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a b s t r a c t

The most important features to assess the severity of an epidemic are its size and its timescale. We
discuss these features in a systematic way in the context of SIR and SIR-type models. We investigate
in detail how the size and timescale of the epidemic can be changed by acting on the parameters
characterizing the model. Using these results and having as guideline the COVID-19 epidemic in Italy,
we compare the efficiency of different containment strategies for contrasting an epidemic diffusion
such as social distancing, lockdown, tracing, early detection and isolation.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

In contrasting the COVID-19 epidemic, many countries and
States resorted to strict social distancing measures, also known
as lockdown. The general theory of epidemic diffusion grants that
this produces a lowering of the epidemic peak and a slow down
of the dynamics. While this second aspect can be very positive
– e.g. giving to the Health System the time to strengthen its
capacities and more generally to prepare for the epidemic wave
– it also has negative aspects related to the social and economic
costs of a lockdown.

The purpose of this paper is twofold: on the one hand, we
want to discuss the temporal aspects of a lockdown and more
generally of epidemic moderation policies based on social dis-
tancing; on the other hand, we want to stress that other tools to
counter the epidemic also exist, and they have quite a different
impact on the dynamics even in the case they lead to the same
reduction of the epidemic peak.

We will mainly work in the framework of the most venera-
ble epidemic model, i.e. the classical (Kermack–McKendrick) SIR
model [1–5]; this is specially simple and will allow to obtain some
analytical results. We will also consider a recently introduced SIR-
type model taking into account one of the most striking features
of COVID, i.e. the presence of a large class of asymptomatic infec-
tives [6–17] (this is hence called A-SIR model, the ‘‘A’’ standing for
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‘‘asymptomatic’’); in this case we are not able to obtain analytical
results, and our discussion is based on numerical computations.

The ideas discussed in this work were formulated in recent
works of ours [18–20]; the discussion, and some of the applica-
tions, given here are original. The applications concern mainly the
ongoing COVID epidemic in Italy. A more detailed discussion of
this application is presented in a companion paper [21].

The plan of the paper is as follows. In Section 2 we recall
the classical SIR model and discuss some of its properties, in
particular concerning the temporal aspects of epidemic dynamics.
In Section 3 we study how the SIR properties discussed in Sec-
tion 2 influence different strategies of epidemic containment of
management. This is in a way a preliminary study, as the COVID-
19 epidemic has a striking feature, i.e. the presence of a very
large set of asymptomatic infectives (or pauci-symptomatic ones).
These are difficult to intercept, and thus are active in the epidemic
dynamic over a much longer time than symptomatic infectives,
which are promptly recognized as such and isolated. We pass
then to discuss, in Section 4, a SIR-type model recently introduced
to take this feature into account [19], and called A-SIR model,
see above. In Section 5 we will discuss epidemic management
in the framework of the A-SIR model. Our discussion so far is
general; in Section 6 we will apply this general discussion to
a concrete case, i.e. the ongoing COVID epidemic in Italy. The
A-SIR model describes quite well the epidemiological data so
far (provided one takes into account the effect of the restrictive
measures put in operation by the Government in two rounds),
as shown in [19]; we will discuss some model’s projection for
the future under different strategies, i.e. changing the model’s
parameters in different ways – at first, more sketchily, within the
standard SIR framework, and then in more detail within the A-SIR
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one. Needless to say, these should not be seen as forecasts, but as
providing a qualitative insight into the effects, in particular the
temporal ones, of different strategies. Finally, in Section 7, we
draw some short Conclusions.

2. The SIR model

The classical SIR model [1–5] concerns averaged equations
for a population of ‘‘equivalent’’ individuals (thus in Physics’
language it is a mean field theory); each of them can be in three
states, i.e. being Susceptible (of infection), Infected and Infective,
and Removed (from the infective dynamic).

The populations of these three classes are denoted as S(t), I(t)
and R(t) respectively, and the dynamic is defined by the equations

dS/dt = − α S I
dI/dt = α S I − β I (1)
dR/dt = β I .

where α and β are constant parameters, discussed in a moment.
Note that the third equation amounts to a direct integration,

R(t) = R(t0) + β
∫ t
t0
I(y)dy. Moreover, the total population N

is constant in time (people dying for the considered illness are
considered as removed).

Here the parameter α corresponds to a contact rate (also called
infection rate). More precisely, infection is caused by the meeting
of an infective and a susceptible, thus the number of new infected
per unit of time is proportional to both S and I; the details of the
infection process are condensed in the parameter α. This takes
into account how easy it is for the pathogen to install in the
body of a susceptible once it gets the opportunity to do so (thus
what is the immune system reaction to it), but also the frequency
of ‘‘dangerous’’ contacts, i.e. of contacts close (or unprotected)
enough to give raise to such an opportunity. E.g., for a virus
transported by droplets over a certain distance, this will be the
frequency of encounters at less than this distance and without
due individual protective devices. Social distancing measures work
on the reduction of α. Although they cannot act on the biology of
the pathogen and of the host, they reduce the infection rate by
making it difficult for the pathogen to find new hosts.

The parameter β is a removal rate; more precisely, it is the
inverse of the typical removal time τ = β−1. For a trivial illness
(e.g. a cold) this is essentially the time for the body to heal, but
for a dangerous illness removal from the epidemic dynamic will
also take place by isolation, which is assumed to take place as
soon as the infective is recognized as such. Thus, early detection
campaigns, followed by isolation of infected, work on the reduction
of τ , i.e. the increase of β .

The system (1) can be solved exactly in the time domain by
means of time reparametrization, which allows to linearize the
dynamics [18]. The solution is given by

S = S0e−ατ , (2a)

I = I0 + S0 − S0e−ατ
− βτ, (2b)

R = R0 + βτ, (2c)

where S0, I0 are initial data and R0 = N − S0 − I0. The function
τ (t) is defined implicitly by

t =

∫ τ

0

dτ ′

I0 + S0 − S0e−ατ ′
− βτ ′

. (3)

Remark 1. Exact solutions of the SIR model, which are equivalent
to our Eqs. (2a), (2b), (2c), (3) have been derived, using a quite
different approach by Harko, Lobo and Mak [22]. Instead of per-
forming a time reparametrization, they first transform the main
equation into a second order equation and then reduce it to a
first order non linear Bernoulli equation, which can be explicitly
solved. More recently, Barlow and Weinstein [23] obtained an

exact solution for the SIR equations in terms of a divergent but
asymptotic series [24] (see also [25,26] for a different approach
to exact solution of SIR and SIR-type models). We thank a Referee
for bringing Ref. [23] to our attention. ⊙

Remark 2. Most of the analysis holding for the standard SIR
model can be extended to the case where the infection term
takes the generalized form αf (S)I , with f (S) an arbitrary smooth
function — which in view of its epidemiological meaning should
satisfy f (0) = 0, f ′(0) > 0 [27]. Some more recent studies, directly
related to the COVID epidemic, have also proposed – explicitly or
implicitly – nonlinear modifications of the bilinear infection term
of the standard SIR model [28,29]. ⊙

2.1. Epidemic peak and total number of infected

The most important quantities, which describe the size of
an epidemic are the epidemic peak, i.e. the maximum value I∗
attained by I(t) and the total number infected individuals RE over
the whole time-span of the epidemic.

The value of I∗ is crucial for understanding the maximum
pressure that the epidemic is going to put on the health system,
whereas RE gives a measure of the death toll the epidemic is going
to claim.

It follows immediately from (1) that I(t) grows if and only if

S(t) >
β

α
:= γ ; (4)

for this reason γ is also known as the epidemic threshold. An
epidemic can start only if S(t0) > γ , and it stops spontaneously
once – due to the depletion of the S class corresponding to
infections – S(t) falls below γ .

An equivalent way to describe the epidemic threshold is to
introduce the reproduction number ρ(t) :

ρ(t) =
S(t)
γ

, (5)

which gives the expected new infections generated by a single
infection; its value at the initial time t0 is also known as the basic
reproduction number. The epidemic starts if ρ(t0) > 1, and I(t)
attains its peak value I∗ at t = t∗, when ρ(t∗) = 1. Containment
strategies aim, by reducing α and/or by rising β , to reach ρ < 1,
thus stopping the epidemic. However, reaching ρ < 1 can be
costly in social and economic terms.

Remark 3. A possible alternative containment strategy is to tune
the parameters α and β in such a way to maintain ρ ≈ 1 over
a long time-span. In this way the epidemic peak is transformed
in huge plateau. In this way a rather unstable equilibrium point
for the epidemic dynamics is generated, in which I is held at the
constant value I∗ for a long time. This may be a useful strategy
if the health system has the capacity to treat I∗ infected until
a vaccine for the disease is developed. Moreover keeping the
infected number at a relatively high level helps in approaching
herd immunity and thus preventing a possible second epidemic
wave, even if vaccine will not be available. On the other hand,
this approach requires to keep the system in an unstable state. ⊙

By considering the first two equations in (1), we immediately
obtain that

I = I0 + (S0 − S) − γ log(S0/S) . (6)

This allows to predict immediately the epidemic peak. In fact, we
know that this will be obtained when S = γ (see above), and
hence

I = I0 + (S0 − γ ) − γ log(S0/γ ) . (7)

Note that in general in the initial phase of the epidemic I0 ≃

0; moreover, unless some – natural or artificial (vaccine) –
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immunity is present in the population, S0 ≃ N . This is the case
for COVID. Thus we get

I∗ = N − γ − γ log(N/γ ) . (8)

Needless to say, these expressions for I∗ apply if (and only if)
S0 > γ and N > γ respectively: if S0 < γ there is no epidemic.

Note that we are able to determine the height of the epidemic
peak but, so far, not at which time it is reached, nor more
generally any detail about the epidemic development in time.
This will be our task in the next subsection.

Before tackling that problem, though, we note that (6) also
characterizes the number of individuals going through the in-
fected state over the whole epidemic period. In fact, at the end of
the epidemic we get I = 0; thus the number SE of susceptibles at
that stage is the (lower) root of the equation (here we use I0 ≃ 0
again)

(S0 − SE) = γ log(S0/SE) . (9)

This is a transcendental equation and again cannot be solved in
closed form, but it is obvious that the solution will depend only on
γ , and not on the values of α and β producing this value for their
ratio. The number of individuals having gone through infection is
of course

RE = N − SE . (10)

In view of the simplicity of the transcendent equation (9) for
SE , one might look for approximate solutions SE(γ ). We will not
elaborate on this issue.

2.2. Timescale of the epidemic

There are two main quantities characterizing the timescale of
the epidemic: the time of occurrence t∗ of the peak and the entire
time-span tE of the epidemic, i.e. the time for which I(tE) = 0. Both
t∗ and tE depend on the parameters α and β , and containment
measures aimed at reducing the size of the epidemic (i.e. I∗ and
RE) do in general have the effect of increasing t∗ and tE . We will
tackle this issue in the next subsection by determining how I∗, RE ,
t∗ and tE change by scaling the parameters α and β .

Let us first see how t∗ can be written in terms of α and β .
The time of occurrence of the peak can be easily calculated using
Eqs. (2b) and (3). We have

t∗ =

∫ τ∗

0

dτ ′

I0 + S0 − S0e−ατ ′
− βτ ′

,

τ∗ =
1
α

log
(
S0
γ

)
. (11)

Although here the integral has to be evaluated numerically, the
previous expression allows to compute exactly t∗ without having
to integrate numerically the full system (1). Moreover, Eqs. (11)
will allow us to discuss the scaling of t∗ when α, β change.

An analytic expression for t∗ can be found using an approx-
imate solution. In order to do this we consider the relation be-
tween S and R; from the first and third equations in (1) we easily
get

S = S0 exp
[
−

(
R − R0

γ

)]
.

Using this and recalling (6), or equivalently I(t) = N − S(t)−R(t),
we can reduce to consider a single ODE, say for R(t). This is
written as
dR
dt

= β
[
N − S0 e−(R−R0)/γ − R

]
. (12)

This is a transcendental equation, and – albeit the general
existence and uniqueness theorem for solutions of ODEs ensures
the solution exists and is unique for given initial conditions –

cannot be solved in closed form. It can of course always (and
rather easily) be solved numerically.

If – or until when – we have (R−R0) ≪ γ , we can expand the
exponential in (12) in a Taylor series, and truncate it at order two.
This produces a quadratic equation, more conveniently written in
terms of

P(t) := R(t) − R0 (13)

(hence with initial condition P0 = 0) as

dP
dt

= β

[
I0 +

(
S0
γ

− 1
)

P −
1
2

S0
γ 2 P2

]
. (14)

This equation can be solved in closed form (see e.g. Section 10.2
in [2]), yielding

P(t) =
α2

S0

[(
S0
γ

− 1
)

+ κ tanh
(

β κ t
2

− φ

)]
, (15)

with constants κ and φ given by

κ =

√(
S0
γ

− 1
)2

+
2 S0 I0
γ 2 ,

φ =
1
κ

arctanh
[
S0
γ

− 1
]

.

Here again, taking into account that I0 ≃ 0, the expressions are
slightly simplified in that we get

κ =

(
S0
γ

− 1
)

. (16)

Note however that I0 ≃ 0 is a realistic assumption only if we
integrate the equations starting from an initial condition at the
start of the epidemic; if we have to integrate them from an initial
condition when the epidemic is already running, we cannot safely
assume I0 ≃ 0.

The solution for R(t) is of course obtained by

R(t) = R0 + P(t) ,

see (13), which is promptly obtained from (15). As dR/dt = βI(t),
the epidemic peak corresponds to the maximum of R′(t), which
is the same as the maximum of P(t). The solution (15) allows to
compute the time t∗ at which this is attained in a straightforward
manner. With standard computations, we get that this is reached
at

t = t∗ =
2 φ

β κ
. (17)

Recalling now the expressions for κ and φ, we get

t∗ = 2
arctanh

(
S0
γ

− 1
)

β

[(
S0
γ

− 1
)2

+ (2/γ 2) S0 I0

] . (18)

As usual this gets slightly simpler assuming I0 ≃ 0, which yields

t∗ =
2
β

arctanh
(

S0
γ

− 1
)

(
S0
γ

− 1
)2 . (19)

This (and also the more general (18)) shows that t∗ is inversely
proportional to β . This relation is not surprising, as β is the
inverse of a time (the removal time); in view of this remark, one
has to expect that the inverse proportionality holds also without
the assumption (R − R0) ≪ γ . This is indeed the case.

The other quantity characterizing the temporal development
of the epidemic is its entire time-span tE . This can be computed
by first setting I = 0 in Eq. (2b) in order to compute τE and
then using (3) to compute tE from τE . The value of τE is given by
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the (higher) root of the transcendental equation (we use I0 = 0
because it is usually very small compared to S0)

S0 − S0e−ατE − βτE = 0. (20)

tE is now obtained by computing (numerically) the integral in
Eq. (3).

The timescale of the epidemic is obviously related to its speed.
In order to characterize this speed we can use the time derivative
of the reproduction number ρ evaluated at the peak:

V∗ := dρ/dt|t=t∗ .

Using Eqs. (5), (2a) and (11) we find

V∗ = −αI∗. (21)

Notice that V∗ is proportional to α; thus, as expected, the epi-
demic speed is controlled by the contact rate α.

2.3. Scaling properties of the SIR equations

Our discussion led us to determine, in the approximation (R−

R0) ≪ γ , the time at which the epidemic peak is reached. This is
surely a useful information, but in many practical cases we would
like also to have information (i.e. prediction) about other features
of the epidemic curve. In particular, we would like to know when
I(t) will descend – after passing through the peak – below some
safety level Is.

In the (R − R0) ≪ γ approximation, this information can be
obtained from (12). But the point is that if we are in the early
stages of an epidemic – as in the present COVID epidemic – we
are not sure that such an approximation will be valid all over
the epidemic development. It is thus important to be able to
analyze the time behavior of R(t) – and through it, also of the
other quantities S(t) and I(t), see Eqs. (1) above – without the
(R − R0) ≪ γ assumption.

This analysis was performed in a recent paper of ours [18], and
we will give here the basic step and results emerging out of it.

The first important observation is that the amplitude of the
peak I∗ (7) and the total number of infected (10) RE are decreasing
functions of the parameter γ . This can be easily shown by taking
the derivatives with respect to γ :

dIP
dγ

= − log
(
S0
γ

)
,

dSE
dγ

= −

(
γ

SE
+ 1

)−1

log
(
SE
N

)
.

Above the epidemic threshold (S0/γ > 1), dIP/dγ is always
negative, whereas being SE < N , dSE/dγ is always positive. Thus,
we have a clear indication of how to fight epidemics and how
to reduce its size: we have to increase the epidemic threshold γ ,
i.e. we have to scale γ → λγ by a factor λ > 1. Increasing γ

we reduce the reproduction number ρ. If we manage to reduce
ρ below 1 we simply stop the epidemic, but even if we do not
manage to go so far we still reduce its severity by reducing both
I∗ and RE .

However, we have to pay a price. It is quite evident that
reducing the reproduction number we slow down the dynamics
of the epidemic, so that we increase its time-span, i.e. t∗ and tE ,
and reduce its speed, i.e. V∗.

However, one can increase γ either by reducing α or by in-
creasing β . These two different ways of increasing γ may have a
different impact of t∗ and tE . That this is true is already evident
from the approximate expression for t∗ given by Eq. (19): increas-
ing β by a factor λ, t∗ is reduced by a factor 1/λ, with respect to
the value attained by reducing α.

In order to investigate in a systematic the scaling properties
of epidemic parameters when we change γ → λγ , we consider
two different scaling transformations having the same effect on
γ : T (1), which reduces the infection rate and T (2), which increases
the removal rate:

T (1)
: α → λ−1α; T (2)

: β → λβ, (22)

with λ > 1.
The quantities t∗, I∗, RE and tE do not transform in a simple

way under T (1) and T (2), but the ratios of T (1) and T (2)-transformed
quantities follow simple scaling laws.

Using the notation I (1)P = IP (λ−1α), I (2)P = IP (λβ) and similarly
for the others quantities, to denote rescaled quantities, we have
(see Ref. [18] for details)

I (1)
∗

= I (2)
∗

, R(1)
E = R(2)

E ,

t (2)
∗

= λ−1 t (1)
∗

, t (2)E = λ−1 t (1)E , (23)
V (2)

∗
= λV (1)

∗
.

We see that the quantities I∗ and RE , describing the size of
the epidemic remain invariant (they do not depend on α and β
separately but only on their ratio γ ), whereas the quantities t∗
and tE describing the timescale of the epidemic are reduced by a
factor 1/λ and the speed V∗ is increased by a factor λ.

We stress that our Eqs. (23) entail an important result: differ-
ent containment measures, which have the same effect on the
amplitude of the peak I∗ and on the total number of infected
RE , have different impact on the occurrence time t∗ of the peak,
on the whole time span of the epidemic tE and on the epidemic
speed V∗.

Using measures that increase the removal rate β by a factor λ
instead of reducing the infection rate α by the same factor λ al-
lows to reduce t∗ and tE by a factor 1/λ. For instance, containment
measures with λ = 2 reduce by a half both the time needed for
the epidemic to reach the peak and the whole time-span of the
epidemic. Notice that this epidemic timescale reduction effect is
more relevant when the reproduction number satisfies ρ ≫ 1.
The reduction factor λ is limited by λ < ρ (this is because for
λ > ρ the epidemic does not develop at all).

Remark 4. The scaling of V∗ in Eq. (23) gives a simple intuitive
explanation of what happens. Acting on β allows one to speed
up the epidemic dynamics while keeping constant the number
of infective at the peak and the total number of infected. This is
possible because the increasing of the removal rate allows prompt
removal of infected individuals. ⊙

Remark 5. Needless to say, the change in timescale can be a posi-
tive or a negative outcome – and thus be sought for, or avoided if
possible – depending on circumstances. If at the beginning of the
epidemic the sanitary system is overwhelmed by the number of
patients, it is essential to slow down the pace of the epidemic. On
the other hand, once the most critical time has gone, it becomes
relevant not to be forced to maintain restrictive measures for too
long, to avoid huge economical and social costs. This suggests that
contrasting the epidemic should be done with different tools in
different phases. ⊙

Summarizing, containment measures that increase β , e.g. based
on tracing and removal of infected, are more efficient to fight
epidemics in a short time than those that reduce α, e.g. based
on social distancing or lockdown. Moreover if by increasing β
we manage to bring ρ below the threshold we simply stop the
epidemic, but even if we do not go so far, we can still reduce
the size of an epidemic keeping under control its timescale,
i.e. without facing the social and economical costs related to a
prolonged lockdown or however heavy restrictive measures.
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3. Epidemic management in the SIR framework

We have so far supposed that our problem was to analyze the
behavior of the SIR system for given control parameters α, β , and
given initial conditions.

When we are faced to a real epidemic, as the ongoing COVID
one, any State will try to manage it (which can mean reduce its
impact or eradicate it completely, according to what results to be
concretely possible — which depend also on how prompt is the
action). When we analyze the situation in terms of the SIR model,
this means acting on the parameters α and/or β .

As discussed above, the strategy is based on two types of
actions, i.e. social distancing, which can take also the extreme form
of a lockdown, and early detection (followed by prompt isolation
of would-be infected); these impact respectively on the α and on
the β parameter.

From the discussion of the previous subsections it follows
immediately that acting on α and/or on β we can reduce the
height of the epidemic peak I∗ and simultaneously increase t∗, i.e
slow down the epidemic dynamic.

This is well known, and indeed one of the reasons for the social
distancing measures and lockdown is to slow down the epidemic
increase so to have time to prepare for the epidemic wave, e.g. in
terms of Hospital – or Intensive Care Units (ICU) – capacity, or in
terms of Individual Protection Devices (IPD) stocking.

The problem is that social distancing measures – particularly
when they take the form of a lockdown – are extremely costly in
various ways: e.g. in economical and social terms, as well known;
but also in sanitary terms, as a number of pathologies are surely
worsened by an extensive time of physical inactivity, and hence
a number of extra casualties are to be expected as a consequence
of the lockdown.2

Thus, once the first epidemic wave has passed and the Hos-
pital system has been reinforced, it is essential to be able to
conclude the lockdown in reasonably short times. Here it should
be stressed that albeit in this occasion ‘‘social distancing’’ (and
hence,in terms of the SIR model, a reduction of α) was considered
as equivalent to ‘‘lockdown’’, these concepts are not the same.
E.g., virus transmission rate can be lowered by generalized use of
IPD.3

Remark 6. The main result of the previous sections is that
containment measures which increase β , such as tracking and
removal of infected individuals, are more suitable for fighting

2 It should be stressed that this depends on the lockdown rules; e.g. in
Western Europe, albeit lockdown was generally adopted, these were quite
different in terms of physical activity from country to country. While in
several – mainly northern – countries physical exercise and sun exposure were
recommended, and other countries’ rules were neutral in this respect, Italy and
Spain were rather strict in forbidding even individual open-air exercise and all
kind of ‘‘not necessary’’ (i.e. not work or food shopping related) permanence
out of home. This is rather surprising considering that according to the Italian
National Institute of Statistics (ISTAT) there are each year about 300,000 deaths
due to heart, blood pressure or diabetic illness [30], and all of these are surely
affected by home confining affected people. It is clear that even a moderate
increase, say 10%, in these rates, could easily result in a death toll surpassing
that of COVID, even without considering depressive states surely ensuing [31], in
particular for old people, from long time home isolation and absence of contacts
with relatives and friends. Still another problem is the freeze of different kind of
cures, e.g. radiotherapy for oncological patients, which has been rather standard
in the lockdown.
3 Moreover it is not at all obvious that transmission happens in casual

encounters on the street in open air, and not in workplaces or in public
transportation, or in shops or at home. Actually all scientific evidence is the
other way round, showing that transmission in open air between persons lying
at some meters’ distance is virtually impossible, while the other environments
mentioned above account for most of the transmissions. These are however
matters for virologists, and such details are not included in our models; so we
will not discuss these matters any more.

Fig. 1. Effect of varying parameters in the SIR model while keeping γ constant.
We have considered a population N = 6 ∗ 107 and integrated the SIR equations
with initial conditions I0 = 10, R0 = 0. Setting α0 = 10−8 , β0 = 10−1d−1 , the
runs were with α = α0 , β = β0 (solid curve); α = α0/2, β = β0/2 (dashed
curve); and α = 2α0 , β = 2β0 (dotted curve). The curves yield the value of
I(t)/N , time being measured in days. The epidemic peak reaches the same level,
with a rather different dynamics.

Fig. 2. Contrasting the epidemic through different strategies. We plot I(t)/N for
the same system and initial conditions as in Fig. 1. Now we consider α = α0 ,
β = β0 (solid curve, black); α = α0/2, β = β0 (dashed curve, black); and
α = α0 , β = 2β0 (dotted curve, black). Actions reducing γ by the same factor
through action on the different parameters produce the same epidemic peak
level, but with a substantially different dynamics. We also consider combining
the action on the α and the β parameters: this is shown in the blue curve,
which corresponds to α = α0/2, β = 2β0 . (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

epidemics – in particular once the epidemic peak is on our back,
or however if the Hospitals can cope with the number of incom-
ing patients – in the sense they allow to contain the number
of infected people without expanding too much the time span
over which must be maintained. These kind of strategies are
also preferable – under the condition mentioned above – be-
cause they have a much smaller social and economic impact than
those based on social distancing, in particular if these involve a
lockdown. ⊙

In the following we will thus compare the effects of varying
the parameters α and β in the SIR model. This will allow us
to compare the effects of containment measures based on social
distancing with respect to those based on tracing and removal
of infected. In particular, we focus on the temporal aspect, i.e
for how long social distancing measures or tracing ones can be
needed. In this respect, it is convenient to look at Fig. 1, where
we show the effect of varying α and β in such a way that γ

is constant; and at Fig. 2, where we show the consequences
of raising γ by the same factor (not sufficient to eradicate the
epidemic) through action on the different parameters.
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Table 1
SIR model. Height and timing of the epidemic peak I∗ = I(t∗) and time for
reaching the ‘‘safe’’ level (I(ts) = 10−4S0), together with duration of the interval
τ = ts − ta and the fraction RE/N of individuals having gone through infection,
for the different combinations of parameters considered in the numerical runs
of Figs. 1 and 2. See text. Note that RE/N depends only on γ , as guaranteed by
Eqs. (9) and (10).
α/α0 β/β0 γ /γ0 I∗/N t∗ ts τ RE/N

1 1 1 0.535 35 125 113 0.997
1/2 1/2 1 0.535 70 251 226 0.997
2 2 1 0.535 17 63 56 0.997

1 2 2 0.300 41 94 78 0.940
1/2 1 2 0.300 82 189 157 0.940
1/2 2 4 0.063 144 246 182 0.583

It is apparent from (the black curves in) Fig. 2 that the price
to pay for a strategy based uniquely on social distancing mea-
sures – in whatever way they are implemented – is that these
should be maintained for a very long time. On the other hand,
a strategy based on early detection and prompt isolation alone,
in agreement with the scaling behavior we have discussed in the
previous sections, reduces the peak without slowing down the
dynamics. This feature can of course be a positive or negative
one, depending on how ready is the Health System to face the
epidemic wave.

In real situations, of course, one should act by combining
both strategies; different mix of these will produce different time
development, and it is not obvious that the choice should be
necessarily for the strategy allowing a greater reduction of the
epidemic peak, once all kind of sanitary, economic and social
considerations are taken into account. This is shown in (the blue
curve in) Fig. 2, where it appears that the strategy combining
full action on both parameters reduces greatly the level of the
epidemic peak, but also makes the epidemic running for a very
long time: this may be convenient or not convenient depending
on factors which cannot be taken into account by the purely
epidemic model.

For example, we can consider that strict measures should be
in effect until the level of infectives descends below a fraction
10−4 of the population; we denote as ts the time at which this
level is reached. What this means in terms of the duration of the
intervention in the different framework considered in Fig. 2 is
summarized in Table 1.

Note also that here we considered a given initial time of the
epidemic and suppose the restrictive measures are maintained
until the situation improves enough. In real situations, the re-
strictive measures will not be set as soon as the epidemic reaches
the country, but only after the number of infectives raises above
some alert threshold, call this time ta; this has indeed been the
pattern in most countries, with some notable exceptions (such as
Greece and New Zealand — they were indeed very lightly struck
by COVID). Thus using ts as an estimate of the length of lockdown
leads to overestimating it, and the duration of the measures is
better measured by τ = ts − ta. This is also considered in Table 1,
assuming the alert level is the same as the safety one, i.e. I(ta) =

I(ts) = 10−4
∗ N .

In Table 1 we also give the value of RE/N; this shows clearly
that in these simulations we do not have R/γ ≪ 1 (recall N > γ ),
hence we cannot use the approximation leading to (19). In fact,
e.g. in Fig. 2 it appears that raising β does lead to a (small) delay
in the epidemic peak, contrary to what is predicted by the ‘‘small
epidemic’’ formula (19).

4. The A-SIR model

The SIR model – besides all the limitations due to its very
nature of a ‘‘mean field’’ theory, and the absence of any age

or geographical structure – has a weak point when it comes
to modeling the COVID epidemic. That is, it does not take into
account one of the more striking features of this epidemic, that
is the presence of a large set of asymptomatic infectives.

4.1. The model

In order to take this into account, we have recently proposed
a variant of the SIR model, called A-SIR (with the ‘‘A’’ standing of
course for ‘‘asymptomatic’’), see [19]. In this, there are two classes
of infected and infective individuals, i.e. symptomatic ones I and
asymptomatic ones J; to avoid any possible misunderstanding, we
stress that we put in the I class all patients which will develop
symptoms, also before these arise, and in the J class patients
which will not develop symptoms at all. Correspondingly, there
are two classes of removed, R for those who are isolated – and
eventually dead or recovered – after displaying symptoms, and U
for those who are not detected as infective by their symptoms and
hence are removed only when they naturally heal (unless they are
detected by testing contacts of known infectives or by a random
test).

The key point is that the mechanism of removal is different for
the two classes, and hence so is the removal rate. We denote as β
the removal rate for infectives with symptoms; this corresponds
to isolation, with a mean time β−1 from infection to isolation. We
denote by η the removal rate for asymptomatic infectives, with a
mean time η−1 from infection to healing.

If an individual is infected, it has a probability ξ ∈ (0, 1) to
develop symptoms. It is assumed that all infective with symp-
toms are detected and registered by the Health System; as for
asymptomatic ones, only a fraction of them is actually detected
(and in this case promptly) isolated.

Within this description, ξ is a biological constant4; on the
other hand a campaign for detecting asymptomatic infectives –
e.g. by mass random testing – would result in a reduction of the
average time η−1, i.e. raising η. On the other hand, a campaign
for tracing contacts of registered infectives would result in early
isolation of would-be new infectives – both symptomatic and
asymptomatic – and hence in a raising of both β and η.

It should be mentioned that a similar model could be con-
sidered, where the distinction is not between symptomatic and
asymptomatic, but simply between registered and unregistered
infective. In this setting ξ can be changed by a testing campaign,
while by definition η cannot be changed as it corresponds to nat-
ural healing of people who are never discovered to be infective;
we will not discuss this setting (see [20] for this point of view).

The A-SIR model is described by the equations

dS/dt = − α S (I + J),
dI/dt = α ξ S (I + J) − β I,
dJ/dt = α (1 − ξ ) S (I + J) − η J, (24)
dR/dt = β I,
dU/dt = η J .

Note that the last two equations amount to integrals, i.e. are
solved by R(t) = R0 + β

∫ t
0 I(y)dy, U(t) = U0 + η

∫ t
0 J(y) dy.

Moreover, the total population N = S + I + J + R+U is constant.
Unfortunately, for this model few analytical results are avail-

able, and one can only resort to numerical simulations. On the
other hand, these show that the A-SIR model can account quite
well for the COVID epidemic in Italy [19], i.e. in the only case
where it has been tested against real epidemiological data.

4 We recall our description applies to ‘‘average’’ quantities; it is obvious
that in a finer description ξ would be depending on the characteristics of the
individual who is infected, e.g. his/her age or general health state.
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Remark 7. Note that according to Eqs. (24), symptomatic and
asymptomatic patients are infective in exactly the same way. This
is not completely realistic, and it should be seen as a simplifying
assumption. In fact, our goal here is to point out how taking
into account the presence of asymptomatic infectives changes the
overall picture one would obtain by standard SIR model, and to
do this not by a fully realistic model (see e.g. [32–34] in this
regard) but by the simplest possible model taking into account
the phenomenon. Actually, it is not clear if the infectivity of
asymptomatic should be considered lower or higher than that
of symptomatic (recall these are considered infectives only until
symptoms become serious enough to grant hospitalization or
home isolation, after which they are effectively removed from the
infective dynamics): on the one hand the viral charge emanating
from them could be lower than for symptomatic, but on the other
hand they are as active as fully healthy people, and also people
in contact with them do not take the elementary precautions
which would be taken if facing somebody with even mild early
symptoms (cold, cough, etc.). Thus – in the absence of reliable
medical and social information – we have chose to consider them
equally infective to get a simpler model. The problem has been
raised in a recent paper by Neves and Guerrero [35], where a
modified model with a further parameter taking into account the
difference in infectivity has been considered. That is, the terms
αS(I + J) of our model are changed into αS(I +µJ). These authors
state that they have run simulations with different values of µ

and determined that this makes little difference on the overall
dynamics. ⊙

Remark 8. This seems a suitable place to also point out that
infectivity is of course not immediate upon infection, so that
an ‘‘Exposed’’ class should also be introduced, so to consider a
SEIR-type [2–5] model; here too we preferred to disregard this
feature, which appears not to be essential when we study the
impact of asymptomatic infectives, in order to keep to as simple
as possible a model. Similarly, we have considered a constant
total population, thus disregarding birth and death processes (in
this regard we note that e.g. in the first three months of COVID
infection there were about 30,000 cases; in this same period in
previous years there were about 300,000 deaths [30]). ⊙

Remark 9. A number of models of SIR type have been proposed in
connection with COVID-19. In order to compare model prediction
with epidemiological data, some of these models focus on the
number of deaths, considered more reliable than those on the
infected. As the reader may have noticed, here instead we do
not consider at all deaths; we would like to briefly comment
on this choice. On the one hand, we do not believe that data
about deaths are - at this stage - more reliable than those on
infections: data about deaths of people with other pathologies
beside COVID are managed in different countries according to
different protocols, which within Europe are actually more varied
than those leading to classification of infection cases (after PCR
or swab tests). Moreover, data about variations in the death
rate compared with previous years are not only available with
a notable delay, but also mix excess deaths due to COVID with
those due to other pathologies (e.g. ictus or heart attacks, which
may be increased due to tension and home confinement) and less
deaths due to other causes – such as road or work accidents –
prevented by lockdown. Furthermore, deaths are classified as due
to COVID only in the presence of a test certifying this, and such
a test is not always performed.

One should also consider that mortality is presumably evolv-
ing (in a positive sense) as hospitals are less crowded and as doc-
tors learn how to treat COVID cases. In particular, the discovery

that many COVID-related deaths are not due to pneumonia but
to pulmonary micro-embolism, and the ensuing (rather simple)
treatment protocol based on heparin and similar drugs changed
in quite a substantial way the medical situation. Moreover, a
large part of the deaths in the first wave occurred in senior
citizen residences, and were increased by the fact we did not
know that asymptomatic infections had such a dominant role in
the spreading of infection; now that this is known, and that it
has been realized how critical these residences (and in general
communities) are, infection of the most fragile part of the popu-
lation became less frequent, and this also reduces the mortality
rate. Thus, in short, we do not believe that one can consider
the mortality rate as a constant parameter, and we prefer to
deal with the infection data, which are elaborated following a
protocol which is possibly not fully reliable, but at least is (for
most countries) not changing in time. ⊙

4.2. The fraction of symptomatic infectives

We will also sometimes write

K (t) = I(t) + J(t)

to denote the whole set of infectives; the fraction of symptomatic
infectives will thus be

x(t) :=
I(t)
K (t)

, (25)

while that of asymptomatic will be y(t) = 1 − x(t).
It should be noted that albeit the probability ξ of each new

infective to be symptomatic is a constant, the fraction of symp-
tomatic infectives x(t) is a dynamical variable, and will change
over time. The evolution equation governing the change of x is
easily written as
dx
dt

=
d
dt

I
K

=
(dI/dt) K − I (dK/dt)

K 2

=
β(ξS/γ − 1)I K − I (αSK − βI − ηJ)

K 2

= β

(
ξ

S
γ

− 1
)

I
K

− x
(

αS − β
I
K

− η
J
K

)
= β

(
ξ

S
γ

− 1
)

x − αSx + β x2 + η x (1 − x)

= − [α S(1 − ξ ) + (β − η)] x + (β − η) x2 .

Note that here S is itself changing in time, so there is not a
nontrivial fixed point for x(t).

It should also be noted that in the initial phase of the epi-
demic S can be considered as constant, S ≃ S0 ≃ N; within
this approximation both symptomatic and asymptomatic grow
exponentially as a combination of two exponentials, through the
linear equations

dI/dt = (α ξ S0 − β) I + α ξ S0 J
dJ/dt = α (1 − ξ ) S0 I + (α (1 − ξ ) S0 − η) J .

These lead to x(t) < ξ ; this is easily understood qualitatively:
in fact, asymptomatic infectives stay in the infective state for a
longer time. This is also shown in Fig. 3.

The situation is just opposite if we look at R(t) and U(t): the
fraction of registered removed χ = R/(R+U) will be higher than
ξ at all times, but will converge to ξ for large t; see Fig. 4.

Note that this figure offers an explanation for the widely
different estimates of ξ appearing in the literature as result of
testing campaign. In fact, in several cases it has been attempted to
measure ξ from the statistics of testing campaign over a complete
population (e.g. for the early evacuation flights from Wuhan [36],
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Fig. 3. Upper plot: the function x(t) computed along the numerical solution to
the A-SIR equations (24) with S0 = 6∗107 , α = 10−8 , β = 10−1 , η = (1/3)∗10−1 ,
ξ = 0.1; the initial conditions are I0 = 10, J0 = 90, R0 = U0 = 0; these imply
x0 = 0.1. Note x(t) first goes to a plateau at x ≃ 0.09, and then decays towards
zero. Lower plot: the functions I(t)/S0 (solid curve) and J(t)/S0 (dashed curve)
for the same numerical solution. It appears that the decay of x(t) starts when
I(t) reaches its maximum. This corresponds to I∗/S0 ≃ 0.058 and is reached at
t∗(I) ≃ 27.24; the maximum of J(t) corresponds to J∗/S0 ≃ 0.703 and is reached
at t∗(J) ≃ 29.08 > t∗(I).

Fig. 4. For the same numerical solution of the A-SIR equations considered in
Fig. 3, we plot χ (t) (blue) together with x(t) (black) and the reference line
for the value of ξ (red). The function χ (t) converges to ξ for large t , with
x(t) ≤ ξ ≤ χ (t) at all times. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

for the Diamond Princess cruise ship [37], or for the Vò Euganeo
community [6]) or on a random sample of population; but Fig. 4
shows that we would obtain quite different results if attempting
to measure the fraction of asymptomatic active infectives (which
would be done by nasopharyngeal swab testing) or of those who
have had the infection (which would be done by serological
testing). This remark is specially relevant in view of the planned
wide testing campaigns.

4.3. Epidemic peaks in the A-SIR model

One striking feature of the A-SIR model is that the epidemic
threshold is different for the I and the J classes. In fact, it follows

from (24) that I grows for

S >
β

α

x
ξ

=
x
ξ

γ := γ1 , (26)

while J grows for

S >
η

α

1 − x
1 − ξ

:= γ2 . (27)

This implies that in general the number of symptomatic and
asymptomatic infectives peak at different times.

Let us now show that when β ≫ η the peak of I , i.e. γ1,
occurs before the peak of J , i.e. γ2. In order to do this we use the
first equation in (24) to eliminate dt from the second and third
equations:
dI
dS

= −ξ +
β

α

x
S
,

dJ
dS

= −(1 − ξ ) +
η

α

1 − x
S

.

We can now eliminate x from the previous equations by con-
structing an appropriate linear combination of them. We obtain
in this way

η
dI
dS

+ β
dJ
dS

= −ω +
ηβ

αS
, (28)

where ω := ηξ + β(1 − ξ ).

Remark 10. We note in passing that Eq. (28) can be easily
integrated to give J as a function of I and S:

J(S) = J0 −
η

β
(I(S) − I0) −

ω

β
(S − S0) +

η

α
ln

(
S
S0

)
. (29)

In turn, this equation can be used to eliminate J from the system
(24) and to obtain an autonomous, first order, ODE for I(S).
Unfortunately, this equation is an ugly non linear ODE which
cannot be solved analytically. ⊙

Coming back to the determination of the peaks, we consider
the peak for J , occurring at S = γ2, and insert the condition
dJ/dS = 0 into Eq. (28). Because we have γ1 ≥ γ2 whenever S =

γ2 belongs to the region of decreasing I , i.e. to the region where
dI/dS ≥ 0, from the resulting equation we find that γ1 ≥ γ2 for
γ2 ≤ (βη)/(ωα). This gives, using the definition of γ2 in Eq. (26),
I
J

≥
ηξ

β(1 − ξ )
. (30)

For values of S in the region S ≫ γ1, γ2, i.e. at small times,
the second (S-dependent) terms in Eqs. can be neglected and
the early dynamics is determined solely by ξ , so that the latter
equation gives
I
J

≈
ξ

1 − ξ
. (31)

Inserting (31) into (30), we find that in this region the con-
dition (30) is satisfied whenever β > η. We have seen in
the previous subsection that x(t), hence also I/J , stays almost
constant before it reaches the peaks for I and J (see the plateau in
Figs. 3 and 4 ). This implies that at least for β ≫ η, the inequality
(30) remains true until the peaks are reached, hence that γ1 > γ2.

5. Epidemic management in the A-SIR framework

We have seen above that in the frame of the standard SIR
model the epidemic peak can be reduced in several ways, i.e. act-
ing on one or the other (or both) of the parameters α and β; these
different strategies, however, yield quite different results in terms
of the temporal development of the epidemic.
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It is quite natural to expect that the same happens in the frame
of the A-SIR model. But, as mentioned above, we are not able so
far to provide analytical results for the A-SIR model; we will thus
have to resort to numerical integration.

It should be mentioned that here we have one further parame-
ter on which we have no control, i.e. ξ , and one further parameter
– besides α and β – on which we do have control, i.e. η.

Remark 11. We have seen in Section 4 that the epidemic thresh-
old is different for the I and the J classes. Moreover we have
shown that, at least for β ≫ η, the peak γ1 for I occurs before
(in time) that for J , i.e. γ2; recalling that dS/dt < 0, this means
γ1 > γ2. This fact has an intuitive explanation. At very early
times the dynamics is ruled by ξ and we have x ≈ ξ , which
implies I/J ≈ ξ/(1− ξ ). Because γ1 is proportional to β and γ2 is
proportional to η, for β ≫ η we have in this region γ1 > γ2 (see
Eqs. (26) and (27)). At intermediate times, although x changes
and we have x < ξ , the difference in the removal rates β, η
does not affect fully the dynamics, and x stays almost frozen in
a plateau till the peaks are reached, preserving in this way the
γ1 > γ2 relation. It is only at late times, that is after surpassing
the peaks, that the difference in the removal rates β, η affects
fully the dynamics and correspondingly x changes significantly.
⊙

We can thus act on our system in three independent ways,
i.e. by social distancing (reducing α), by early isolation of symp-
tomatic (raising β), and by detection of asymptomatic (raising
η).

It should be stressed that while implementation of the first
strategy is rather clear, at least in principles (things are less clear
when other, e.g. economical and social, considerations come into
play), for the other two strategies the implementation is less
clear, and in practice consists of two intertwined actions: trac-
ing contacts of known infectives, and large scale testing. Tracing
contacts allows to identify those who are most probably going
to be the next infectives; they can then be isolated before any
symptom shows up, i.e. β−1 can be reduced below the incubation
time. On the other hand, this strategy requires to test would-
be infectives after some reasonable delay, to avoid quarantining
a huge set of non-infective individuals. One could also imagine,
if tests were widely available, that specific classes of citizens
(e.g. sanitary operators, or all those being in contact with a large
number of persons) could be tested thus identifying a number
of asymptomatic infectives not known to have had contacts with
known infected; this would lead to isolation of asymptomatic,
and hence to a raising in η. Note η is also raised by tracing
contacts, as many of the infected found in this way would be
asymptomatic, but would be promptly isolated in this way.

To put things in a simple way, actions on β and on η go usu-
ally, in practice, together. Thus we should essentially distinguish
between social distancing on the one side, and other tools on the
other side.

In order to do this, we resort to numerical computations for
a system with parameters strongly related to those of the SIR
numerical computations considered in Section 3, and along the
same lines. The results of these are illustrated in Figs. 5 and 6;
these should be compared with Figs. 1 and 2.

We also consider the quantities analogous to those considered
in Table 1; these are given in Table 2.

It is rather clear that the same general phenomenon observed
in the SIR framework is also displayed by the A-SIR equations.
That is, acting only through social distancing leads to a lowering
of the epidemic peak but also to a general slowing down of
the dynamics, which means restrictive measures and lockdown
should be kept for a very long time. On the other hand, less rough
actions such as tracing contacts and the ensuing early isolation
allow to reduce the peak without having to increase the time
length of the critical phase and hence of restrictions.

Fig. 5. Effect of varying parameters in the A-SIR model while keeping γ

constant. We have considered a population N = 6∗107 and integrated the A-SIR
equations with ξ = 0.1 and initial conditions I0 = 10, J0 = 90, R0 = U0 = 0.
Setting α0 = 10−8 , β0 = 10−1d−1 , η0 = 4∗10−2d−1 , the runs were with α = α0 ,
β = β0 , η = η0 (solid curve); α = α0/2, β = β0/2, η = η0/2 (dashed curve);
and α = 2α0 , β = 2β0 , η = 2η0 (dotted curve). In the upper plot, the curves
yield the value of K (t)/N , time being measured in days; in the lower plot, they
refer to I(t)/N . The epidemic peak reaches the same level, with a rather different
dynamics.

Table 2
A-SIR model. Height and timing of the epidemic peak K∗[t1] and of the peak
for symptomatic I∗ = I[t2] (note t1 ̸= t2) and time for reaching the ‘‘safe’’ level
(I(ts) = 10−4S0), together with duration of the interval τ = ts − ta defined in
terms of symptomatic infectives, for the different combinations of parameters
considered in the numerical runs of Figs. 5 and 6. See text. In all cases nearly
all the population goes through infection, and a fraction ≈ ξ with symptoms.
α/α0 β/β0 η/η0 γ /γ0 K∗/N I∗/N t1 t2 ts τ

1 1 1 1 0.730 0.058 29 28 94 82
1/2 1/2 1/2 1 0.730 0.058 58 55 188 164
2 2 2 1 0.730 0.058 14 14 47 41

1/2 1 1 2 0.568 0.039 60 57 129 104
1 2 2 2 0.568 0.039 30 29 65 52
1/2 2 2 4 0.348 0.020 68 65 124 92

6. The ongoing COVID epidemic — Italy

Our considerations were so far quite general, and in the nu-
merical computations considered so far we used parameter val-
ues which are realistic but do not refer to any concrete situation.

It is quite natural to wonder how these considerations would
apply in a concrete case; we will thus consider the case we are
more familiar with, i.e. the ongoing COVID epidemic in Italy.
This is also of more general interest since Italy was the first
Western country to be heavily struck by COVID; as it appears
Asian countries have dealt with the problem in a rather different
way than it is done in the West, the Italian case is used as a
test case in many other countries to foresee what can be the
developments taking one or another choice.5

5 This is even more true considering that the Italian Health system is
on regional basis, and different regions made different choices — with quite
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Fig. 6. Contrasting the epidemic through different strategies. We plot K (t)/N
(upper plot) and I(t)/N (lower plot) for the same system and initial conditions as
in Fig. 1. Now we consider α = α0 , β = β0 , η = η0 (solid curve, black); α = α0/2,
β = β0 , η = η0 (dashed curve); α = α0 , β = 2β0 , η = 2η0 (dotted curve); and
α = α0/2, β = 2β0 , η = 2η0 (solid curve, blue). Actions reducing γ by the same
factor through action on the different parameters produce the same epidemic
peak level, but with a substantially different dynamics. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

Our data and considerations refer to the moment of closing
the first submitted version of this paper, i.e. April 25, 2020. Time
is measured in days, with Day 0 being February 20, 2020.

The problem in analyzing a real situation is that the pa-
rameters are not constant: people get scared and adopt more
conservative attitudes, and government impose restrictive mea-
sures. All these impact mainly on social distancing, i.e. on the
contact rate α.6 Moreover, any measure shows its effect only after
some delay, and of course not in a sharp way — as incubation
time is not a sharp constant but rather varies from individual to
individual.

6.1. Fit of real data by the SIR and A-SIR dynamics

In related works [18,19] we have considered the SIR and the
A-SIR models, and estimated parameters values – that is, α and β
for the SIR model, α, β, η and ξ for the A-SIR one – allowing them
to satisfactorily describe the first phase of the COVID epidemic in
Italy; we have then assumed that each set of restrictive measures
has the effect of changing α to rα (with 0 < r < 1 a reduction
factor), and that this effect shows on after a time β−1 from the
introduction of measures. This is a very rough way to proceed,
but it is in line with the simple approach of SIR-type modeling.

In Italy (total population N ≃ 6 ∗ 107) a first set of restrictive
measures all over the national territory was adopted on March

different results in terms of mortality and virus diffusion. We will not enter
into such details.
6 There are exceptions to this rule: e.g. in Veneto the regional strategy has

been more focusing on early detection and prompt isolation, also thanks to
contact tracing; with quite good results [6].

Fig. 7. Fit of epidemiological data (points) by the function R(t) arising from
numerical solution of the A-SIR equations; see text for parameter values and
other details. Here time is measured in days, with day 0 being February 20.

Fig. 8. Fit of epidemiological data (points) for new daily infectives, obtained by
the function I(t) arising from numerical solution of the A-SIR equations; see text
for parameter values and other details. Here time is measured in days, with day
0 being February 20. Left: Raw data for daily new infectives. Right: Smoothed
data, smoothing corresponding to average over five days.

8, and another one on March 22. In the framework of the A-
SIR model, our estimate of the parameters for the first phase of
the epidemic (that is, before the first set of measures could have
any effect, i.e. before March 15) was the following, with time
measured in days:

α0 ≃ 3.77 ∗ 10−9 , β−1
≃ 7 , η−1

≃ 21 ;

ξ ≃ 1/10 . (32)

See [19] for details on how these estimates are obtained.
When looking at data in the following time, we assumed

that the contact rate α is reduced by the restrictive measures
(and public awareness) and is changed from α0 into α1 = r1α0
between March 15 and March 29, and then into α2 = r2α0 from
March 29 to April 25. Our best fit for the reduction factors ri is

r1 = 0.5 ; r2 = 0.2 .

In Fig. 7 we plot epidemiological data for the cumulative
number of detected infections against the numerical solutions
to the A-SIR equations for these values of the parameters, and
for initial data obtained also from the analysis of real data. This
shows a rather good agreement. See also Fig. 8.

If we were considering the SIR model, some care should be
put on the estimation of β; to avoid any confusion, we will here
denote by B the removal rate for the SIR model, keeping β for the
removal rate of symptomatic infectives in the A-SIR model.

In the SIR model, indeed, there is no distinction between
symptomatic and asymptomatic infectives; thus B is an average
quantity computed over the whole set of infectives. This means
that it is related to the A-SIR quantities by

B = β x + η (1 − x) . (33)

As we have seen above in Section 4.2, x = x(t) is a dynamical
variable. Actually x(t) < ξ , but it remains sufficiently near to ξ in
the growing phase of the epidemic. So our rough estimate for B
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Fig. 9. Fit of the epidemiological data for Italy by the SIR model with varying α

parameter. This plot reports epidemiological data for the cumulative number of
registered infective, thus R(t), day by day; day zero is February 20. The fitting
curve is the solution to the SIR equations with initial values (computed in day
14, i.e. March 5) I0 = 16,914, R0 = 3, 862 and for a population of S0 = 6 ∗ 107 .
The parameters value were α0 = 3.1∗10−9 before March 15, then changed into
α1 = r1α0 between March 15 and March 29, and then into α2 = r2α0 from
March 29 on; and β = 2/35 ≃ 0.057 as stated by Eq. (35).

will be

B ≃ β ξ + η (1 − ξ ) ; (34)

with the values given above for the A-SIR parameters, this yields

B ≃ 2/35 ≃ 0.057 ; B−1
≃ 17.5 . (35)

This number by itself, compared with the incubation time of
about 5 days for COVID, urges for a campaign of early tracing.

We can then try to compare a numerical solution of the SIR
equations with these parameters – and similar reduction factor
for the contact rate as a result of restrictive measures – with epi-
demiological data. This is shown in Fig. 9, showing a reasonable
agreement. Note however that in order to obtain this agreement
we had to set

α0 = 3.1 ∗ 10−9 . (36)

We note that Figs. 7–9 are reproduced from arxiv:2003.08720v
3; the published version of this paper [19] contains updated plots,
showing that the model describes correctly the epidemiological
data up to date of publication, provided one takes into account
another step in the reduction factor r; see [19] for details.

6.2. Simulating further interventions. The SIR picture

Albeit we believe that the A-SIR dynamics is better suited
to describe the COVID epidemics, we will start by considering
simulations of further interventions on the epidemic dynamic
within the SIR framework; this with the purpose so that the
reader can observe how the same qualitative picture we will find
– and study in more detail – within the A-SIR framework is also
rendered by this more classical model.

In Fig. 10 we have considered an epidemic dynamic which
until day 55 is just the one considered in Fig. 9, while in sub-
sequent days is either continuing in the same way, either has a
further halving of the α parameter, either has a doubling of the
β parameter, either has both a halving of α and a doubling of β .
It is rather clear from the picture that acting on β is much more
effective from the point of view of shortening the time needed
to get to a low level of infectives in the population. Moreover, it
also appears that once β is increased, an accompanying cut in α
(i.e. further social distancing measures) is nearly irrelevant from
this point of view — while we know it would be very hard in
terms of economic and social costs.

The more detailed analysis in terms of the A-SIR model, to be
conducted in the next subsection, will confirm this picture.

Fig. 10. Simulation of different containment strategies (after day 55, for Italy)
within the SIR model; the initial parameters are α0 = 3.1∗10−9 , β0 = 2/35, with
α changing to α1 = α0/2 and to α2 = α0/5 at days 25 and 35 respectively, see
text. After day 55 we consider a dynamics going on with the same parameters
(black curve, dashed) together with: one in which the parameter α is further
halved, thus getting to α3 = α0/10, while β remains at β = β0 (blue); one with
α staying at α = α2 while β is doubled, thus going at β = 2 ∗ β0 (orange); and
one where α is halved and β is doubled (red). The plot shows the function I(t)
along the numerical solutions. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

6.3. Simulating further interventions. The A-SIR picture

We can now simulate further intervention, with four possible
strategies:

1. Do nothing, i.e. keep α, β, η at the present values;
2. Further reduction of α by a factor σ ;
3. Increase of β and η by a factor σ ;
4. Simultaneous reduction of α and increase of β and η, all by

a factor σ .

We stress that these are not equally easy; we have considered
the same reduction/increase factor in order to better compare the
outcome of these three actions, but as so far all the intervention
has been on α, one should expect that further reducing it is
very hard (even more so considering ‘‘side effects’’ of this on
society, economics, and other sanitary issues); on the other hand,
no specific campaign designed to increase β has been conducted
nationwide so far,7 so we expect action in this direction would
be quite simpler and has more room for attaining a significant
factor.

Despite these practical considerations, as already announced,
we consider the same factor for the reduction of the contact rate
and for the increase of the removal rates, in order to have a more
direct comparison of the effects of these strategies.

We have then ran numerical simulations corresponding to the
different strategies listed above; the outcome of these is given in
Fig. 11. Note that within each strategy the decay of I(t) is faster
than that of K (t), and that the ratio between I(t) and K (t), i.e. x(t),
is in all cases rather far from ξ = 0.1, as discussed in Section 4.2
above.

We also report in Table 3 the relevant expected data for the
time ts at which a safety level Is – now assumed to be Is = 3, 000,
i.e. half of the level reached when the first restrictive measures
were taken – is reached, the time interval τ = ts−55 from the day
the new strategy is applied, and the total count RE of symptomatic
infected. This table also reports the asymptotic value xE of the
ratio x(t) = I(t)/K (t) of symptomatic to total infectives; this is
relevant in two ways: on the one hand one expects that only
symptomatic infected may need hospital care, so a low level of x
means that albeit a number of infections will still be around only

7 With the exception of Veneto, as already recalled in a previous footnote.
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Fig. 11. Simulation of different strategies after day 55 for Italy. Strategies
correspond to those listed in the text, with factor σ = 2. The curves illustrate
the predicted outcome under different strategies: no action (black, dashed);
further reduction of α (blue); increase of β and η (yellow); reduction of α and
increase of β and η (red). The plots represent, from the upper one to the lower
one: cumulative number of symptomatic infected R(t); number of symptomatic
infectives I(t); total number of infectives K (t) = I(t)+ J(t); ratio of symptomatic
to total infectives, x(t) = I(t)/K (t). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Table 3
Time ts of reaching the safety level Is , time from adoption of new strategy to ts ,
and total final count RE of symptomatic infections, for the different strategies
listed in the text, with a factor σ = 2.

α/α2 β/β0 η/η0 ts τ RE xE
1. 1 1 1 289 234 > 5 ∗ 105 0.031
2. 1/2 1 1 107 52 2.4 ∗ 105 0.019
3. 1 2 2 81 26 2.4 ∗ 105 0.019
4. 1/2 2 2 68 13 2.1 ∗ 105 0.010

a small fraction of these will need medical attention, and COVID
will not absorb a relevant part of the Health System resources; on
the other hand, this also means that most of the infectives will
be asymptomatic, i.e. attention to identifying and isolating them
should be kept also when the number of symptomatic infections
is very low. Note that for the strategy (1) what we report is not
really an asymptotic value, but the value expected at December
31, as the decay is too slow.

Remark 12. In this regard, it may be interesting to note that
according to our model at the end of April (day 70) we will have

x ≃ 0.032 ,
R

R + U
≃ 0.124 . (37)

Again according to our model and fit, at the same date the fraction
of individuals having gone through the infection – and thus
hopefully having acquired long-time immunity – would however
be still below 3% nationwide; this is obviously too little to build
any group immunity. The situation could be different in the areas
more heavily struck by the epidemic, such as Bergamo and Brescia
Departments. ⊙

Remark 13. Needless to say, these plots and the figures given in
Table 3 should not be seen as forecasts, both because we consider
parameters to be constant in the future – which will quite surely
not be the case – and more relevantly because SIR-type models
do not take into account any structure (neither geographical, nor
age-related, nor considering different general health status) of
the population, and hence are definitely too rough to make any
reliable prediction. On the other hand, we believe these models
can give relevant qualitative insights. The one emerging from our
present work is that a strategy for epidemic contrast based only
on social distancing requires to keep very strong social distancing
measures, possibly a general lockdown, for very long times. This
is not due to details of the models considered here – in which case
the result would be just irrelevant – but to the basic mechanism
of infection propagation through contact (thus quadratic terms
coupling infectives and susceptibles) and of isolation or healing
through mechanisms involving a single individual (thus linear
terms). ⊙

6.4. Discussion

Table 3 shows, in our opinion quite clearly, that:

1. Continuing with present measures is simply untenable,
as it would leave the country in this situation for more
than one further semester, and a large number of new
symptomatic infections – hence also of casualties – with
the ensuing continuing stress on the Hospitals system.

2. Further restrictions in the direction of social distancing
would have to be kept for nearly two further months; they
would be effective in reducing the number of symptomatic
infectives in the future. On the other hand, as individual
mobility is already severely restricted, this would basically
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mean closing a number of economic activities which have
been considered to be priorities so far (including in the
most dramatic phase), which appears quite hard on social
and economic grounds.

3. A campaign of early detection could be equally effective in
reducing the number of infected and hence of casualties,
but would require to maintain restrictions already in place
for a much shorter time, less than one month. This should
be implemented through contact tracing, which does not
necessarily has to go through the use of technology endan-
gering individual freedom, as shown by the strategy used
in Veneto.

4. Combining further social restrictions and early detection
would reduce the number of infections to a slightly smaller
figure and would need to be implemented for about two
weeks. This would however meet the same problems re-
lated mentioned in item (2) above, albeit for a shorter
time.

5. In all cases except if no action is undertaken, the fraction
of symptomatic infectives should soon fall to be between
1 and 2%. This means we foresee a reduced stress on the
Hospital system, but a continuing need to investigate, track
and isolate asymptomatic infections, to avoid that at the
end of restrictions they can spark a new epidemic wave.

These considerations are of course not final; but we trust they
offer a picture of what the consequences of different strategies
are for what concerns strictly the epidemic dynamics. Decision
makers will have of course to consider other aspects: social,
economical, political, and also sanitary concerning other kind of
pathologies.

Remark 14. We would like to stress an important point. There
are by now many papers discussing what the likely future of
the COVID epidemic in this or that country should be; many of
these are based on a purely statistical analysis. Here we base our
discussion on a theoretical model, which takes into account the
basic mechanism for the transmission of the infection elucidated
above and the presence and key role of asymptomatic infectives.
Statistical analysis independent of any detail for the mechanism
is known to be a powerful tool, but this applies when we have a
large database. For COVID we have only data ‘‘on the fly’’ — except
for the Chinese case [38,39], but the data available for this have
been questioned, and important corrections on key quantities
(e.g. the total death toll) were done with respect to the initially
estimated data. In our opinion, it makes little sense to resort to a
purely statistical analysis when the underlying database consists
of a single complete experience. ⊙

Remark 15. When it comes to translate the indications of the
models into concrete action, the word should pass to real experts
— i.e. medical doctors working on infective pathologies. No model
can describe how e.g. the use of IPD (depending moreover on
how well the population is instructed on their use) impacts on
the α parameter, or the like for other parameters. Last but not
least, our discussion and the predictions of the models are based
on the assumption that the strategies are correctly implemented.
If e.g. a country decides to follow the strategy based on early
detection, but the implementation of this is not correct (e.g. if
there is not the possibility to carry out a sufficient number of
rapid tests), following the right strategy will result in the wrong
outcome. This is again something which cannot be discussed by a
mathematical model; but it should be mentioned that not only it
is important to avoid an excessive trust in such general models,
but also when the conclusions are robust (as we think to be the
case for the present discussion), the way in which the indications
of the model are implemented can make a huge difference. ⊙

7. Conclusions

We have considered – in the framework of ‘‘mean field’’ epi-
demiological models of the SIR type, hence disregarding any
structure in the population – how different strategies aiming at
reducing the impact of the epidemic perform both from the point
of view of reducing the epidemic peak and the total number of
people going through the infection state, and from the point of
view of reducing the time-span of the acute crisis state.

This has been discussed in general terms, both within the
classical SIR model [1–5] framework and with use of the recently
formulated A-SIR model [19], providing also some general re-
sults; in this setting, however, one deals with models with given
parameters, constant in time.

On the other hand, in a real epidemic – as the ongoing COVID
one – growing public awareness and governmental measures
modify these parameters. We have considered a real case (Italy)
from this point of view. After recalling that the A-SIR model
considered in this paper do quite well fit the epidemiological data
so far, we have discussed what would be the impact of different
strategies for the near future, showing that also in this case the
models predict a much shorter duration of the critical phase if
further action concentrates on early detection of infectives rather
than on social distancing.
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