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Different countries – and sometimes different regions within the same countries – have adopted differ- 

ent strategies in trying to contain the ongoing COVID-19 epidemic; these mix in variable parts social 

confinement, early detection and contact tracing. In this paper we discuss the different effects of these 

ingredients on the epidemic dynamics; the discussion is conducted with the help of two simple models, 

i.e. the classical SIR model and the recently introduced variant A-SIR (arXiv:2003.08720) which takes into 

account the presence of a large set of asymptomatic infectives. 
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. Introduction 

Different countries are tackling the ongoing COVID-19 epi-

emics with different strategies. Awaiting for a vaccine to be avail-

ble, the three tools at our disposal are contact tracing, early detec-

ion and social distancing . These are not mutually exclusive, and in

act they are used together, but the accent may be more on one or

he other. 

Within the framework of classical SIR [1–5] and SIR-type mod-

ls, one could say (see below for details) that these strategies aim

t changing one or the other of the basic parameters in the model.

In this note we want to study – within this class of models –

hat are the consequences of acting in these different ways. We

re interested not only in the peak of the epidemics, but also in its

uration. 

In fact, it is everybody’s experience in these days that social dis-

ancing – with its consequence of stopping all kind of economic

ctivities – has a deep impact on our life, and in the long run is

roducing impoverishment and thus a decline in living conditions

f a large part of population. 

In the present study we will not specially focus on COVID, but

iscuss the matter in general terms and by means of general-

urpose models. 

Our Examples and numerical computations will however use

ata and parameters applying to (the early phase of) the current

OVID epidemic in Northern Italy, in order to have realistic ex-

mples and figures; we will thus use data and parameters arising
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rom our analysis of epidemiological data in the early phase of this

pidemic [6,7] 1 . Unavoidably, we will also here and there refer to

he COVID case. 

Some observations deviating from the main line of discussion –

r which we want to pinpoint for easier reference to them – will

e presented in the form of Remarks. The symbol � marks the end

f Remarks. 

. The SIR model 

In the SIR model [1–5] , a population of constant size (this

eans the analysis is valid over a relatively short time-span, or

e should consider new births and also deaths not due to the epi-

emic) is subdivided in three classes: Susceptibles, Infected (and

y this also Infectives), and Removed. The infected are supposed

o be immediately infective (if this is not the case, one considers

o called SEIR model to take into account the delay), and removed

ay be recovered, or dead, or isolated from contact with suscepti-

les. 

emark 1. We stress that while in usual textbook discussions of

he SIR model [2–5] the Removed are either recovered or dead,

n the framework of COVID modeling the infectives are removed

rom the infective dynamics – i.e. do not contribute any more to

he quadratic term in the Eqs. (1) below – through isolation. This

eans in practice hospitalization in cases where the symptoms
1 In this regard, also in view of the rapid evolution of the pandemic, it should be 

ointed out that the first version of this paper was submitted at mid-May, and data 

hus run up to that time. The Appendix contains more recent data. 

https://doi.org/10.1016/j.chaos.2020.110074
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Fig. 1. Different effect of acting on the α or the β parameter. The SIR Eqs. (1) are 

numerically integrated and I ( t ) plotted in arbitrary units for given initial conditions 

and α, β parameters (solid), the maximum I ∗ being reached at t = t ∗ . Then they are 

integrated for the same initial condition but raising β by a factor ϑ = 3 / 2 (dashed) 

with maximum I β = r I ∗ reached at time t β = σβ t ∗; and lowering α by the same 

factor ϑ = 3 / 2 (dotted) with maximum I α = I β reached at time t α = σαt ∗ . Time unit 

is one day, α = (4 / 3) ∗ 10 −8 , β = 1 / 7 ; these parameters arise from our fitting of 

data from the early phase of COVID epidemics in Northern Italy [7] ; the population 

of the most affected area in the initial phase is about 20 million, that of the whole 

Italy is about 60 million. The numerical simulation is ran with N = 6 ∗ 10 7 ; it results 

r = 0 . 74 , σα = 1 . 63 , σβ = 1 . 09 , I ∗ = 3 . 08 ∗ 10 7 , t ∗ = 26.4; note that σα/σβ = 3 / 2 = 

ϑ . 
are heavy and a serious health problem develops, and isolation

at home (or in other places, e.g. in some countries or region spe-

cific hotels were used to this aim) in cases where it is estimated

that there is no relevant risk for the health of the infective. In this

sense, the reader should pay attention to the meaning of R in the

present context. 

The nonlinear equations governing the SIR dynamics are written

as 

d S/d t = −α S I 

d I/d t = α S I − βI (1)

d R/d t = βI. 

These should be considered, in physicists’ language, as mean

field equations; they hold under the (surely not realistic) assump-

tion that all individuals are equivalent, and that the numbers are

sufficiently large to disregard fluctuations around mean quantities. 

Note also that the last equation amounts to a simple integra-

tion, R (t) = R 0 + β
∫ t 

t 0 
I(y ) dy ; thus we will mostly look at the first

two equations in (1) . 

We also stress, however, that epidemiological data can only col-

lect time series for R ( t ): so this is the quantity to be compared to

experimental data [2] . 

Remark 2. In fact, as stressed in Remark 1 , in the case of a poten-

tially dangerous illness (as COVID), once the individuals are iden-

tified as infective, they are effectively removed from the epidemic

dynamic through hospitalization or isolation. 

According to our Eqs. (1) , S ( t ) is always decreasing until there

are infectives. The second equation in (1) immediately shows that

the number of infectives grows if S is above the epidemic threshold

γ = β/α. (2)

Thus to stop an epidemic once the numbers are too large to

isolate all the infectives, we have three (non mutually exclusive)

choices within the SIR framework: 

(a) Do nothing, i.e. wait until S ( t ) falls below the epidemic

threshold; 

(b) Raise the epidemic threshold above the present value of S ( t )

by decreasing α; 

(c) Raise the epidemic threshold above the present value of S ( t )

by increasing β . 

In practice, any State will try to both raise β and lower α, and

if this is not sufficient await that S falls below the attained value

of γ . 

In order to understand how this is implemented, it is necessary

to understand what α and β represent in concrete situations. 

The parameter β represents the removal rate of infectives; its

inverse β−1 is the average time the infectives spend being able to

spread the contagion. Raising β means lowering the time from in-

fection to isolation, hence from infection to detection of the in-

fected state. 

The parameter α represents the infection rate , and as such it in-

cludes many thing. It depends both on the infection vector char-

acteristics (how easily it spreads around, and how easily it in-

fects a healthy individual who gets in contact with it), but is

also depends on the occasions of contacts between individuals. So,

roughly speaking, it is proportional to the number of close enough

contacts an individual has with other ones per unit of time. It fol-

lows that – if properly implemented – social distancing results in

reducing α. 

Each of these two actions presents some problem. There is usu-

ally some time for the appearance of symptoms once an individual
s infected, and the first symptoms can be quite weak. So early de-

ection is possible only by fast tracing and laboratory checking of

ll the contacts of those who are known to be infected. This has

 moderate cost (especially if compared to the cost of an Intensive

are hospital stay) but requires an extensive organization. 

On the other hand, social distancing is cheap in immediate

erms, but produces a notable strain of the societal life, and in

ractice – as many of the contacts are actually work related – re-

uires to stop as many production and economic activities as pos-

ible, i.e. has a formidable cost in the medium and long run. More-

ver, it cannot be pushed too far, as a number of activities and ser-

ices (e.g. those carrying food to people, urgent medical care, etc.)

an not be stopped. 

Let us come back to (1) ; using the first two equations, we can

tudy I in terms of S , and find out that 

 = I 0 + (S 0 − S) − γ log (S 0 /S) . (3)

s we know that the maximum I ∗ of I will be reached when S = γ ,

his allows immediately to determine the epidemic peak . In prac-

ice, I 0 is negligible and for a new virus S 0 corresponds to the

hole population, S 0 = N; thus 

 ∗ = N − γ − γ log (N/γ ) . (4)

Note that only γ appears in this expression; that is, raising β
r lowering α produces the same effect as long as we reach the

ame γ . 

On the other hand, this simple formula does not tell us when

he epidemic peak is reached, but only that it is reached when S

as the value γ . But if measures are taken, these should be effec-

ive for the whole duration of the epidemic, and it is not irrelevant

in particular if the social and economic life of a nation is stopped

to be able to evaluate how long this will be for. 

.1. Timescale of SIR dynamics 

Acting on α or on β to get the same γ will produce different

imescales for the dynamics; see Fig. 1 , in which we have used

alues of the parameters resulting from our fit of early data for

he Northern Italy COVID-19 epidemic [7] . 

This observation can be made more precise considering the

caling properties of (1) . In fact, consider the scaling 

→ λα β → λβ t → λ−1 t. (5)



G. Gaeta / Chaos, Solitons and Fractals 140 (2020) 110074 3 

 

a  

b

 

F  

p  

t

ϑ

 

b  

c  

s

γ  

γ  

β  

W

λ

 

i  

r

γ  

 

h  

p

 

i  

t  

m

t̃

A  

t  

[

R  

a  

i  

d  

f  

d  

a

3

 

i

2  

h  

v  

C  

s

c

3

 

m  

k  

r  

i  

β  

i  

i  

i

 

t  

r  

t  

m  

y  

o  

u

d

 

t  

r

 

f  

a  

k  

s

 

[  

p  

a  

o  

“  

s

 

e  

o  

l  

u

 

t  

a  

t  

w  

t  

t  

i  

i  

t  

i  

[  

d

 

a  
It is clear that under this scaling γ remains unchanged, and

lso the equations are not affected; thus the dynamics is the same

ut with a different time-scale . 

The same property can be looked at in a slightly different way.

irst of all, we note that one can write α = β/γ ; moreover, α ap-

ears in (1) only in connection with S , and it is more convenient

o introduce the variable 

 := S/γ . (6) 

Now, let us consider two SIR systems with the same initial data

ut different sets of parameters, and let us for ease of notation just

onsider the first two equations of each. Thus we have the two

ystems 

−1 d ϑ/d t = −β ϑ I d I/d t = β(ϑ − 1) I; (7)

˜ 

−1 d ̃  ϑ /d t = −˜ β ˜ ϑ ̃

 I d ̃  I /d t = 

˜ β ( ̃  ϑ − 1) ̃  I . (8)

We can consider the change of variables ( λ > 0) 

˜ = λ ˜ β := 

ˆ β t → λ−1 t := τ. (9)

ith this, (8) becomes 

˜ γ −1 (d ̃  ϑ /dτ ) = −λ ˆ β ˜ ϑ ̃

 I λ(d ̃  I /dτ ) = λ ˆ β ( ̃  ϑ − 1) ̃  I . 

We can thus eliminate the factor λ in both equations. However,

f we had chosen λ = 

˜ β/β, we get ˆ β = β; if moreover ˜ γ = γ , the

esulting equation is just 

−1 d ̃  ϑ /d τ = −β ˜ ϑ ̃

 I d ̃  I /d τ = β( ̃  ϑ − 1) ̃  I . (10)

But we had supposed the initial data for { S, I } and for { ̃  S , ̃  I } (and

ence also for ϑ and 

˜ ϑ ) to be the same. We can thus directly com-

are (10) with (7) . 

We observe that { ̃  ϑ , ̃  I } have thus exactly the same dynamics

n terms of the rescaled time τ as { ϑ, I } in terms of the original

ime t . In particular, if the maximum of I is reached at time t ∗ , the

aximum of ̃  I is reached at τ∗ = t ∗, and hence at 

 

 ∗ = λτ∗ = λ t ∗. (11) 

nalytical results on the timescale change induced by a rescaling of

he α and β parameters have recently been obtained by M. Cadoni

9] ; see also [10] . 

emark 3. We have supposed infected individuals to be immedi-

tely infective. If this is not the case an “Exposed” class should be

ntroduced. This is not qualitatively changing the outcome of our

iscussion, so we prefer to keep to the simplest setting. (Moreover,

or COVID it is known that individuals become infective well before

eveloping symptoms, so that our approximation is quite reason-

ble.) 

. A-SIR Model 

One of the striking aspects of the ongoing COVID-19 epidemic

s the presence of a large fraction of asymptomatic infectives [11–

2] ; note that here we will always use “asymptomatic” as a short-

and for “asymptomatic or paucisymptomatic”, as also people with

ery light symptoms will most likely escape to clinical detection of

OVID – and actually most frequently will not even think of con-

ulting a physician. 2 
2 It is maybe appropriate to stress that asymptomatic infectiveness should not be 

onfused with pre-symptomatic one. See the discussion below, in Remark 5 . i
.1. The model and its parameters 

In order to take this aspect into account, we have recently for-

ulated a variant of the SIR model [7] in which together with

nown infectives I ( t ), and hence known removed R ( t ), there are un-

egistered infectives J ( t ) and unregistered removed U ( t ). Note that

n this case removal amounts to healing; so while the removal time
−1 for known infected corresponds to the time from infection to

solation, thus in general slightly over the incubation time T i (this

s T i � 5.1 days for COVID), the removal time η−1 for unrecognized

nfects will correspond to incubation time plus healing time. 

In the model, it is supposed that symptomatic and asymp-

omatic infectives are infective in the same way. This is not fully

ealistic, as one may expect that somebody having the first symp-

oms will however be more retired, or at east other people will be

ore careful in contacts; but this assumption simplifies the anal-

sis,and is not completely unreasonable considering that for most

f the infection-to-isolation time β−1 the symptoms do not show

p. 

The equations for the A-SIR model [7] are 

d S/d t = −α S (I + J) 

d I/d t = α ξ S (I + J) − βI 

d J/d t = α (1 − ξ ) S (I + J) − η J (12) 

d R/d t = βI 

 U/d t = η J. 

Note that here too we have a “master” system of three equa-

ions (the first three) while the last two equations amount to di-

ect integrations, R (t) = R 0 + β
∫ t 

t 0 
I(y ) dy, U(t) = U 0 + η

∫ t 
t 0 

J(y ) dy. 

The parameter ξ ∈ [0, 1] represents the probability that an in-

ected individual is detected as such, i.e. falls in the class I . In the

bsence of epidemiological investigations to trace the contacts of

nown infectives, this corresponds to the probability of developing

ignificant symptoms. 

In the first (arXiv) circulated version [8] of our previous work

8] , some confusion about the identification of the class J was

resent, as this was sometimes considered to be the class of

symptomatic infectives, and sometimes that of not registered

nes 3 . While this is not too much of a problem considering the

natural” situation, it becomes so when we think of action on this

ituation. 

Actually, and unfortunately, this confusion has a consequence

xactly on one of the points we want to discuss here, i.e. the effect

f a campaign of chasing the infectives, e.g. among patients with

ight symptoms or within social contacts of known infectives; let

s thus discuss briefly this point. 

If J is considered to be the set of asymptomatic virus carriers,

hen a rise in the fraction of these who are known to be infective,

nd thus isolated, means that the average time for which asymp-

omatic infectives are not isolated is decreasing. In other words,

e are lowering η−1 and thus raising η. On the other hand, in

his description ξ is the probability that a new infective is asymp-

omatic, and this depends only on the nature of the virus and its

nteractions with the immune system of the infected people; thus

n this interpretation ξ should be considered as a constant of na-

ure, and it cannot be changed. (This is the point of view taken

n [7] ; however some of the assumptions made in its first version

8] were very reasonable only within the concurrent interpretation,

escribed in a moment.) 

On the other hand, if J is the class of unknown infectives, things

re slightly different. In fact, to be in this class it is needed ( a )
3 This confusion was of course corrected in the successive versions of the work, 

ncluding the published one [7] . 
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4 The value of the contact rate was then modified by the restrictive measures 

adopted by the Government, see the discussion in [7] . 
that the individual has no or very light symptoms; but also ( b )

that he/she is not traced and analyzed by some epidemiological

campaign, e.g. due to contacts with known infected or because be-

longing to some special risk category (e.g. hospital workers). In this

description, η is a constant of nature, depending on the nature of

the virus and on the response of the “average” immune system

of (asymptomatic) infected people, while effort s to trace asymp-

tomatic infectives will act on raising the probability ξ . 

We want to discuss the effect of early detection of infectives,

or tracing their contacts, within the second mentioned framework.

Note that a campaign of tracing contacts of infectives is useful not

only to uncover infectives with no symptoms, but if accompanied

by effective isolation of contacts with known infectives, and thus

of those who are most likely to be infective, it will also reduce the

removal time of “standard” (i.e. symptomatic) infectives, possibly

to a time smaller than the incubation time itself. 

Remark 4. In this sense, we will look at an increase in ξ as early

detection of infectives , and at an increase in both β and η (thus a

reduction in the removal times β−1 and η−1 ) as tracing contacts of

infectives . This should be kept in mind in our final discussion about

the effect of different strategies. 

Remark 5. As mentioned above, one should also avoid any confu-

sion between asymptomatic and pre-symptomatic infection. In our

description, pre-symptomatic infectives – i.e. individuals which are

infective and which do not yet display symptoms, but which will

at a later stage display them – are counted in the class of “stan-

dard” infectives, i.e. those who will eventually display symptoms

and hence be intercepted by the Health system with no need for

specific test or contact racing campaigns, exactly due to the ap-

pearance of symptoms. Actually one expects that except for the

early phase of the epidemics in the countries which were first hit

in a given area (such as China for Asia, or Italy for Europe), when

symptoms could be attributed to a different illness, most infec-

tions by symptomatic people are actually pre-symptomatic , as with

the appearance of symptoms people are either hospitalized or iso-

lated at home; and even before any contact with the Health system

they will avoid contacts with other – and other people will surely

do their best to avoid contacts with anybody displaying even light

COVID symptoms. In the case of asymptomatic infectives, instead,

unless they are detected by means of a test or contact tracing cam-

paign – see the forthcoming discussion – they remain infective un-

til they recover, so that in this case removal is indeed equivalent to

(spontaneous) recovery. 

3.2. A glimpse at COVID matters 

This approach, indeed, was taken in one of the areas of early

explosion of the contagion in Northern Italy, i.e. in Vò Euganeo;

this had the advantage of being a small community (about 30 0 0

residents), and all of them have been tested twice while embargo

was in operation. In fact, this was the first systematic study show-

ing that the number of asymptomatic carriers was very high, quite

above the expectations [23] . Apart from its scientific interest, the

approach proved very effective in practical terms, as new infectives

were quickly traced and in that specific area the contagion was

stopped in a short time. 

While testing everybody is not feasible in larger communities,

the “follow the contacts” approach could be used on a larger scale,

especially with the appearance of new very quick kits for ascer-

taining positivity to COVID. 

The model will thus react to a raising of ξ by raising the frac-

tion of I within the class of infectives, i.e. in K = I + J; but at the

same time, as critical patients are always the same, i.e. represents

always the same fraction of K , we should pay attention to the fact
hey will now represent a lower fraction of I . The Chinese expe-

ience shows that critical patients are about 10% of hospitalized

atients (i.e. of those with symptoms serious enough to require

ospitalization); and hospitalized patients represented about half

f known infected, the other being cured and isolated at home.

imilar percentages were observed in the early phase of the COVID

pidemic in Italy; the fraction of infectives isolated at home has

fterwards diminished, but it is believed that this was due to a dif-

erent policy for lab exams, i.e. checking prioritarily patients with

ultiple symptoms suggesting the presence of COVID rather than

ollowing the contacts. Actually this policy was followed in most

f Italy, but in one region (Veneto) the tracking of contacts and lab

xams for them was pursued, and in there the percentages were

uch more similar to those known to hold for China. 

.3. Numerical simulations protocol. Parameters and initial data 

In our previous work [7] we have considered data for the early

hase of COVID epidemics in Italy, and found that β−1 � 7 best fits

hem while the estimate η−1 � 21 was considered as a working hy-

othesis. This same work found as value of the contact rate in the

nitial phase α � 1 . 13 ∗ 10 −8 , and we will use this in our numerical

imulations. 4 

It should be stressed that the extraction of the parameter α
rom epidemiological data is based on the number S 0 � N of sus-

eptibles at the beginning of the epidemic, thus α and hence γ de-

end on the total population. The value given above was obtained

onsidering N = 2 ∗ 10 7 , i.e. the overall population of the three re-

ions (Lombardia, Veneto and Emilia-Romagna) which were mostly

ffected in the initial phase. 

Our forthcoming discussion, however, does not want to provide

 forecast on the development of the COVID epidemic in Northern

taly; we want instead to discuss – with realistic parameters and

ramework – what would be the differences if acting with differ-

nt strategies in an epidemic with the general characteristics of the

OVID one. Thus we will adopt the aforementioned parameters as

bare” ones (different strategies consisting indeed on acting on one

r the other of these) but will apply these on a case study initial

ondition; this will be given by 

 0 = 10 J 0 = 90; R 0 = U 0 = 0 . (13)

One important parameter is missing from this list, i.e. the de-

ection probability ξ . Following Li et al. [24] we assumed in previ-

us work that ξ is between 1/10 and 1/7. Later works (and a gen-

ral public interview by the Head of the Government agency han-

ling the epidemic [25] ) suggested that the lower bound is nearer

o the truth; moreover a lower ξ will give us greater opportunity

o improve things by acting on it (we will see this is not the best

trategy, so it makes sense to consider the setting more favorable

o it). We will thus run our simulation starting from a “bare” value

= 1 / 10 . 

As for the total population, we set N = 2 ∗ 10 7 . With these

hoices we get 

= 1 . 26 ∗ 10 

7 S 0 
γ

� 1 . 58 . (14)

e would like to stress once again that we will work with con-

tant parameters, while in reality the parameters are changing all

he time due to the continuing effort s to cont ain the epidemic. So

ur discussion is valid for what concerns the effect of different ac-

ions, but the absolute values of infected and other classes are by

o means a forecast of what will happen; rather they should be

een – in particular, those relating to the “bare” parameters – as
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 projection of what could have happened if no action was under-

aken. 

emark 6. A note by an Oxford group [26] , much discussed (also

n general press [27] ) upon its appearance, hinted that in Italy and

K this fraction could be as low as ξ = 1 / 100 . We have ascer-

ained that with this value of ξ , and assuming α was not changed

y the restrictive measures adopted in the meanwhile, the A-SIR

odel fits quite well the epidemiological data available to the end

f April. However, despite this, we do not trust this hypothesis –

t least for Italy – for various reasons, such as (in order of increas-

ng relevance): ( i ) A viral infection showing effects only in 1% of

ffected individuals would be rather exceptional; ( ii ) Albeit in our

pinion the effect of social distancing measures adopted in Italy is

ometimes overestimated, we trust that there has been some ef-

ect; ( iii ) if only 1% of infected people was detected, in some parts

f Italy the infected population would be over 100%. On the other

and, the main point made by this report [26] , i.e. that only a large

cale serological study, checking if people have COVID antibodies,

ill be able to tell how diffuse the infection is – and should be

erformed as soon as possible – is by all means true and correct.

ee also [28] . 

.4. Balance between registered and unregistered infectives 

A look at Eqs. (12) shows that I will grow provided 

ξ S 

γ
> 

I 

I + J 
= 

I 

K 

:= x (15) 

here again γ = β/α, and we have introduced the ratio x ( t ) of

nown infectives over total infectives. In other words, now the epi-

emic threshold 

I = 

(
x 

ξ

)
γ (16) 

epends on the distribution of infectives in the classes I and J . Note

hat if x = ξ (as one would expect to happen in early stages of the

pidemic), then γI = γ . 
ig. 2. Dynamics of x ( t ) in the A-SIR model. We plot x ( t ) in upper plots (a1) and (b1); a

onsidered along the solutions of the A-SIR model for α = 1 . 13 ∗ 10 −8 , β = 1 / 7 , η = 1 / 14

 0 + J 0 = 10 ; in the right column, i.e. in plots (b1) and (b2), for S 0 = 6 ∗ 10 7 and I 0 + J 0 = 3

ne. 
Needless to say, we have a similar result for J , i.e. J will grow as

ar as 

(1 − ξ ) S 
α

η
> 

J 

I + J 
= 

J 

K 

:= y = 1 − x ; (17)

hus the epidemic threshold for unregistered infectives is 

J = 

(
1 − x 

1 − ξ

)
η

α
. (18) 

or x = ξ (see above) we would have γJ = (η/β) γ < γ . 

It is important to note that x is evolving in time. More precisely,

y the equations for I and J we get 

dx 

dt 
= α ξ S − ( αS + β − η) x + (β − η) x 2 

= α S (ξ − x ) + (β − η) (x 2 − x ) . (19) 

The behavior observed in Fig. 2 , which displays x ( t ) and related

uantities on a numerical solution of Eq. (12) , can be easily un-

erstood intuitively. In the first phase of the epidemic, there is an

xponential growth of both I and J ; due to the structure of the

quations, they grow with the same rate, so their ratio remains

onstant; on the other hand, once the dynamics get near to the

pidemic peak, the difference in the permanence time of the two

that is, the time individuals remain in the infect class) becomes

elevant, and we see (plots (a2) and (b2) of Fig. 2 ) that not only

he peak for J is higher than the one for I , but it occurs at a slightly

ater time. Moreover, descending off the peak is also faster for I , as
−1 < η−1 , and thus x further decreases, until it reaches a new

quilibrium while both classes I and J go exponentially to zero. 

If we look at (19) we see that for fixed S the variable x would

ave two equilibria (one stable with 0 < x < 1 and one unstable

ith x > 1, stability following from β − η > 0 ), easily determined

olving d x/d t = 0 . Numerical simulations show that – apart from

n initial transient – actually x ( t ) stays near, but in general does

ot really sticks to, the stable fixed point determined in this way. 
nd I ( t ) (dashed curve) and J ( t ) (solid curve) in lower plots (a2) and (b2). These are 

 , and ξ = 1 / 10 ; in the left column, i.e. in plots (a1) and (a2), with S 0 = 2 ∗ 10 7 and 

0 . The scale of plots (a2) and (b2) is chosen so that the maximum of J ( t ) is at level 
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3.5. The basic reproduction number 

A relevant point should be noted here. If we consider the sum

K(t) := I(t) + J(t) (20)

of all infectives, the A-SIR model can be cast as a SIR model in

terms of S, K , and Q = R + U as 

d S/d t = −α S K 

d K/d t = α S K − B K (21)

d Q/d t = B K 

where B is the average removal rate, i.e. 

B = x β + (1 − x ) η. 

As x varies in time, this average removal rate is also changing. On

the other hand, the basic reproduction number (BRN) ρ0 (this is

usually denoted as R 0 , but we prefer to change this notation in or-

der to avoid any confusion with initial data for the known removed

R ( t )) for this model will be 

ρ0 = 

α

B 

S > 

α

β
S. (22)

In other words, not taking the asymptomatic infectives into ac-

count leads to an underestimation of the BRN. If the standard SIR

model predicts a BRN of ρ0 , the A-SIR model yields a BRN ˆ ρ0 given

by 

ˆ ρ0 = 

β

B 

ρ0 = 

β

xβ + (1 − x ) η
ρ0 > ρ0 . (23)

This means that the epidemic will develop faster, and possibly

much faster, than what one would expect on the basis of an es-

timate of ρ0 based only on registered cases, which in the initial

phase are a subset of symptomatic cases as the symptoms may

easily be leading to a wrong diagnosis (in the case of COVID they

lead to a diagnosis of standard flu). 

With our COVID-related values β = 1 / 7 , η = 1 / 21 , and assum-

ing that in the early phase x = ξ = 1 / 10 , we get 

ˆ ρ0 = 

5 

2 

ρ0 ; (24)

there is thus a good reason for being surprised by the fast devel-

opment of the epidemic: the actual BRN is substantially higher than

the one estimated by symptomatic infections [29] . 

4. Hidden infectives and epidemic dynamics 

More generally, one would wonder what is the effect of the

“hidden” infectives J ( t ) on the dynamics of the known infectives I ( t )

– which, we recall, include the relevant class of seriously affected

infectives – and it appears that there are at least two, contrasting,

effects: 

1. On the one hand, the hidden infectives speed up the contagion

spread and hence the rise of I ( t ); 

2. On the other hand, they contribute to group immunity, so the

larger this class the faster (and the lower the I level at which)

the group immunity will be reached. 

The discussion above shows that the balance of these two fac-

tors leads to a much lower epidemic peak, and a shorter epidemic

time, than those expected on the basis of the standard SIR model

(albeit in the case of COVID with no intervention these are still

awful numbers). 

On the other hand, we would like to understand if uncovering

a larger number of cases (thus having prompt isolation of a larger

fraction of the infectives) by early detection , i.e. raising ξ , would
lter the time-span of the epidemic. It appears that this effect can

e only marginal, as it appears only past the epidemic peak. 

We stress that this statement refers to “after incubation” anal-

sis; if we were able to isolate cases before they test positive – i.e.

o substantially reduce β−1 – the effect could be different. We will

iscuss this point, related to contact tracing , later on. 

.1. COVID. Observable and “clean” observable data 

An ongoing epidemic is not a laboratory experiment, and apart

rom not having controlled external conditions, i.e. constant pa-

ameters, the very collection of data is of course not the top prior-

ty of doctors fighting to save human lives. 

There has been considerable debate on what would be the most

eliable indicator to overcome at least the second of these prob-

ems. One suggestion is to focus on the number of deaths; but this

s itself not reliable, as in many cases COVID is lethal on individu-

ls which already had some medical problem, and registering these

eaths as due to COVID or to some other cause depends on the

rotocol adopted, and in some case also on political choices, e.g in

rder to reassure citizens (or on the other extreme, to stress great

are must be taken to avoid contagion). 

Another proposed indicator, possibly the most reliable in order

o monitor the development of the epidemic, is that of patients

n Intensive Care Units. This appears to be sufficiently stable over

ifferent countries, and e.g. the Italian data tend to reproduce in

his respect - at least in Regions where the sanitary system is not

verstretched – the Chinese ones. 

In this case, IC patients are about 20% of the total number of

ospitalized cases; in China and for a long time also in Italy (when

rotocols for choosing would-be cases to be subject to laboratory

nalysis have been stable), hospitalized cases have been about half

f the known infection cases, the other having shown only minor

ymptoms and been cured (and isolated) in their home. 

The other, more widely used, indicator is simply the total num-

er of known cases of infection. In view of the presence of a large

lass of asymptomatic infectives, this itself is strongly depending

n the protocols for chasing infectives. On the other hand, this

s the most available indicator: e.g., the W.H.O. situation reports

30] provide these data. 

Each of these indicators, thus, has advantages and disadvan-

ages. We will just use the WHO data on known infected. 

In particular, in the case of COVID we expect that with ξ 0 the

bare” constant describing the probability that an infection is de-

ected, out of the class I ( t ) we will have a 50% of infected with

ittle or no symptoms ( I L ), a 40% of standard care hospitalized in-

ected ( I H ), and a 10% of IC hospitalized infected ( I IC ). Needless to

ay, this class is the most critical one, also in terms of strain on

he health system. 

More generally, we say that with ξ 0 the “bare” constant de-

cribing the probability that the infection under study is detected,

here is a fraction χ0 (of the detected infections) belonging to the

 IC class; that is, I IC (t) = χ0 I(t) . 

emark 7. We stress this depends on the protocol used to trigger

aboratory tests; in our general theoretical discussion, this is any

uch protocol and we want to discuss the consequences of chang-

ng this in the sense of more extensive tests. 

. Modifying the parameters 

We are now ready to discuss how modification of one or the

ther of the different parameters ( α, β , ξ ) on which we can act

y various means will affect the A-SIR dynamics. As it should be

xpected, this will give results similar to those holding for the SIR

odel, but now we have one more parameter to be considered and

hus a more rich set of possible actions. 



G. Gaeta / Chaos, Solitons and Fractals 140 (2020) 110074 7 

Fig. 3. The effect of a change in ξ on the I IC class. We have used β = 1 / 7 , η = 

1 / 21 , and α = 1 . 13 ∗ 10 −8 as in Fig. 2 , with a total population of N = 2 ∗ 10 7 , and 

ran simulations with ξ = 1 / 10 (solid curve) and with ξ = 1 / 4 (dashed curve). The 

substantial increase in ξ produces a reduction in the epidemic peak and a general 

slowing down of the dynamics, but both these effects are rather small. 
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Fig. 4. The effect of a change in β on the I IC class. We have used ξ = 1 / 10 , η = 

1 / 21 , and α = 1 . 13 ∗ 10 −8 as in Fig. 2 , with a total population of N = 2 ∗ 10 7 , and 

ran simulations with β = 1 / 7 (solid curve) and with β = 1 / 3 (dashed curve). The 

substantial increase in β produces a marked reduction in the epidemic peak and a 

very slightly faster pace in the dynamics. 
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.1. Raising the detected fraction 

A more extensive test campaign will raise ξ , say from ξ 0 to ξ 1 ;

ut of course this will not change the number of the most seri-

us cases, as these are anyway getting to hospital and detected as

eing due to the infection in question. Thus the new fraction χ1 

f detected infections which need special care will be such that

1 ξ1 = χ0 ξ0 , i.e. we have 

1 = 

ξ0 

ξ1 

χ0 . (25) 

In order to describe the result of raising ξ , we should thus com-

are plots of 

 IC (t) = χ I(t) . (26)

This is what we do, indeed, in Fig. 3 . 

.2. Running ahead of the epidemic wave 

Raising ξ corresponds to having more infective detected, and

as some advantages from the point of view of the epidemic dy-

amics. In practical terms, this means extending tests to a larger

lass of subjects, and be able to isolate a larger fraction of asymp-

omatic infectives with the same speed and effectiveness as symp-

omatic ones. 

A different strategy for rapid action is also possible, and it con-

ists of rapid isolations of subjects who had contacts with people

nown to have been infected, or who have themselves been in con-

act with known infectives (and so on). In other words, the strategy

ould be to isolate would-be infection carriers before any symp-

om could show up. This means that β−1 could be even smaller

han the usual infection-to-isolation time (about seven days for

OVID) for symptomatic infectives, and even shorter than the in-

ubation time (about five days for COVID). 

emark 8. It should be stressed that as each of these “possible in-

ected” might have a small probability of being actually infected

depending on the kind of contacts chain leading to him/her from

nown infectives), here “isolation” does not necessarily mean top

rade isolation, but might amount to a very conservative lifestyle,

lso – and actually, especially – within home, where a large part

f registered Chinese contagions took place. (The same large role

f in-home contagion was observed in Italy in the course of lock-

own.) 

We have thus ran a simulation in which ξ is not changed, but

is raised from β0 = 1 / 7 to β = 1 / 3 ; the result of this is shown in

ig. 4 . In this case we have a marked diminution of the epidemic

eak, and a very slight acceleration of the dynamics. 
.3. Social distancing 

We have so far not discussed the most basic tool in epidemic

ontainment, i.e. social distancing. This means acting on the pa-

ameter α by reducing it. 

emark 9. Direct measurement on the epidemiological data for

orthern Italy show that this parameter can be reduced to about

0% of its initial value with relatively mild measures. In fact, albeit

he media speak of a generalized lockdown in Italy, the measures

ave closed schools and a number of commercial activities, but for

he rest were actually more pointing at limiting leisure walk and

ports and somewhat avoiding contacts in shops or in work envi-

onment than to a real lockdown as it was adopted in Wuhan. 

This is a basic action to be undertaken, and in fact it is being

aken by all Nations. It is also the simplest one to be organized

albeit with high economic and social costs in the long run) and an

ction which can be taken together with other ones. No doubt this

hould be immediately taken when an epidemic is starting, and

ccompanied by other measures – such as those discussed above.

ut here we want to continue our study of what it means by itself

n terms of modification of the epidemic dynamics. 

It is not clear what can be achieved in terms of reduction of so-

ial contacts. In fact, once the epidemic starts most of the danger-

us contacts are the unavoidable ones, such as those arising from

ssential services and production activity (e.g. production and dis-

ribution of food or pharmaceutical goods), contacts at home, and

bove all contacts in Hospitals. Thus, after a first big leap down-

ard corresponding to closing of schools and Universities on the

ne side, and a number of unessential commercial activities on the

ther, and restrictions on travels, it is difficult to further reduce so-

ial contacts, not to say that this would have huge economic and

ocial costs, and also a large impact on the general health in terms

f sedentariness-related illness (and possibly mental health). 

emark 10. A number of countries tried to further reduce social

ontacts by forbidding citizens to get out of their home; this makes

ood sense in densely populated areas, but is useless in many

ther areas. The fortunate slogan “stay home” risks to hide to the

eneral public that the problem is not to seclude oneself in self-

unishment, but to avoid contacts . 

.4. Social distancing and epidemic timescale 

We point out that there is a further obstacle to reducing social

ontacts: as seen in the context of the simple SIR model, reduc-

ng α will lower the epidemic peak, but it will also slow down the

hole dynamic . While this allows to gain precious time to prepare
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Fig. 5. The effect of a change in α on the I IC class. We have used β = 1 / 7 , ξ = 

1 / 10 , η = 1 / 21 , with a total population of N = 2 ∗ 10 7 , and ran simulations with 

α = 1 . 13 ∗ 10 −8 (solid curve) and with α = 8 . 47 ∗ 10 −9 (dashed curve). The reduction 

in α produces a marked reduction in the epidemic peak and also a marked slowing 

down in the dynamics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Epidemic peak (for I IC ) and time for reaching it (in 

days) as observed in our numerical simulations. 

All simulation were ran with N = 2 ∗ 10 7 and η = 

1 / 21 . 

α β ξ max time 

1 . 13 ∗ 10 −8 1/7 1/10 44,768 75 

1 . 13 ∗ 10 −8 1/7 1/4 41,482 79 

1 . 13 ∗ 10 −8 1/3 1/10 20,943 74 

8 . 47 ∗ 10 −9 1/7 1/10 30,956 107 
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Hospitals to stand the big wave, there is some temporal limit to an

extended lockdown, and thus this tool cannot be used to too large

an extent. 

We have thus ran a simulation in which β and ξ are not

changed, while α is reduced by a factor 0.75 (smaller factors, i.e.

smaller α, produce an untenable length of the critical phase); the

result of this is shown in Fig. 5 . In this case we have a relevant

diminution of the epidemic peak, and also a marked slowing down

in the dynamics. 

An important remark is needed here. It may seem, looking at

this plot, that social distancing is less effective than other way of

coping with the epidemic. But these simulation concern a SIR-type

model; this means in particular that there is no spatial structure in

our model [2] . The travel ban is the most effective way of avoiding

the spreading of contagion from one region to the others; while

the “local” measures of social distancing can (and should) be trig-

gered to find a balance with other needs, travel ban is the simplest

and most effective way of protecting the communities which have

not yet been touched by the epidemic. 

5.5. Comparing different strategies 

We can thus compare the different strategies we have been

considering. This is done in Fig. 6 where we plot together I IC ( t )

for all our different simulations; and in Table 1 where we compare

the height of the epidemic peak – again for I IC ( t ) – and the time at
which it is reached. 

Fig. 6. The effect of different strategies. We plot I IC ( t ) for N = 2 ∗ 10 7 in the ”bare”

case, i.e. for α = 1 . 13 ∗ 10 −8 , β = 1 / 7 , ξ = 1 / 10 , η = 1 / 21 , and in cases where 

(only) one of the parameters is changed. In particular we have the bare case (solid 

line), the case where ξ is changed into ξ = 1 / 4 (dotted), the case where β is 

changed to β = 1 / 3 (dashed), and that where α is changed to α = 8 . 47 ∗ 10 −9 (solid, 

blue). We also plot a horizontal line representing a hypothetical maximal capacity 

of IC units. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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In Fig. 6 we have also drawn a line representing the hypothet-

cal maximal capacity of IC units. This stresses that not only the

ifferent actions lower the epidemic peak, but they also – and to

n even larger extent – reduce the number of patients which can

ot be conveniently treated. 

emark 11. In looking at this plot, one should remember that the

odel does not really discuss permanence in IC units, and that I IC 
re the infected which when detected will require IC treatment; this

ay go on for a long time – which is the reason why IC units are

aturated in treating COVID patients. So the plots are purely in-

icative, and a more detailed analysis (also with real parameters)

ould be needed to estimate the IC needs in the different scenar-

os. 

It should be stressed that the strategies of contacts tracing and

arly detection are usually played together; but as confusion could

rise on this point, let us briefly discuss it. We have tried to stress

hat these two actions are not equivalent: one could conduct ran-

om testing, so uncovering a number of asymptomatic infectives,

nd just promptly isolate them without tracing their contacts;or on

he other extreme one could just isolate everybody who had a (di-

ect or indirect) contact with a known infective, without bothering

o ascertain if they are themselves infective or not. This strategy

ould be as effective in containing the contagion (and less costly

n terms of laboratory tests) than that of tracking contacts, test

hem (after a suitable time for the infection to develop and test

ive positive if this happens), and isolate only those who really

urn infective. The difference is that if we isolate everybody this

ould involve a huge number of people (e.g. all those who have

een in the same supermarket the same day as an infective; and

heir families and contacts etc etc); so in this context early detec-

ion actually should be intended as early detection of non-infectives ,

o that cautionary quarantine can be kept reasonably short in all

he cases where it is not really needed. 

Finally we recall that it is a triviality, and it was already men-

ioned in the Introduction, that in real situations one has not to

hoose between acting on one or the other of the parameters, and

ll kind of actions should be pursued simultaneously. 

.6. A different indicator 

The numerical computations of the previous subsections sug-

est that increasing ξ – that is, detection of a larger fraction of

symptomatic – is not a very efficient strategy to counter the dif-

usion of an infection with a large number of asymptomatic in-

ectives, while a prompt isolation of infectives is a more effective

ction. 

It should be recalled, however, that in our computations – and

n particular on Fig. 6 , where their outcomes are compared – we

re focusing on the number of patients needing IC support, i.e. the

ost critical parameter from the point of view of the Health sys-

em. In order to substantiate our conclusions, it is worth consider-

ng also different ways to evaluate the effect of different strategies.
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Fig. 7. Plot of the total number of infectives K(t) = I(t) + J(t) for parameters as in 

(27), (28) and with different choices of the modulation factors μi . The initial condi- 

tions are chosen according to (29) . In the reference run (black curve, solid) all the 

μi are equal to 1; in the other runs the modified factors are as follows: Change of 

ξ (blue), r ξ = 2 . 5 ; change of β alone (green), r β = 7 / 3 ; change of η alone (yellow), 

r η = 7 / 3 ; change of both β and η (red), r β = r η = 7 / 3 ; change of α (black, dashed), 

r α = 3 / 5 . (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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6 One point needs maybe further discussion. A tight social distancing policy is, 

after all, keeping people from having contacts and is thus equivalent to isolate not 

only would-be infectives but everybody; thus this should be equally effective. The 

point is that a “no contacts for everybody” policy is simply not feasible: ill people 

need help, people living in cities need to buy food, a number of essential services 

simply cannot be stopped. 
We have thus considered also a different indicator, i.e. the total

umber of infectives 

(t) := I(t) + J(t) . 

e have run several simulations, with total population N = 2 ∗ 10 7 

nd with parameters 

= μαα0 β = μββ0 η = μηη0 ξ = μξξ0 . (27)

Here μi are modulation factors describing the changes in the

asic parameters, and 

0 = 1 . 13 ∗ 10 

−8 β0 = 1 / 7 η0 = 1 / 21 ξ0 = 1 / 10 (28)

re reference values (already used in the previous subsections). The

nitial conditions where chosen so that 

 0 = 100 ; I 0 = ξK 0 J 0 = (1 − ξ ) K 0 . (29)

The outcome of these simulations is displayed in Fig. 7 ; see its

aption for the parameter (that is, the modulation factor) values in

ifferent runs. 

We see from Fig. 7 that action on α slows down substantially

he epidemic dynamics 5 and reduce the epidemic peak, while ac-

ion on ξ or on β alone produce only a moderate effect. On the

ther hand, actions affecting the value of η (alone or together with

he value of β) reduce substantially the epidemic peak and slightly

low down the dynamics. 

emark 12. It may be noted that the shapes of the I IC ( t ) (see

ig. 6 ) and of the K ( t ) (see Fig. 7 ) are different; in particular, the

ecay of I IC ( t ) after attaining its peak is faster than the decay of

 ( t ). This corresponds to what is observed in the epidemiological

ata for Italy. 

. Discussion and conclusions 

We have considered epidemic dynamics as described by “mean

eld” models of the SIR type; more specifically, we have first con- 

idered the classical Kermack-McKendrick SIR model [1–5] and

hen a recently introduced modified version of it [7] taking into

ccount the presence of a large set of asymptomatic – and thus

ost frequently not detected – infectives. These models depend on

everal parameters, and different types of measures can to some

xtent change these parameters and thus the epidemic dynamics.
5 The factor r α = 3 / 5 was chosen so not to have it completely off-scale with re- 

pect to the reference run. 

t

a

i

n particular, this action can effect two basic characteristics of it,

.e. the height of the epidemic peak and the time-span of the epi-

emic. 

While it is clear that in facing a real lethal epidemics (such

s the ongoing COVID epidemic) all actions which can contrast it

hould be developed at the same time, in this paper we have con-

idered the result – within these models – of different tools at

ur disposal, i.e. (generalized) social distancing, early detection (of

symptomatic infectives) and contacts tracing (of symptomatic and

symptomatic infectives). 

It turns out that – both in the classical SIR model and in the

odified A-SIR one – social distancing is effective in reducing the

pidemic peak, and moreover it slows down the epidemic dynam-

cs. On the other hand, early detection of asymptomatic infectives

eems to have only a moderate effect in the reduction of the epi-

emic peak for what concerns critical cases, and also a very little

ffect on the temporal development of the epidemic. In contrast,

ontact tracing has a strong impact on the epidemic peak – also in

erms of critical cases – and does not substantially alter the tem-

oral development of the epidemic, at least for what concerns the

urve describing the most serious cases. 6 

emark 13. The conclusion that early detection of asymptomatic

as only a moderate effect may appear to be paradoxical, and re-

uires some further discussion. First of all we should remind that

e are here actually talking about an increase of the parameter ξ
see Remark 4 ), while in a real situation early detection of asymp-

omatic will most likely go together with early detection of symp-

omatic, and hence a reduction in β as well. The increase of ξ
er se means that some fraction of asymptomatic will be recog-

ized as infective and be isolated on the same timescale β−1 as

he symptomatic infectives, while the other asymptomatic will es-

ape recognition and still be infective on a timescale η−1 . On the

ther hand, a realistic contact tracing campaign will lead to prompt

solation of symptomatic and asymptomatic alike, and thus corre-

pond to a reduction in β−1 and in η−1 , and we have seen that

his action is indeed the most effective one in terms of contrasting

he spread of the epidemic. In other words, our result suggests that

he key to fight COVID is not so much in detection , but in prompt

solation of infectives, and most notably of asymptomatic ones. This

an be achieved only by contact tracing – as already suggested by

xperienced epidemiologists. 7 

Slowing down the epidemic dynamic can be a positive or neg-

tive feature depending on the concrete situation and on the de-

ired effects. It is surely positive in what concerns getting ready to

ace the epidemic peak, in particular in the presence of a falter-

ng Health System. On the other hand, it may be negative in that

aintaining a generalized lockdown for a long time can have ex-

remely serious economic and social consequences. Balancing these

wo aspects is not a matter for the mathematician or the scientist,

ut for the decision maker; so we will not comment any further

bout this. 

It should also be recalled that our analysis was conducted in

erms of very simple SIR-type models, with all their limitations.

n particular, we have considered no age or geographical or social

tructure, and only considered a population of “equivalent” indi-
7 To give further strength to this conclusion, note that if we run a simulation with 

he same parameters as in Section 5.6 above but with η = β = 1 / 7 – i.e. assuming 

symptomatic are isolated after the same characteristic time as symptomatic from 

nfection – what is observed is that K is steadily decreasing. 
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viduals. In particular, as we have noted above, in the early stage

of an epidemic, which presumably develops in very populated ar-

eas, a generalized travel ban can simply stop the contagion to

propagate to other (possibly less well equipped in medical terms)

areas; moreover, social distancing measures can be implemented

very simply – basically, by a Government order (albeit if we look at

the goal of these measures, i.e. reducing the occasion of exchang-

ing the virus, a substantial role would be played by individual pro-

tection devices, such as facial masks; in many European countries,

these were simply not available to the general public, and in some

cases neither to medical operators, thus substantially reducing the

impact of these measures) – and are thus the first action to be

taken. In fact, in relation with the ongoing COVID epidemics, one

of the reproaches made to many Governments is usually to have

been too slow or too soft in stopping crowd gatherings, surely not

the contrary. 

On the other hand, we hope that this study makes clear what

are the consequences of different options. In particular, our study

shows that contacts tracing , followed by prompt isolation of would-

be infected people – is the only way to reduce the impact of the

epidemic without having to live with it for an exceedingly long

time. The Veneto experience [23] shows that this strategy can be

effectively im plemented without hurting privacy or personal free-

dom. 

Declaration of Competing Interest 

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper. 

CRediT authorship contribution statement 

Giuseppe Gaeta: Conceptualization, Data curation, Formal anal-

ysis, Funding acquisition, Investigation, Methodology, Project ad-

ministration, Resources, Software, Supervision, Validation, Visual-

ization, Writing - original draft, Writing - review & editing. 

Acknowledgements 

The work was carried out in lockdown at SMRI. I am also a

member of GNFM-INdAM. 

Appendix A. An aftersight on the A-SIR model 

Our discussion was based on SIR-type models, and in particular

on the A-SIR model. This raises several kind of questions, which

we address in this Appendix. 

1. The choice of dealing with SIR-type (i.e. compartment) models

in dealing with the COVID-19 epidemic could be questioned. 

2. Within this class, the A-SIR model is specially simple; it makes

sense to rely on this model only if it is able to give a reasonable

agreement with observed data. 

3. The A-SIR model is the simplest one taking into account the

presence of asymptomatic infectives. Other – more detailed –

models taking this fact into account have also been developed. 

We are now going to briefly discuss these matters; we point

out that this Appendix was inserted in the revised version of this

paper, so it can make use of knowledge not available at the time of

writing the first submitted version, nd mentions papers appeared

after the first submittal. 
1. Use of SIR-type models 

Compartment models, i.e. SIR-type ones in this context, are

ased on several implicit and explicit assumptions, which are not

ealistic in many cases and surely when attempting to describe the

OVID epidemic, in particular in a full country. 

That is, among other aspects, SIR-type models are (in Physics’

anguage) mean field (averaged) models and as such describe the

ynamics and the underlying system as if: 

• All individuals are equivalent in medical sense, i.e. they all

have equivalent pre-existent health status and equivalent im-

mune system and react in the same way to contact with the

pathogen; 
• In particular, as we know that COVID is statistically more dan-

gerous for older people, we are completely disregarding the age

structure of the population, as well as the existence of other

high risk classes related to pre-existent pathologies: all these

contribute to an average over the whole population; 
• All individuals are equivalent in social sense, i.e. they all have

an equivalent social activity and hence the same number and

intensity of contacts with other members of the group, thus the

same exposure to (possible) infectives; 
• In particular, this means we are completely disregarding any ge-

ographical structure in the population, and consider in the same

way people living in large cities or in remote villages, just con-

sidering them in the same global average; 
• Similarly, we do not consider that work can cause some people

to be specially exposed through contact with a large number

of people (e.g. shop cashiers) or even with a large number of

infected people (e.g. medical doctors or nurses). 

Thus one cannot hope to retain, through such models, effects

ike the faster spreading of the infection in more densely populated

reas or the specially serious consequences of the COVID infection

mong older people. 

We stress that these could be obtained by including geographi-

al, age or social structures into the model, i.e. increasing the num-

er of considered classes; in principles this should provide a finer

nd more realistic description of the epidemic dynamic, and in fact

t is done in cases for which there is a large set of data, e.g. for in-

uenza. Such structured models would of course loose the main

ttractive of the SIR model, i.e. its simplicity – which also allows

o understand in qualitative terms the mechanisms at work. 

In particular, a relevant intermediate class of models is that of

IR-type models on networks: these take into account geographi-

al and social structures and make use of known information about

ontacts between different groups of individuals and about differ-

nt health characteristics of different groups. 

The problem with these networked or however more structured

odels is that the network should be inferred from data. In this

espect, it could be objected that the influenza monitoring over

any years could give us the relevant data for reconstruction of

uch network; but it is everybody’s experience, by now, that the

ocial behavior of people are completely different if dealing with a

ell known and not so serious (except for certain categories) ill-

ess like influenza or with an unknown and potentially lethal one

ike COVID; this not to say that the restrictive measures put into

ffect by many Governments have completely changed the interac-

ion patterns among people, so that previously accumulated data

annot be used in the present situation. 

When thinking of COVID; it should be kept in mind that even if

he countries which were first hit by the epidemic, we only have

ata over some months; e.g. for Italy we have about 100 days of

ata. If we were trying to give the model a geographical structure

t the level of Departments (which are themselves administrative

nits mostly with a very varied internal geographical structure),
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Fig. 8. Epidemiological data against solutions of the A-SIR Eqs. (12) for Italy. Time 

is measured in days, with day 0 being February 20, 2020. See text for parameter 

values and initial conditions. 
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s there are 107 Departments in Italy this would require in the

implest form to evaluate a 107 × 107 interaction matrix, and I

annot see any way to reliably build this out of such a scarce set

f data. 

Moreover, the epidemiological data are to some extent not re-

iable, especially around the epidemic peak, in that they are col-

ected in an emergency situation, when other priorities are present

n Hospitals (e.g. in Italy the data show a weekly modulation,

hich appears to be due simply to the procedure of data collec-

ion); so an even larger amount of data would be needed to filter

ut statistical noise and random fluctuations. 

In this sense, the weak point of SIR-type models, i.e. their being

ased on an average over the whole population, turns out to be an

dvantage: they contain few parameters (two for the SIR, four for

he A-SIR) and are thus statistically more robust in that fluctua-

ions are averaged efficiently with less data than for more refined

odels with a large number of parameters. 

emark 14. Similar considerations hold when one compares SIR-

ype models to a purely statistical description or to an “emerging

ehavior” approach. These approaches are extremely powerful, but

re effective when one has a large database to build on and to

hich compare the outcome of the “experiment” (in this case the

pidemic) under consideration. When we deal with a completely

ew pathogen,like for COVID, we simply don’t have a database, and

e can only rely on the very general features of infective dynamics

which are well coded by SIR and SIR-like models. 

In other words, we are not claiming the SIR approach to be su-

erior to others, but only that it is appropriate when we have few

ata – as for COVID. 

2. Use of the A-SIR model 

Within the SIR-type class, the A-SIR model is specially simple;

rom the theoretical point of view its appeal lies in that it is the

implest possible model taking into account the presence of a large

lass of asymptomatic infectives; thus it focuses on the effect of

his fact without the complications of a more detailed model. But,

f course, it makes sense to rely on this model only if it is able

o give a good, or at least a reasonable, agreement with observed

ata. 

Of course each infective agent has its own characteristics, and

sing only the general SIR model would completely overlook them,

part from the different values of the α and β parameters. 

Thus we have to do something more than just evaluating the

IR parameters. In our study we have identified the presence of a

arge class of asymptomatic infectives as one of the key problems

n facing the COVID epidemic, and we have considered a simple

odel which allows to focus precisely on this aspect. 

One should be aware that the A-SIR model is focusing on this

nd not considering other features of COVID, and indeed other

ore detailed SIR-type models for COVID have been formulated

nd studied (see also below). Here we are taking an approach

hich is classical in Mathematical Physics and Mathematical Mod-

ling, i.e. try to build and study the simplest model describing the

henomenon of interest. This will give results which are quantita-

ively worse than a more detailed models, but which are qualita-

ively good in that the model is simple enough to see more clearly

hat are the mechanisms at work and to understand the qualita-

ive features if the dynamics and the qualitative outcome of any

ntervention able to modify the parameters of the model. 

Having said that, it remains true that – as mentioned above –

t makes sense to rely on this model only if it is able to give a rea-

onable agreement with observed data. This is not the argument of

his paper, and it was discussed in a previous paper [7] ; the suc-

ess of this model was the justification for this paper,i.e. for dis-
ussing the effect of different COVID-contrasting strategies in terms

f it. 

However, the first version of this paper was submitted at mid-

ay, hence with two and half months of data available, while at

he time of preparing this revised version we have four months of

ata; that represents a substantial increase in the available data,

nd it makes sense to wonder if the model is still describing the

OVID epidemic in Italy. 

This is indeed the case, as shown in Fig. 8 ; they represent

pidemiological data as communicated by the Italian Health Min-

stry and by WHO (and widely available online through the stan-

ard COVID databases) against a numerical integration of the A-SIR

qs. (12) . We refer to Gaeta [7] for a discussion of the parameters

nd their determination. Note that the contact rate α is assumed to

ary in response to the restrictive measures (and to the availability

f individual protection devices); as these measures were taken in

ifferent steps, we also have different values of α in different time

ntervals. 

More precisely, the equations were integrated for a total pop-

lation of N = 6 ∗ 10 7 for the period February 20, through June

6, with initial data at day 14 (March 5) given by I 0 = 6766 , J 0 =
0892 , R 0 = 3862 , U 0 = 34761 , with α = r(t) α0 where 

(t) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 for t ≤ 25 

0 . 5 for 25 < t ≤ 35 

0 . 2 for 35 < t ≤ 63 

0 . 08 for 63 < t 

nd the parameters are given by 

0 � 3 . 77 ∗ 10 

−9 β = 1 / 7 η = 1 / 21 ξ = 1 / 10 . 

e stress that the parameter values are the same as in [7] , even

or the most recent time, not considered in that paper: the model

ontinues to reasonably well describe the development of the epi-

emic in Italy. 

3. Other SIR-type models 

We focused on a specific SIR-type model, but several models of

his type have been considered in the context of COVID modeling.

ere we give a very short overview of these, with no attempt to

ompleteness – which cannot even be imagined in such a rapidly

volving field. 

First of all, we note that other researchers have considered,

otivated by the ongoing COVID epidemic, the temporal aspects

f the standard SIR dynamics. We mention in particular Cadoni

9] (a related, but quite involved, approach had been considered

y Harko, Lobo and Mak [31] ) and Barlow and Weinstein [10] , who

btained an exact solution for the SIR equations in terms of a di-

ergent but asymptotic series [32] ; see also [33,34] for a different

pproach to exact solution of SIR and SIR-type models. 
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We also note that nonlinear modifications of the bilinear infec-

tion term of the standard SIR model have been proposed – explic-

itly or implicitly – in the attempt to relate the standard SIR model

to COVID dynamics [35,36] . We find [36] of special interest, as this

work introduces a model for the epidemic dynamics coupled to the

immune system, and is thus able to take into account aspects re-

lated to the viral charge of infectives. 

Extension of the SIR model in the direction of allowing time-

dependence of the parameters – also to account for shifting public

attitude – has also been considered [37] . 

As mentioned above, see Remark 3 , considering the delay be-

tween infection and beginning of infectiveness would lead to con-

sider SEIR-type models. The problem of temporal aspects of the

dynamics for this class of models has been considered by Becaer

[38] . The role of asymptomatic transmission in this class of models

has also been considered [39,40] . The approach to SIR by Barlow

and Weinstein [10] leading to exact solution has been extended to

SEIR model [41] . 

A generalization of the A-SIR model, allowing for different in-

fectiveness of symptomatic and asymptomatic infectives, has been

considered by Neves and Guerrero [42] . 

More elaborated compartment models with a larger number

of compartments have been considered by a number of authors.

We would like to mention in particular two papers which we

consider specially significant, i.e. the work by the Pavia group, in

which mathematicians, statisticians and medical doctors collabo-

rated [43] , and the work by Fokas, Cuevas-Maraver and Kevrekidis

[44] , in which such a model – involving five compartments like the

present paper, but chosen in a different way – is used to discuss

(as in the present paper) exit strategies from the COVID lockdown.

As mentioned in the main text, one could – and should – con-

sider epidemic dynamics on networks [45] . Attempts to analyze the

COVID epidemic in this way have of course been pursued, both

on a small scale, with a network structure which can be deter-

mined by direct sociological study [46] , and on a nationwide scale

[47] where the network structure has to be determined. 

This latter study [47] also attempted to evaluate the effect of

the containment measures; such a matter is of course very rele-

vant and has been considered by many authors in many countries;

even a cursory mention of these is impossible, and we will just

mention one study applying to Italy [48] . We also stress that many

of the papers mentioned above, see in particular [43,44] aim at

using the models they study to evaluate the effect of interventions

and containment measures. 

Finally we would like to end on a positive note, and mention

that while on the one hand it was found that the presence of

asymptomatic makes that the basic reproduction number of COVID

is higher than initially estimated [7,29,49] , the fact that the so-

cial contact rate is not uniform in the population makes that the

herd immunity level should be lower than predicted on the basis

of the standard SIR-type models [50] ; this is a specially nice result

of the analysis on networks,as it only depends on general – and

very reasonable –properties of the network and not on its detailed

structure, thus overcoming the low statistics problem mentioned

in Remark 14 above. 
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