that the
strength of selection is more than a difference of growth rates:
it instead measures how the intrinsic forward statistics are
modified when cells are under selection in a population. In this
setting, death rates matter too, and the strength of selection
can be increased, decreased, or unaffected by death.

V. NONEQUILIBRIUM THERMODYNAMICS
INTERPRETATION

Now that we have motivated our approach by showing
the importance of distinguishing between fitness and survival
in data analysis, and by proposing a practical use of these
two notions for inference purposes, in this section we further
analyze our framework from the perspective of stochastic ther-
modynamics. In the past decade, the thermodynamic structure
of population dynamics, and of biological branching trees
in general, has been thoroughly investigated [23–28]. These
works provided insights into the principles that govern evolu-
tion and selection, with a degree of universality similar to that
of thermodynamics for physics. In line with these works, we
explore here the specific impact of death on these universal
principles.

A. Fluctuation theorems

When comparing the probabilities to pick a living lineage
with K divisions in the backward and forward samplings,
Eqs. (8), (9), and (11), we obtain

pback(K, t ) = p�
for(K, t )eK ln m−t (�t −�t ). (27)

Note that trait s has been integrated out here, since the
exponential bias does not depend on it. This relation is
a generalization of the fluctuation theorem obtained for a
branching tree without death [9,27], but unlike fluctuation
theorems in stochastic thermodynamics, which also compare
two probability distributions [12], the forward and backward
distributions are not related by time-reversal symmetry. Death
modifies the relations in two ways: through the term �t and
in the lowering of the population growth rate �t , which is no
longer necessarily positive.

Integrating the forward probability in Eq. (27) gives a first
integral fluctuation theorem:

〈et�t −K ln m〉back = 1 − pfor(σ = 0, t ), (28)

which is analogous to a generalization of Jarzynski’s equality
for absolutely irreversible processes [29], for which time-
reversed processes are never observed. Similarly here, dead
lineages have a positive weight in the forward sampling but a
null one in the backward sampling. Thus, in this analogy, K ,
�t , and pfor(σ = 0, t ) play the role of the work, the free en-
ergy, and the total statistical weight of absolutely irreversible
transitions, respectively. A concrete consequence of this ap-
proach is presented in Sec. V C.

Integrating the backward probability in Eq. (27) leads to a
second integral fluctuation theorem:

�t = 1

t
ln〈mK 〉�for + �t , (29)

which is a generalization of Eq. (4) in the presence of death.
This relation links the population growth rate to the forward
statistics of the number of divisions and to the forward prob-
ability of survival. This relation clearly shows that an effect
of death can be equivalently described by a reduction of
fitness: since �t < 0, the population fitness �t is reduced,
which could also be obtained by a reduction of the number
of divisions K along the lineages. This death-induced reduc-
tion of population fitness is analyzed using the framework of
fluctuation-response relations in the next section.

B. Fluctuation-response relation for the population growth rate

When comparing experiments with and without death, it
is natural to ask whether it is possible to predict the effect
of death on population growth. Along these lines, Yamauchi
et al. [10] recently showed that for the particular case in
which cell death occurs upon division only, and for a small
death probability, then at first order the decrease in population
growth rate due to death depends on the Kullback-Leibler
divergence between the backward and forward distributions
of the number of divisions in the absence of death. The
Kullback-Leibler (KL) divergence is a positive nonsym-
metrical information-theoretic distance between probability
distributions:

DKL(p||q) =
∫

dx p(x) ln
p(x)

q(x)
� 0. (30)

In Appendix D, we extend this result and show that for a
general death rate γ , the decrease in population growth rate is
given by

�t − �◦
t = 1

t
ln〈psurv〉◦back, (31)

where the survival probability psurv(s) for a trait trajectory
s along a lineage is given by Eq. (21). In particular, if
death occurs only at division with probability 1 − 2−ε , then
the survival probability along a lineage with K divisions is
psurv(K ) = 2−εK , and for small ε we recover the result from
[10].

If the death rate is small, i.e., scaled by a small parameter
ε, the survivor probability in Eq. (31) can be expanded such
that

�t − (
�◦

t − ε〈γ 〉◦back

) = t

2
Var◦back(γ )ε2 + O(ε3). (32)

When there is no variability in the time-averaged death rate,
the population growth rate is simply reduced by the uniform
time-averaged death rate: �t = �◦

t − εγ 0, with γ 0 = 〈γ 〉◦back.
If now we consider the case where there is variability while
keeping the same average 〈γ 〉◦back, then �t − (�◦

t − ε〈γ 〉◦back)
is the difference between the growth rates with and without
variability in death rate, for the same average death rate.
This difference is proportional to the variance in death rate.
Equation (32) can thus be interpreted as a fluctuation-response
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relation, where the response is understood as the gain in popu-
lation fitness which is caused by an increase of the fluctuations
in death rate.

This result can be put in parallel with other fluctuation-
response theorems in evolution, like Fisher’s fundamental
theorem of natural selection, which states in its simplest form
that the time-derivative of the population fitness d�t/dt is
equal to the variance of division rates Var(r) [22]. Another
example of relation of this kind is given in [15], where the
time-integrated division rate along a lineage is called his-
torical fitness, Ht (s) = ∫ t

0 dt ′ r(s(t ′)) = tr. In this work, the
authors derived the equality between the increase in mean
historical fitness ∂β〈Ht 〉, following the amplification of the
differences in division rates r(s) → βr(s), and the variance
of historical fitness Var(Ht ).

In contrast to these other fluctuation-response relations, our
result shows the importance of fluctuations of death rate in
understanding the change in population growth rate.

C. Second-law-like inequalities bounding
the population growth rate

An important consequence of fluctuation theorems in
stochastic thermodynamics is obtained by computing the KL
divergence between the original and time-reversed path prob-
abilities, which gives the second law of thermodynamics.
Similarly here, second-law-like inequalities can be deduced
from the positivity of the following Kullback-Leibler diver-
gences:

DKL(pback||p�
for ) = 〈K〉back ln m − t (�t − �t ) � 0, (33)

DKL(p�
for||pback ) = −〈K〉�for ln m + t (�t − �t ) � 0. (34)

Since the number K of divisions is positive-definite, Eq. (34)
implies that �t − �t is a positive quantity.

When combined, the two inequalities give

〈K〉�for ln m

t
� �t − �t �

〈K〉back ln m

t
, (35)

which provides universal lower and upper bounds for the
population growth rate independent of the dynamics. Let us
make two comments. First, Eq. (35) involves two bounds
instead of one in thermodynamics, again because the forward
and backward samplings are not related by a time-reversal
symmetry. Second, an important result of Ref. [29] is that the
lower bound on the average entropy production is improved
due to the irreversible trajectories, going from 0 to a strictly
positive quantity. Similarly here, since �t � 0, the right part
of Eq. (35) implies t�t � t (�t − �t ) � 〈K〉back ln m, giving a
tighter bound on the population growth rate.

We illustrate these inequalities in Fig. 5(a) with experimen-
tal data from [7] of Escherichia coli cells in a microchannel.
The values of 〈K〉�for, 〈K〉back, �t , and �t are computed for
a single population, maintained approximately constant with
20–40 cells at any time. We see that the relative discrepan-
cies between the curves are decreasing with time from t =
1300 min, meaning that the bounds are getting tighter. This
is due to the fact that, because of dilution, all cells in the
cytometer are likely to have a common ancestor which is close
in the past, thus leading to a small variability in the numbers

(a)

(b)

FIG. 5. Analysis of data from [7] for a population maintained
constant thanks to dilution. (a) Illustration of Eq. (35), which shows
that the bounds for �t − �t get tighter as time increases. (b) Separate
time evolutions of �t and �t , which show the expected convergence
of �t toward 0, due to the fact that the population is maintained
constant, and a slower convergence of �t toward a steady value, not
fully achieved within the reach of the experiment.

of divisions among lineages [30]. We expect each curve to
converge to a steady value in the long time limit. Figure 5(b)
displays the separate evolution of �t and �t : as expected for
constant populations, �t tends to 0 rather quickly, while the
convergence of �t is slower.

When studying regulated populations of cells, Eq. (35) fur-
ther implies inequalities between the forward and backward
mean generation times with the population doubling time, as
explored in the next section.

VI. EFFECT OF DEATH ON MODELS
OF CELL SIZE CONTROL

In recent years, the comparison between the forward and
backward samplings of lineages has been used to quantify
how the behavior of cells is modified when they are under
selection. For example, it has been shown that cells elongate
faster [31], are born bigger [17], and end up being smaller
in a snapshot [16] when selection is present among lineages.
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Importantly, they also divide faster, because cells that are
over-represented in the backward sampling because of their
higher reproductive success have shorter interdivision times
(also called generation times) [27,32,33]. Therefore, selection
biases the distribution of cell lifetimes towards small values.

In the next sections, we introduce a noninteracting age-
and-size-structured model of cell populations, and we show
how this forward-backward bias on generation times is im-
pacted by cell removal due to death or dilution.

A. General model of cell size control with death

We consider a general model of cell size control, where
cells are characterized by their age a and size at birth xb,
and divide and die with division and death rates r(a, xb) and
γ (a, xb), respectively. For simplicity, in the following we call
γ the death rate but keep in mind that it models any kind
of cell removal. Upon division, mother-daughter correlations
are described by the transition kernel �(xb|x′

b, a′), which is
the probability for the daughter cell to be born with size xb

knowing its mother was born with size x′
b and divided at

age a′. Between divisions, cells grow at a rate ν(x) = dx/da,
where x is the cell size. This growth rate accounts for the most
common growth laws, for example exponential growth x(a) =
xb exp(ν0a) when ν(x) = ν0x, and linear growth x(a) = xb +
ν1a when ν(x) = ν1. Detailed equations for this model can be
found in Appendix E 1.

In the absence of death, this model accounts for the most
common mechanisms of cell size control: the timer, the sizer,
and the adder, where division is triggered by age, size, and
increment of volume, respectively [34,35]. Indeed, cell size is
determined by age, size at birth, and single-cell growth rate:
x(a, xb, ν), and the increment of volume since birth is defined
as 
 = x − xb. Therefore, the timer, sizer, and adder models
are recovered when setting r(a, xb) ≡ r̆(a), r(a, xb) ≡ r̂(x),
and r(a, xb) ≡ ν(x)ζ (
), respectively, where ζ (
) is the di-
vision rate per unit volume [14]. The complete mappings with
the sizer and adder are presented in Appendix E 2. The model
is then extended to account for death by adding a general death
rate γ (a, xb).

The division and death rates can be linked to the population
growth rate �t and to the rate of decrease of the forward
probability of survival �t defined in Sec. III. Indeed, we show
in Appendix E 3 that when averaging over many population
trees, which is equivalent to taking the limit N0 → ∞ since
each initial cell produces an independent tree, the stochastic
quantities �t and �t converge to their expected values:

lim
N0→∞

�t = 〈(m − 1)r − γ 〉back, (36)

lim
N0→∞

�t = −〈γ 〉�for, (37)

where we used the time-average f = t−1
∫ t

0 dt ′ f (t ′).
Finally, this model accounts for the different experimental

setups. In microchannels, a uniform dilution rate balanc-
ing cell divisions on average is typically assumed [7,13,36]:
γ (a, xb) ≡ γ = (m − 1)〈r〉back, so that the population is main-
tained constant (�t = 0). In morbidostats, the cell population
is instead maintained constant thanks to a control of the death
rate [37].

Note that this model is a particular case of the multitype-
age model introduced in [33], where the type here is the
newborn size. Therefore, beyond cell size control, the results
derived in the next section are equally valid with a general cell
type, which could represent a genotypic or phenotypic trait
instead of the newborn size.

B. Forward-backward bias for generation times
in the presence of death

In the long-time limit, if the population does not go ex-
tinct and if it reaches a steady state, the population grows
exponentially with a rate � = lim

t→∞ �t � 0, called the Malthus

parameter. In this limit and for cells undergoing binary fission
(m = 2), the number of cells doubles after a time Td = ln 2/�,
called the population doubling time, and the forward survival
probability is reduced by half after a time Ts = − ln 2/�, with
� = lim

t→∞ �t . Moreover, when a large-deviation principle for

the rescaled number of divisions K/t is observed [38,39],
then lim

t→∞〈K〉back/t = 〈τ 〉−1
back, where τ is the generation time,

and similarly for the forward average. Such a principle has
indeed been derived for the model of cell size control intro-
duced above [40]. Then, in the long time limit, Eq. (35) turns
into

〈τ 〉back �
(
T −1

d + T −1
s

)−1 � 〈τ 〉�for, (38)

which generalizes the inequalities between population dou-
bling time and mean generation times known for age-
controlled populations in the absence of death [7,13,27].
Note that the inequality 〈τ 〉back � 〈τ 〉�for is not modified by
death (except for the conditioning on survival in the forward
sampling), which was expected since this inequality results
from differences in the selection only. On the other hand, the
middle term explicitly depends on the forward survival “halv-
ing time”, and Teff = 1/(T −1

d + T −1
s ) represents an effective

population doubling time. When there is no death, Teff = Td

is the true population doubling time, and when there is no
growth, Teff = Ts is also linked to the population doubling
time in microchannel experiments. Indeed, if the population
is maintained constant thanks to a dilution rate γ = −� that
exactly balances divisions, then −� is also the rate at which
the population would grow in the absence of dilution.

To go beyond average generation times, we next propose
a generalization of the bias between generation time distri-
butions, namely Powell’s relation. Powell’s relation and the
Euler-Lotka equation are two important results from the lit-
erature on age-controlled populations in steady-state. In a
series of papers, Powell derived the statistical bias between the
distributions of generation time when measured in population
versus single lineages, first for uncorrelated divisions and
then in the presence of Markovian correlations [13,41,42].
The Euler-Lotka equation expresses the integral relationship
between the population growth rate and the single lineage
distribution of generation times [43]. These results have since
been generalized in several directions: for models with an
age-dependent death rate [44], and more recently, for models
with non-Markovian correlations [39], for constant popula-
tions with a uniform dilution rate [36], and for unbalanced
(non-steady-state) growth [45].
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We define the steady-state distributions of generation times
conditioned on size at birth as

f (τ |xb) = r(τ, xb)p(τ, xb)∫
dτ ′ r(τ ′, xb)p(τ ′, xb)

, (39)

where p(a, xb) is the steady-state joint distribution of age and
size at birth, evaluated either in the backward sampling or
forward sampling conditioned on survival. This distribution
measures the proportion of cells dividing with age τ and size
at birth xb among all cells dividing with size at birth xb, in
either of the samplings. In Appendix F, we derive analytical
expressions for fback (τ |xb) and f �

for (τ |xb), and their relation-
ship:

fback(τ |xb) = m f �
for (τ |xb)e−(�−�)τ

Z (xb)
, (40)

where Z (xb) is a normalizing factor. Since we showed with
Eq. (34) that � − � � 0, then for any newborn size xb, the
backward distribution is biased towards small division times,
where again � − � can be interpreted as an effective popula-
tion growth rate.

A similar but different relation has been derived previously,
which compares instead the backward dynamics with death
and the forward dynamics without death [33]. We propose
in Appendix F 3 a complete comparison between these two
relations. We believe that Eq. (40) has the following ad-
vantages over that other formulation. First, it compares two
distributions evaluated in the same experimental setup, with
the same dynamics in the presence of death, which makes
sense in light of the definition of fitness landscape proposed
in Sec. IV. Second, we obtained an explicit expression for the
constant Z (xb) in terms of the distributions of newborn sizes
xb at birth and at division (see Appendix F).

Finally, in the absence of mother-daughter correlations,
i.e., when the correlation kernel is diagonal, �(xb|x′

b, a′) ≡
�̂(xb), a simpler version of the relation is obtained: fback(τ ) =
m f �

for (τ )e−(�−�)τ , where the newborn size xb does not ap-
pear explicitly anymore. This relation further simplifies for
uncorrelated age models without death, in which case the
regular Powell’s relation is recovered, namely fback(τ ) =
m ffor(τ )e−τ� [7,13].

C. Death can conceal the adder property

The adder is a mechanism of cell size control that postu-
lates that cells divide after growing by a certain amount of
volume which is independent of their volume at birth. Ex-
perimental evidence of this mechanism for bacteria has been
provided in two independent simultaneous articles [14,46].
This property has since been observed for many other organ-
isms [34,47], among which are yeasts [48] and archaea [49].
It is therefore increasingly seen as the most relevant model of
cell size.

Within the framework of [14], in the absence of death, the
adder mechanism is characterized by the independence of the
lineage distribution of added volume 
d between birth and
division from the newborn volume: flin(
d |xb) ≡ flin(
d ).
The lineage distribution is defined along independent single
lineages, in a mother machine setup [50]. Importantly, in
the absence of death and for large samples, the lineage dis-
tribution is equivalent to the forward distribution, which is

also unbiased by the differences in reproductive success by
construction [27,38]. Therefore, the adder property also reads
f ◦
for (
d |xb) ≡ f ◦

for (
d ). Recently, evolutionary explanations
for the emergence of the adder property have gained interest:
the idea is that the adder model ensures a larger population
growth rate compared to the sizer in the presence of cell death
[51].

Because of its ubiquity in cell biology, and its potential
importance in evolution, it appears fundamental to investigate
how death might impact the adder property. Similarly, popula-
tion effects can impact the adder property, which is why in the
Supplemental Material of [14], the authors observed the adder
property with single lineages in mother machines, to “avoid
[...] known bias effects related to the speed of reproduction
[13].” In the presence of death, a new bias is introduced which
can also blur the adder property for surviving lineages: the
survivor bias.

We show in Appendix G that the forward distribution of
added volume conditioned on newborn size for surviving lin-
eages is biased with respect to the same distribution in the
absence of death as

f �
for (
d |xb) = f ◦

for (
d )

Y (xb)
e−�τ (xb,
d )−∫ 
d

0 d

γ̃ (xb+
,
)
ν(xb+
) , (41)

where Y (xb) is a normalizing constant, γ̃ (x,
) =
γ (a(x,
), xb(x,
)) is the death rate expressed using the
variables volume and increment of volume, and τ (xb,
d ) is
the generation time for a cell born with volume xb and which
divides with volume xb + 
d , which depends on the growth
law ν(x). Exponentially growing cells [ν(x) = ν0x] divide
after a time τ (xb,
d ) = ln[(xb + 
d )/xb]/ν0, for example.

Equation (41) can be understood intuitively as follows. The
exponential term involving the death rate γ̃ is the survival
probability for the specific cycle of a cell born with volume xb

and dividing after adding a volume 
d . On the other hand, the
term exp(�τ ) is the forward survival probability introduced
in Eq. (10), over the duration τ (xb,
d ) of that same cycle,
which is an average measure of survival [Eq. (37)]. The bias
in Eq. (41) involves the ratio of these two probabilities, and
thus compares the survival probability of a cell to its ensemble
average. If survival is correlated with the volume at birth and
the added volume, via the death rate γ̃ (xb + 
,
), then this
bias results in a biased conditional statistics of added volume
when considering surviving lineages.

Since both terms in the exponential explicitly depend
on the size at birth, this demonstrates that the distribution
f �
for (
d |xb) is not independent of the newborn volume in

general. Therefore, the adder property would be concealed
by analyzing surviving lineages only, even for cells obeying
the adder principle in the absence of death. Three simple
examples where the independence remains true for surviving
lineages are discussed in Appendix G.

Note that in practice, the independence of added volume
from newborn volume has often been tested at the level of
the first moment only: 〈
|xb〉◦for = 〈
〉◦for, by checking that
the slope of 〈
|xb〉◦for versus xb is 0 (or equivalently that the
slope of 〈xd |xb〉◦for versus xb is 1, with xd the size at division)
[46,48,49,52]. Our result then suggests that 〈
|xb〉�for is not
independent of xb in general.

We expect to observe this effect in the new generation
of experimental setups which combine population and single

013014-11



GENTHON, NOZOE, PELITI, AND LACOSTE PRX LIFE 1, 013014 (2023)

lineage experiments in the same controlled environment, al-
lowing, for example, accurate measurements of the effect of
antibiotics at both the population and lineage levels [2].

VII. DISCUSSION

In this paper, we built a general framework to properly
account for dead lineages in a statistical analysis of lineage
trees. Dead lineages are broadly understood as lineages ending
before the end of the experiment, regardless of the cause:
biological death, cell removal, dilution, etc. Our framework
is based on the one proposed in [9] in the absence of death,
which relies on the forward and backward samplings of
lineages. In the procedure we proposed, dead lineages are
sampled only in the forward manner, given that they do not
appear in the population at final time. The statistical descrip-
tion then necessarily involves a new quantity �t to account for
the forward weight of surviving lineages, which modifies the
relations between forward and backward distributions.

We showed how to quantify fitness and selection in the
presence of death, whatever the cause of death might be. We
proposed a general measure of the effect of death on selection
whose sign indicates if death tends to increase or reduce
the difference between the forward and backward statistics.
This formalism is well adapted to situations in which a trait
of interest is strongly correlated with death. For instance,
the apparition of a resistant phenotype is correlated with the
application of antibiotics which kills a large fraction of a
bacterial population [53]. Similarly, in starved colonies of
bacteria, the probability of cell death depends on a mainte-
nance cost of metabolism [54,55], itself related to the growth
rate before exposure to antibiotics [4]. Beyond bacteria, in
tissues, there is a fine balance of growth and death of cells.
When cell death is induced by overcrowding effects, many
traits of interest such as cell size are typically correlated with
the death rate [5,6]. It is interesting to note that in several
places, death is effectively equivalent to a reduction of fitness,
as in the reduction of the strength of selection of Eq. (26),
in the integral relations of Eqs. (28) and (29), and in the
fluctuation-response relation of Eq. (32).

When focusing on models of cell size control, new inequal-
ities between mean generation times, population doubling
time, and survival “halving time”, and new generalizations
of Powell’s relation, followed from our approach. These gen-
eralizations are useful, in particular in experiments in which
sampling individuals from a population can be affected by
the survivor bias. In fact, even a standard relation used to
characterize the adder model may be hidden if a survivor bias
is present.

The present framework generalizes beyond populations of
cells, to similar branched trees in other areas of biophysics.
In evolutionary biology, lineage trees can be, for instance,
phylogenetic trees, which contain dead lineages due to species
extinction [56]. Naturally, our framework does not solve a
central problem in this field: often we do not know the precise
chronology of events from which the forward statistics could
be built. As a result, only the backward sampling can be
performed, and selection mechanisms and past history of the
population need to be inferred together from snapshot data
only. Moreover, relations involving a comparison between the

two samplings are valid only for surviving lineages, and thus
do not take advantage of the large amount of data from dead
lineages. These data can be exploited with the tree sampling
[17,36,57], and linking the tree and forward/backward sam-
plings in the presence of a general death rate would be a
logical next step of this work.

ACKNOWLEDGMENTS

We acknowledge J. Unterberger, E. Kussell, A. Amir, Y.
Sughiyama, T. J. Kobayashi, and Y. Wakamoto for stimu-
lating discussions. A.G. and D.L. received support from the
Grants No. ANR-11-LABX-0038 and No. ANR-10-IDEX-
0001-02. T.N. received support from JSPS KAKENHI Grant
No. JP21K20672 and JST ERATO Grant No. JPMJER1902.

APPENDIX A: FITNESS LANDSCAPE AND SURVIVOR
BIAS RECOVER DIVISION AND DEATH RATES

In [15], the authors introduced the notion of historical fit-
ness, which is equal to the time-integrated division rate along
a lineage:

Ht (s) =
∫ t

0
dt ′ r(s(t ′)), (A1)

where s is a phenotypic trait, possibly of high dimension, and
s = {s(t ′)}t ′∈[0,t] is a phenotypic trajectory. They considered a
simple model of population dynamics with phenotypic fluctu-
ations, where the evolution of the expected number n(s, t ) of
cells with trait value s at time t follows the equation

∂t n(s, t ) = r(s)n(s, t ) +
∫

ds′ T (s, s′)n(s′, t ), (A2)

where T (s, s′) is the rate of phenotype switching from s′
to s. Importantly here, the divisions and phenotype switch-
ings are independent events, and newborn cells have the
same phenotype as their mother. We call this dynamics the
switching-division model. With this model, the authors argued
that the measure of selection proposed by Fisher in [22],
namely the population variance of the division rate (called fit-
ness or individual fitness in this context), was no longer a good
measure of selection. Instead, they shifted the perspective
from individual cells to individual trajectories, and showed
that the variance of historical fitness was more adequate to
measure selection, in the sense of gauging the importance of
selective differences for the evolution of the population.

Because the historical fitness is model-dependent and
because it relies on the division rate, which is not often mea-
surable, in [9] the authors proposed a new notion of fitness:
the fitness landscape ht (s). The latter is independent of the
dynamics of the population, and only relies on phenotypic
trajectories: it can thus be evaluated in any branching tree.
To show the consistency between the fitness landscape and
previous notions of fitness, they proved that, when considering
a population governed by the simple model Eq. (A2), the fit-
ness landscape recovers the historical fitness: ht (s) = Ht (s)/t .
When some conditions are met, as detailed in the next section,
the historical fitness can be well approximated by the division
rate for the time-averaged phenotypic trait: Ht (s)/t ≈ r(s). As
a consequence, the fitness landscape can be used to infer the
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division rate by simply sampling phenotypic trajectories. This
idea has been proven successful numerically in [9].

In this Appendix, we show that the connection between fit-
ness landscape, historical fitness, and division rate holds when
adding death to the switching-division model. In addition, we
show that the survivor bias defined in the main text can be
used in a similar way to infer the death rate.

1. Fitness landscape, historical fitness, and division rate

We consider the switching-division model described by
Eq. (A2) in which we add a phenotype-dependent death rate
γ (s) and show that the link between historical fitness and
fitness landscape holds for surviving lineages.

We start from the definition of the fitness landscape under
the form of Eq. (12), and for simplicity we consider that the
trait S takes only discrete values s ∈ {si}n

i=1. Since the division
rate only depends on the current phenotype of the cell, and
since divisions do not alter the phenotype, the number of divi-
sions on different portions of the trajectory are independent:

pfor(K1, . . . , Kn, t |s, σ = 1) =
n∏

i=1

pfor(Ki, t |s, σ = 1),

(A3)
where Ki is the number of divisions that occurred during the
time ti spent in state si (even if this duration is discontinuous),
called occupation time. The occupation times sum up as∑n

i=1 ti = t . In each state, the division rate is constant, so that
each term in the product is a Poisson distribution:

pfor(Ki, t |s, σ = 1) = (r(si)ti )Ki

Ki!
e−r(si )ti . (A4)

Combining these results, we obtain

pfor(K, t |s, σ = 1) =
∑

K1+···+Kn=K

pfor(K1, . . . , Kn, t |s, σ = 1)

(A5)

= e− ∑n
i=1 r(si )ti

∑
K1+···+Kn=K

n∏
i=1

(r(si)ti )Ki

Ki!

(A6)

= e− ∑n
i=1 r(si )ti

( ∑n
i=1 r(si)ti

)K

K!
, (A7)

where we used the multinomial development to obtain the
last line.

Finally, plugging Eq. (A7) into Eq. (12) with m = 2 leads
to

h�
t (s) = 1

t

n∑
i=1

r(si )ti (A8)

= 1

t
Ht (s). (A9)

Now, let us detail under which conditions the fitness land-
scape can be used to infer the division rate. If the division
rate is linear, then

∫ t
0 dt ′ r(s(t ′))/t = r(s) exactly, where s =

t−1
∫ t

0 dt ′ s(t ′), independently of the trait dynamics. There-
fore, we have

h�
t (s) = r(s). (A10)

The result remains true if the division rate is only weakly
nonlinear, even with possibly fast fluctuations of the trait, or
if the division rate is significantly nonlinear, but with slow
fluctuations of the trait (i.e., when the autocorrelation time of
the trait dynamics is smaller than the observation time), as
observed in the main text.

Note that this inference method works only when track-
ing a cell trait that is unaffected by divisions, like with
the switching-division model Eq. (A2). With models of cell
size control introduced in Appendix E, for example, the cell
trait (size, age, etc.) is reset at division, and thus the num-
ber of divisions is encoded in the trait trajectory s, such
that pfor(K, t |s, σ = 1) = δ(K − K[s]). Therefore, h�

t (s) =
K[s] ln 2/t , which does not inform the division rate.

2. Survivor bias and death rate

In this section, we show that, under certain assumptions,
the survivor bias given in Eq. (15) can be used to infer the
phenotype-dependent death rate γ (s).

First let us derive the explicit bias between p�
for (s) and

p◦
for (s), where the superscript ◦ indicates quantities from the

experiment without death. When comparing two experiments,
identical in all points except for the presence of death in one
of them only, through a death rate γ (s) depending on cell trait
s, the expected numbers of lineages following the path s are
linked by

n(s) = n◦(s) exp

[
−

∫ t

0
dt ′γ (s(t ′))

]
. (A11)

Upon division of Eq. (A11) by n−1
0 m−K[s] (for simplicity, we

consider that n0 = n◦
0 here), we obtain

pfor (s, σ = 1) = p◦
for (s) exp

[
−

∫ t

0
dt ′γ (s(t ′))

]
. (A12)

Note that here, no assumption is needed as to whether the
cell trait is affected or not by divisions. For simplicity, we
considered the case where the trajectory s encodes the number
of divisions K[s]. If this is not the case, the same result can
be obtained by comparing the forward joint probabilities of
lineages with path s and K divisions, and then summing over
K since the exponential term is independent of the number of
divisions.

We then condition the probability on the left-hand side
on survival: pfor (s, σ = 1) = p�

for (s)pfor (σ = 1, t ), where by
definition pfor (σ = 1, t ) = exp(t�t ):

p�
for (s) = p◦

for (s) exp

[
−

∫ t

0
dt ′γ (s(t ′)) − t�t

]
. (A13)

Now, when the time-integrated death rate can be replaced
by the death rate of the time-integrated phenotype along a
lineage,

∫ t
0 dt ′ γ (s(t ′))/t ≈ γ (s), we obtain

p�
for (s) = p◦

for (s) exp [−tγ (s) − t�t ]. (A14)

Finally, when the forward distribution pfor (s) of time-
averaged phenotypes with death (which includes all lineages,
even the dead ones) remains close to the same distribution
p◦

for (s) without death, pfor (s) ≈ p◦
for (s), we plug Eq. (A14)
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into Eq. (15) to obtain

h†
t (s) = −γ (s). (A15)

Like for the division rate, the hypothesis
∫ t

0 dt ′ γ (s(t ′))/
t ≈ γ (s) is verified either when the death rate is only weakly
nonlinear or when the autocorrelation of the trait dynamics is
large. The assumption pfor (s) ≈ p◦

for (s) reflects that death does
not induce an important bias on phenotypic averages along
trajectories when considering the ensemble of all lineages,
both dead and alive. This is true for large autocorrelation of
the trait dynamics, independently of the shape of the death
rate, as explored in Appendix A 3.

3. Details on simulations and investigation
of the effect of autocorrelation time

In this Appendix, we give the details of the numerical
simulation used in Sec. IV C, and further investigate the role
of the timescale of cell trait fluctuations.

In the simulations used for Fig. 4, we chose an Ornstein-
Uhlenbeck process for ln st , where ln st+
t is randomly
sampled from the normal distribution with mean μ +
e−β
t (ln st − μ) and variance σ 2(1 − e−2β
t ), with parame-
ters 
t = 0.05, μ = −0.5 ln(1.09), σ 2 = ln(1.09), and β =
−0.6 ln rg. With these parameters, without selection due to
r(s) and γ (s), st follows the log-normal distribution with
mean 1.0 and standard deviation 0.3 in the steady state. A
cell with the trait value s divides into m = 2 cells with the
probability of r(s)
t at each time point, where r(s) = 0.12 +
0.96s10/(s10 + 1.110). The initial states of two offspring are
the same as that of the mother upon division. A cell with trait
value s dies with the probability of γ (s)
t , where γ (s) =
1.2s10/(s10 + 0.910).

The parameter rg indicates a strength of autocorrelation
of st (0 < rg < 1), and τcorr = 1/β represents the autocorre-
lation time of the trait dynamics. In Fig. 4(c), we showed
the results for final time t = 4 and rg = 0.8 corresponding
to τcorr = 1/β = −1/(0.6 ln rg) = 7.47 > t . The timescale of
the phenotypic variations is thus larger than the observation
time, and therefore phenotypes fluctuate slowly. This implies
that the time-averaged division and death rates can be well
approximated by the rates for the time-averaged trajectories,
and also that the distribution pfor (s) recovers p◦

for (s) with good
precision, as illustrated in Fig. 6(a). The reason is that for
slowly fluctuating traits, the shorter length of dead lineages
does not bias the statistics, since phenotypes do not deviate
more significantly for living lineages than for dead ones on
the timescale of the observation. Note that this does not mean
that the distribution for surviving lineages p�

for (s) is not biased
from pfor (s). Indeed, because the death rate is an increasing
function of the trait, cells are more likely to die with large
trait values of the trait, and therefore p�

for (s) is biased toward
smaller cells as compared to pfor (s). In Fig. 6(a) and in the
other plots in the following, for simplicity, p◦

for(s) is evaluated
by running the simulations in the same way but with γ (s) = 0
and m = 1, given that in the absence of death the forward and
lineage distributions are equivalent [27,38]. Figure 6(b) is the
same as Fig. 4(c) from the main text, where the inference is
successful.

We now run the simulation with the same observation time
t = 4, but with a lower autocorrelation factor rg = 0.2, corre-
sponding to an autocorrelation time τcorr = 1.04 < t , leading
to fast fluctuations of the trait.

First, in Figs. 6(c) and 6(d), we keep the same death rate
as in Figs. 6(a) and 6(b) and in the main text. Because of fast
fluctuations, we easily understand why

∫ t
0 dt ′ r(s(t ′))/t �= r(s)

[and
∫ t

0 dt ′ γ (s(t ′))/t �= γ (s)], which is why the inference of
the division rate in Fig. 6(d) is slightly less accurate than when
rg = 0.8. More importantly, we observe that the survivor bias
fails to recover the death rate correctly. This is explained by
the significant difference between pfor (s) and p◦

for (s) observed
in Fig. 6(c), induced by fast fluctuations. Indeed, dead lin-
eages are shorter, and can thus explore values of s that are
inaccessible for living lineages since phenotypes are likely to
autoaverage in time.

Second, for completeness, we show in Figs. 6(e) and 6(f)
the case of low autocorrelation and flat death rate, to illustrate
that the accuracy of the inference of the death rate is truly de-
termined by the trait dynamics, and independent of the shape
of the death rate, even if linear, unlike what happens for the
division rate. In this case, we observe in Fig. 6(e) that pfor (s)
and p◦

for (s) are still significantly different despite the flat death
rate, for the same reason as in the previous paragraph. This
translates in a survivor bias that does not recover the flat death
rate in Fig. 6(f). Moreover, we observe that p�

for (s) = p◦
for (s),

which is expected from Eq. (A13).

APPENDIX B: SHUFFLED LANDSCAPES
IN THE ANTIBIOTICS EXPERIMENT

To evaluate how flat the landscapes h�
t , h†

t , and ht are in
Fig. 3, we randomly shuffled the trait values and computed
the corresponding new landscapes. Let (si, Ki, σi ) denote the
triplet of the trait value (logarithmic final cell size or preexpo-
sure elongation rate), the number of divisions, and the fate (0
for dead or 1 for alive) of the ith lineage (i = 1, 2, . . . , L). Let
{ρ(i)}i=1,2,...,L be a random permutation of i = 1, 2, . . . , L. A
set of triplets with randomly shuffled traits is thus obtained
as {(sρ(i), Ki, σi )}i=1,2,...,L. We shuffled the trait values 10 000
times, and for each permutation we computed the landscapes.
Then, we calculated the mean and the standard deviation of
each landscape, shown as the curves and the shaded areas
in Fig. 7. As expected, this procedure cuts the correlations
between the trait values and the other values, namely the
number of divisions and the survival, leading to flat curves.
By comparing the actual landscapes with the shuffled land-
scapes, we confirm our analyses. Indeed, in Fig. 7(a), the
dots lie in the shaded area, showing the independence of the
preexposure elongation rate with both reproductive success
and survival. On the other hand, in Fig. 7(b) for the final
logarithmic cell size, the dots are significantly outside of the
shaded areas, meaning that the fluctuations of these land-
scapes really capture fitness and survival effects, rather than
random fluctuations.

APPENDIX C: EFFECT OF DEATH ON SELECTION

In this Appendix, we prove the covariance formula for the
strength of selection on trajectories, Eq. (20). We start from
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(a) (b)

(c) (d)

(e) (f)

FIG. 6. Influence of autocorrelation factor rg from simulations on the inference method. Left column: forward distributions (each
histogram is evaluated from all 100 runs), right column: comparison between the division rate r(s) [death rate γ (s)] and the fitness
landscape h�

t (s) [survivor bias h†
t (s)]. (a),(b) Large autocorrelation rg = 0.8. (c)–(f) Small autocorrelation rg = 0.2. (a)–(d) Death rate given by

γ (s) = 1.2s10/(s10 + 0.910). (e),(f) Flat death rate γ (s) = 0.6. (a)–(f) Division rate r(s) = 0.12 + 0.96s10/(s10 + 1.110) and observation time
t = 4.

the definition of the strength of selection given in Eq. (18):

�S = 1

t

∫
Ds (pback(s, t ) − p�

for(s, t )) ln

(
pback(s, t )

p�
for(s, t )

)
,

(C1)
and we express p�

for and pback inside the logarithm using their
counterparts in the absence of death. To do so, we integrate
Eq. (A11) over trajectories s, and we identify the exponential
bias as the survival probability Eq. (21), to obtain

nt = n◦
t 〈psurv〉◦back. (C2)

Then, we divide Eq. (A11) by nt and use Eq. (C2) to obtain

pback (s) = p◦
back(s)

psurv(s)

〈psurv〉◦back

. (C3)

Similarly, the transformation for the forward distribution reads

p�
for (s) = p◦

for (s)
psurv(s)

〈psurv(s)〉◦for

, (C4)

which is a rewriting of Eq. (A13).
Doing so, the survival probabilities cancel and we obtain

�S = 1

t

∫
Ds (pback(s, t ) − p�

for(s, t )) ln

(
p◦

back(s, t )

p◦
for(s, t )

)
(C5)

=
∫

Ds h◦
t (s)(pback(s, t ) − p�

for(s, t )). (C6)
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(a) (b)

FIG. 7. Landscapes of (a) preexposure elongation rate and (b) final logarithmic cell size, where the curves and the shaded areas show the
mean and mean±standard deviation of each landscape over 10 000 random shuffles of the trait values. See Appendix B for the details on the
procedure for random shuffling of trait values.

Then, we subtract �◦
S = ∫

Ds h◦
t (s)(p◦

back(s, t ) − p◦
for(s, t )) from the relation above:


�S =
∫

Ds h◦
t (s)

[(
pback(s, t ) − p◦

back(s, t )
) − (

p�
for(s, t ) − p◦

for(s, t )
)]

(C7)

= 1

〈psurv(s)〉◦back

∫
Ds h◦

t (s)p◦
back(s, t )

[
psurv(s) − 〈psurv(s)〉◦back

]

− 1

〈psurv(s)〉◦for

∫
Ds h◦

t (s)p◦
for(s, t )

[
psurv(s) − 〈psurv(s)〉◦for

]
(C8)

= Cov◦
back

(
h◦

t , psurv
)

〈psurv〉◦back

− Cov◦
for

(
h◦

t , psurv
)

〈psurv〉◦for

. (C9)

APPENDIX D: DEATH-INDUCED DECREASE
IN POPULATION GROWTH RATE

In this Appendix, we derive the general fluctuation-
response relation Eq. (31) and we give an alternative form in
terms of a Kullback-Leibler divergence.

First, taking the logarithm of Eq. (C2) leads to

�t − �◦
t = 1

t
ln〈psurv〉◦back. (D1)

In particular, if death occurs only at division with prob-
ability 1 − 2−ε , then the survival probability along a lin-
eage with K divisions is psurv(K ) = 2−εK . Then for small
ε, at first order ln〈psurv〉◦back = −ε〈K〉◦back ln 2 = −ε[t�◦

t +
DKL(p◦

back (K )||p◦
for(K ))], and thus we recover the result from

[10].
The growth rate difference in Eq. (D1) can be expressed as

a distance between the statistics with and without death. To
do so, we compute the KL divergence between the backward
distributions in the presence and absence of death using
Eq. (C3):

DKL(p◦
back(s)||pback(s)) = ln〈psurv〉◦back − 〈ln psurv〉◦back,

(D2)

where ln psurv(s) = −tγ by definition. The death-induced de-
crease in population growth rate is therefore given by

�t − �◦
t = −〈γ 〉◦back + 1

t
DKL

(
p◦

back(s)||pback(s)
)
, (D3)

where the first term only depends on the dynamics in the
absence of death, and the second term is an information-
theoretic distance between the statistics with and without
death. This relation is similar to recently derived fluctuation-
response inequalities valid arbitrarily far from equilibrium
which also involve a distance between the statistics before and
after a perturbation [28,58].

By comparing Eq. (D3) with Eq. (32) valid for a small
death rate εγ , the KL divergence is also linked to the variance
in the time-integrated death rate:

DKL
(
p◦

back(s)||pback(s)
) = t2

2
Var◦back(γ )ε2 + O(ε3). (D4)

Therefore, this divergence is further interpreted as a gain in
population fitness due to the variability in the time-averaged
death rate discussed in the main text.
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APPENDIX E: DETAILS ON THE MODELS OF CELL SIZE CONTROL

1. General model of cell size control with death

In this Appendix, we give the equations governing the model of cell size control discussed in Sec. VI. The evolution of
the expected number n(a, xb, K, t ) of cells of age a, newborn size xb, and K divisions at time t is given by the following
population-balance equation (PBE):

∂t n(a, xb, K, t ) = −∂an(a, xb, K, t ) − [r(a, xb) + γ (a, xb)]n(a, xb, K, t ), (E1)

n(a = 0, xb, K, t ) = m
∫

da′dx′
br(a′, x′

b)�(xb|x′
b, a′)n(a′, x′

b, K − 1, t ), (E2)

where the second line is the boundary condition for newborn cells, which accounts for divisions of cells with K − 1 divisions
that divide a K th time at time t to give birth to cells of size xb.

The PBE and the boundary condition, Eqs. (E1) and (E2), can be recast at the level of the expected backward probability
distribution by summing over K and using pback (a, xb, t ) = n(a, xb, t )/n(t ), where n(t ) = ∫

dadxb n(a, xb, t ) is the total expected
number of cells at time t :

∂t pback (a, xb, t ) = − ∂a[pback (a, xb, t )] − [r(a, xb) + γ (a, xb) + �p(t )]pback (a, xb, t ), (E3)

pback (a = 0, xb, t ) = m
∫

da′dx′
b �(xb|x′

b, a′)r(a′, x′
b)pback (a′, x′

b, t ), (E4)

where we defined

�p(t ) = 1

n(t )

dn

dt
, (E5)

the instantaneous population growth rate. Direct integration of Eq. (E3) over a and xb shows that, in the presence of death, the
instantaneous population growth rate is the net difference between the backward-averaged division and death rates:

�p(t ) =
∫

dadxb [(m − 1)r(a, xb) − γ (a, xb)]pback (a, xb, t ). (E6)

To recast the PBE for the expected forward probability, we use pfor (a, xb, K, σ = 1, t ) = n(a, xb, K, t )m−K n(0)−1 and then
sum over K , which leads to

∂t pfor (a, xb, σ = 1, t ) = − ∂a[pfor (a, xb, σ = 1, t )] − [r(a, xb) + γ (a, xb)]pfor (a, xb, σ = 1, t ), (E7)

pfor (a = 0, xb, σ = 1, t ) =
∫

da′dx′
b �(xb|x′

b, a′)r(a′, x′
b)pfor (a

′, x′
b, σ = 1, t ). (E8)

Integrating Eq. (E7) over a and xb gives

∂t pfor (σ = 1, t ) = −pfor (σ = 1, t )
∫

dadxb γ (a, xb)pfor (a, xb, t |σ = 1). (E9)

We then define the instantaneous decrease rate of the forward probability of survival:

�p(t ) = 1

pfor (σ = 1, t )

d pfor (σ = 1)

dt
= −

∫
dadxb γ (a, xb)pfor (a, xb, t |σ = 1). (E10)

Finally, one derives the PBE for the expected forward distribution conditioned on survival: p�
for (a, xb, t ) = pfor (a, xb, t |σ =

1) = pfor (a, xb, σ = 1, t )/pfor (σ = 1, t ):

∂t p�
for (a, xb, t ) = −∂a p�

for (a, xb, t ) − [r(a, xb) + γ (a, xb) + �p(t )]p�
for (a, xb, t ), (E11)

p�
for (a = 0, xb, t ) =

∫
da′dx′

br(a′, x′
b)�(xb|x′

b, a′)p�
for (a

′, x′
b, t ). (E12)

Note that Eqs. (E11) and (E12) can be obtained from the PBE and boundary condition for the backward distribution Eqs. (E3)
and (E4) by setting m = 1 in the boundary term and replacing �p(t ) by �p(t ).
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2. Link with the sizer and the adder models

The size x of a cell is determined by its size at birth xb, its
age a, and the single cell growth rate:

dx

da
= ν(x), (E13)

therefore the model presented in Appendix E 1 accounts for
the sizer model, where division is triggered by cell size, and
for the adder model, where it is triggered by the increment of
volume since birth 
 = x − xb. Let us show explicitly in this
Appendix how the sizer and adder PBEs are obtained.

First, we reparametrize the PBE and the boundary condi-
tion for the number n̂(x, xb, t ) of cells of size x at time t born
with size xb, with the following change of variables:

n(a, xb, t ) = n̂(x(a, xb), xb, t )ν(x(a, xb)), (E14)

so that they read

∂t n̂(x, xb, t ) = −∂x[ν(x)n̂(x, xb, t )] − [r̂(x, xb)

+ γ̂ (x, xb)]n̂(x, xb, t ), (E15)

ν(xb)n̂(xb, xb, t )

= m
∫

dx′dx′
br̂(x′, x′

b)�̂(xb|x′, x′
b)n̂(x′, x′

b, t ), (E16)

where we defined the following rates:

r̂(x(a, xb), xb) = r(a, xb), (E17)

γ̂ (x(a, xb), xb) = γ (a, xb), (E18)

�̂(xb|x′(a′, x′
b), x′

b) = �(xb|x′
b, a′). (E19)

In the classical sizer model, division is triggered by cell
size only. To generalize this model to a dynamics with death,
we further assume that death is also triggered by cell size only.
We thus make the following assumptions:

r̂(x, xb) ≡ r̂(x), (E20)

γ̂ (x, xb) ≡ γ̂ (x), (E21)

�̂(x|x′, x′
b) ≡ �̂(x|x′). (E22)

We integrate Eq. (E15) over xb from 0 to x, where the integra-
tion of the derivative term yields a boundary term:∫ x

0
dxb ∂x[ν(x)n̂(x, xb, t )] = ∂x[ν(x)n̂(x, t )] − ν(x)n̂(x, x, t ),

(E23)

which is expressed by plugging Eq. (E16). Finally, the PBE
for the expected number n̂(x, t ) = ∫ x

0 dxb n̂(x, xb, t ) of cells
with size x at time t reads

∂t n̂(x, t ) = −∂x[ν(x)n̂(x, t )] − [r̂(x) + γ̂ (x)]n̂(x, t )

+ m
∫

dx′r̂(x′)�̂(x|x′)n̂(x′, t ), (E24)

which is the sizer equation with a death term.
For the adder, let us make a change of variable from (x, xb)

to (x,
), where 
 = x − xb is the added volume since birth.
The reparametrization for the expected number ñ(x,
, t ) of

cells with size x and added volume 
 at time t is then given
by

ñ(x,
(x, xb), t ) = n̂(x, xb, t ), (E25)

and we define the rates in the new system of coordinates:

r̃(x,
(x, xb)) = r̂(x, xb), (E26)

γ̃ (x,
(x, xb)) = γ̂ (x, xb), (E27)

�̃(x|x′,
′(x′, x′
b)) = �̂(x|x′). (E28)

In the adder model without death, the separation of variables
for the division rate:

r̃(x,
) = ν(x)ζ (
), (E29)

where ζ is the division rate per unit volume, is further assumed
to account for the independence between size at birth and
added volume between birth and division. Different choices
for the death rate γ̃ (x,
) are discussed in Appendix G.

3. Population growth and decay rates as average
division and death rates

The rates �t and �t introduced in the main text are
stochastic quantities, defined for any single realization of the
stochastic branching process, and therefore they cannot be ex-
pressed explicitly in general. However, when averaging over
many population trees, they can be linked to the division and
death rates.

Indeed, let us first compute the time-averaged version of
the instantaneous rates �p(t ) and �p(t ) introduced in the
previous section:

�PBE
t = �p = 1

t
ln

[
n(t )

n0

]
, (E30)

�PBE
t = �p = 1

t
ln pfor (σ = 1, t ), (E31)

where we defined the time-average f = t−1
∫ t

0 dt ′ f (t ′). We
recall that n(t ) and pfor (σ = 1, t ) are the expected number of
cells and forward probability of survival.

On the other hand, a given population starting with N0

cells consists of N0 independent trees, so that N (t )/N0 is the
empirical average of the number of cells produced after a time
t by a single initial cell:

N (t )

N0
= 1

N0

N0∑
i=1

Ni(t ), (E32)

where Ni(t ) is the number of cells at time t coming from
ancestor cell i. Thus, in the limit N0 → ∞, the empirical
average N (t )/N0 converges to the true average n(t )/n0, and
�t and �t converge to �PBE

t and �PBE
t . Combining this result

with Eqs. (E6) and (E10), we obtain

lim
N0→∞

�t = �PBE
t = 〈(m − 1)r − γ 〉back, (E33)

lim
N0→∞

�t = �PBE
t = −〈γ 〉�for. (E34)
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APPENDIX F: GENERALIZED POWELL’S RELATION

In this Appendix, we derive Eq. (40) from the main text,
we provide an explicit expression of the constant Z (xb), and
we compare our result to the one obtained in [33]. To do so,
we first derive an alternative form of Eq. (40) for the joint
distribution of generation time and newborn size.

1. Generalized Powell’s relation with joint probabilities

We define the steady-state joint distribution f (τ, xb) of
generation time τ and newborn size xb as the ratio of the

number of cells born with size xb and dividing at age τ at a
given snapshot time, to the total number of cells dividing in
this snapshot, weighted in either the backward sampling or
forward sampling conditioned on survival:

f (τ, xb) = r(τ, xb)p(τ, xb)∫
dτ ′dx′

b r(τ ′, x′
b)p(τ ′, x′

b)
, (F1)

where the joint distributions of age a and newborn size xb are
the steady-state solutions to Eqs. (E3) and (E11) and read

pback (a, xb) = pback (0, xb) exp

[
−�a −

∫ a

0
da′ (r(a′, xb) + γ (a′, xb))

]
, (F2)

p�
for (a, xb) = p�

for (0, xb) exp

[
−�a −

∫ a

0
da′ (r(a′, xb) + γ (a′, xb))

]
. (F3)

These distributions are independent of the time of the snapshot in steady-state. Integrating the boundary conditions Eqs. (E4) and
(E12) over xb and using the normalization of kernel �, namely ∀(a′, x′

b),
∫

dxb �(xb|x′
b, a′) = 1, we get that the denominators

of Eq. (F1) are given by ∫
dxb pback (0, xb) = m

∫
dτdx′

br(τ, x′
b)pback (τ, x′

b), (F4)∫
dxb p�

for (0, xb) =
∫

dτdx′
br(τ, x′

b)p�
for (τ, x′

b). (F5)

Then, we identify the distribution of newborn size:

ρnb(xb) = p(0, xb)∫
dx′

b p(0, x′
b)

(F6)

for both the forward and backward probabilities.
Finally, combining the results above we obtain

fback (τ, xb) = mρnb
back (xb)r(τ, xb) exp

[
−�τ −

∫ τ

0
da (r(a, xb) + γ (a, xb))

]
, (F7)

f �
for (τ, xb) = ρnb,�

for (xb)r(τ, xb) exp

[
−�τ −

∫ τ

0
da (r(a, xb) + γ (a, xb))

]
, (F8)

and the generalized Powell’s equation reads

fback(τ, xb) = m
ρnb

back (xb)

ρnb,�
for (xb)

f �
for (τ, xb)e−(�−�)τ . (F9)

In the absence of mother-daughter correlations, that is, when
�(xb|x′

b, a′) ≡ �̂(xb), the newborn distributions are unbiased:
ρnb

back = ρnb,�
for = �̂, which is a direct consequence of the

boundary conditions. Therefore, the fraction in Eq. (F9) is
canceled, and Eq. (F9) can be integrated over xb to recover
Powell’s relation in the presence of death but without correla-
tions: fback(τ ) = m f �

for (τ )e−(�−�)τ .

2. Generalized Powell’s relation with conditional probabilities

We now define the distributions f (τ |xb) of generation time
conditioned on newborn size xb as

f (τ |xb) = r(τ, xb)p(τ, xb)∫
dτ ′ r(τ ′, xb)p(τ ′, xb)

(F10)

= f (τ, xb)

ρd(xb)
, (F11)

where we identified the distribution of newborn sizes at divi-
sion:

ρd(xb) =
∫

dτ ′ r(τ ′, xb)p(τ ′, xb)∫
dτ ′dx′

b r(τ ′, x′
b)p(τ ′, x′

b)
. (F12)

013014-19



GENTHON, NOZOE, PELITI, AND LACOSTE PRX LIFE 1, 013014 (2023)

The conditioned distributions are thus given by

fback(τ |xb) = m
ρnb

back (xb)

ρd
back (xb)

r(τ, xb) exp

[
−�τ −

∫ τ

0
da (r(a, xb) + γ (a, xb))

]
, (F13)

f �
for (τ |xb) = ρnb,�

for (xb)

ρd,�
for (xb)

r(τ, xb) exp

[
−�τ −

∫ τ

0
da (r(a, xb) + γ (a, xb))

]
, (F14)

and finally, Powell’s relation on conditional distributions reads

fback(τ |xb) = m f �
for (τ |xb)e−(�−�)τ

Z (xb)
, (F15)

with the normalization constant

Z (xb) = ρnb,�
for (xb)

ρnb
back (xb)

ρd
back (xb)

ρd,�
for (xb)

. (F16)

3. Comparison with Sughiyama’s work

In [33], the authors also derived a generalized Powell’s
relation in the presence of death and mother-daughter cor-
relations. Unlike in our model, they allowed the number of
daughter cells at each division to be stochastic and added a
probability of death upon division in addition to the death
rate between divisions. Moreover, their relation compares the
backward distribution in the presence of death to the for-
ward distribution in the absence of death, which we denote
f ◦
for (τ |xb). In the simple case where there is no death upon

division and where the number of daughter cells is fixed to m,
their result reads

fback (τ |xb) = m f ◦
for (τ |xb)e−�τ−∫ τ

0 da γ (a,xb)

Z̃ (xb)
. (F17)

We show here that their relation can be recovered from
Eq. (F15). In the absence of death, the forward distribution
is simply given by

f ◦
for (τ |xb) = r(τ, xb) exp

[
−

∫ τ

0
da r(a, xb)

]
, (F18)

which can also be seen from the normalization of f ◦
for in

Eq. (F14), which imposes ρnb,◦
for (xb) = ρd,◦

for (xb). Therefore, by
comparing Eqs. (F14) and (F18) we obtain

f �
for (τ |xb) = ρnb,�

for (xb)

ρd,�
for (xb)

f ◦
for (τ |xb) exp

[
−�τ −

∫ τ

0
da γ (a, xb)

]
.

(F19)

Finally, we plug Eq. (F19) into Eq. (F15) to obtain Eq. (F17),
with

Z̃ (xb) = Z (xb)
ρd,�

for (xb)

ρnb,�
for (xb)

= ρd
back (xb)

ρnb
back (xb)

. (F20)

We believe that our result, Eq. (F15), has the following
advantages over Sughiyama’s result. First, it compares two
distributions evaluated in the same experimental setup, in the
presence of death, which makes sense in light of the definition
of fitness proposed in the main text. Second, we obtained
explicit expressions for the constants Z (xb) and Z̃ (xb), in terms
of the distributions of newborn xb at birth and at division.

Third, in [33] the authors needed the Direction-Time Hypoth-
esis, which imposes that the kernel is independent of the age
at division: �(xb|x′

b, a′) ≡ �(xb|x′
b). In their article, xb is not

the size at birth, but a general phenotypic or genotypic type,
within the multitype age model. Importantly, this assumption
implies that their model cannot account for the sizer and adder
models, since in these models the kernel should describe the
partitioning of volume at division �(xb|x′), where both age a′
and newborn size x′

b are needed to compute mother size x′, as
detailed in Appendix E 2. On the other hand, we did not need
this assumption.

APPENDIX G: ADDER PROPERTY
CONCEALED BY SURVIVAL

In this Appendix, we derive the bias between the forward
distributions of added volume between birth and division 
d

conditioned on birth size xb in the presence and absence of
death, Eq. (41). This distribution is given by the following
change of variable:

f �
for (
d |xb)d
d = f �

for (τ |xb)dτ, (G1)

where the distribution of generation time τ conditioned on
newborn size xb is given by Eq. (F14):

f �
for (τ |xb) = ρnb,�

for (xb)

ρd,�
for (xb)

r̃(x(τ ), x(τ ) − xb)

× exp

[
−�τ −

∫ τ

0
[r̃(x(t ), x(t ) − xb)

+ γ̃ (x(t ), x(t ) − xb)]dt

]
. (G2)

Using Eqs. (E29) and (G1) with d
d/dτ = ν(x(τ )), we get

f �
for (
d |xb) = ρnb,�

for (xb)

ρd,�
for (xb)

ζ (
d ) exp

[
− �τ (xb,
d )

−
∫ 
d

0

[
ζ (
) + γ̃ (xb + 
,
)

ν(xb + 
)

]
d


]
, (G3)

where we identify the distribution of added volume in the
absence of death:

f ◦
for (
d ) = ζ (
d ) exp

[
−

∫ 
d

0
d
 ζ (
)

]
, (G4)

and where we define the normalization constant

Y (xb) = ρd,�
for (xb)

ρnb,�
for (xb)

. (G5)

Finally, we recovered Eq. (41) from the main text.
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To complement this result, let us give several simple ex-
amples where the adder property actually remains observable
with the forward distribution conditioned on survival. First,
when the increment of volume 
d between birth and division
is fixed, then the distribution of added volume is a Dirac delta
function, independent of the size at birth, for every distri-
bution. Second, in the case of a uniform death/dilution rate
γ̃ (x,
) ≡ γ , we showed in Eq. (37) that � = −γ . There-
fore, the two terms in the exponential bias cancel out, as∫ 
d

0 d
 ν(xb + 
)−1 = τ (xb,
d ). Once again, we find that
a constant death rate does not affect quantitatively the ob-
servables. Third, the exponential bias becomes independent of
the newborn volume when both of its terms are independent
of xb. This is the case when (i) cells grow linearly with a
rate ν(x) = ν1 such that τ (xb,
d ) ≡ τ (
d ) = 
d/ν1, and (ii)
the death rate obeys a similar separation of variables as the

division rate, namely γ̃ (x,
) ≡ ν(x)ξ (
), with ξ (
) the
death rate per unit volume. In the second and third cases,
note that the independence of the exponential bias from
xb implies that the factor Y (xb) is also independent of
xb. This is because the normalization of the distribution,
∀xb,

∫ ∞
0 d
d f �

for (
d |xb) = 1, imposes Y (xb) ≡ Y .
Finally, let us mention that it has also been proposed in

[59] to test the adder property on the basis of the value of the
Pearson correlation coefficient between mother and daughter
properties (typically size at birth), instead of the independence
of the lineage distribution of added volume from the newborn
volume. This alternative test has been used, for example, in
[14] to complement the analysis, leading to the same conclu-
sion that data were best accounted for by the adder model. It
remains open to investigate the effect of the survivor bias on
the Pearson correlation coefficient.
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