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Chapter 1
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In this chapter, we illustrate recently obtained thermodynamic bounds
for a number of enzymatic networks by focusing on simple examples
of unicyclic or multi-cyclic networks. We also derive complementary
relations which constrain the fluctuations of first-passage times to reach
a threshold current.

1. Introduction

There are generally several parameters which determine the performance of

a thermodynamic system. One parameter is the average output flux deliv-

ered by the system, which is related to its output power. Another parameter

is the dissipation, which may be viewed as a cost for operating the system.

In order for the behavior of the system to be reliable and robust, one wants

small fluctuations in the output flux while at the same time a small cost

of operation. These goals are generally incompatible as emphasized by a

trade-off known under the name of thermodynamic uncertainty relations.1,2

This trade-off constrains the fluctuations in product formation in enzyme

∗david.lacoste@espci.fr.

1

http://arxiv.org/abs/1804.00859v1


April 4, 2018 0:28 ws-rv9x6 Book Title Final page 2

2 K. Proesmans, L.Peliti and D. Lacoste

kinetics3 and can thus be used to infer information on the topology of the

underlying chemical network4,5 or to estimate the dissipation from the fluc-

tuations of observed fluxes.6 Suppressing fluctuations of an output flux is

required to achieve some accuracy with brownian clocks,7 while suppress-

ing dissipation leads to an improvement in the thermodynamic efficiency

of machines.8–12 This trade-off, originally obtained for non-equilibrium

steady states, holds in fact for systems at finite time13,14 evolving in either

continuous or discrete time.15–17 It has also been adapted to Brownian

motion,18 nonequilibrium self-assembly,19 active matter,20 equilibrium or-

der parameter fluctuations,21 phase transitions,22 first-passage-time fluctu-

ations,23,24 and it continues today to generate many new applications or

extensions.25–30

In this chapter, we focus on the implications of thermodynamic uncer-

tainty relations for chemical kinetics. We illustrate the theoretical predic-

tions by studying particle conversion fluxes and their fluctuations for both

unicyclic and multi-cyclic chemical reactions. We also show the connection

with the statistics of first-passage time, defined as the first time that a given

number of particles has been converted.

This review is organized as follows. In section 2, we illustrate bounds

on the Fano factor for three examples of unicyclic networks, namely the

isomerization reaction, the Michaelis-Menten reaction and the active catal-

ysis. In section 3, we study one example of a multi-cylic network containing

two cycles, which we call the misfolding reaction. In section 4, we study

complementary relations for the fluctuations of first-passage times. We

conclude in section 5.

2. Bounds for unicyclic networks

2.1. The isomerization reaction

Let us consider a single enzyme which can catalyze the transition between

two isomers E1 and E2:

E1
k+

k−
E2,

with constant transition rates k+ and k−. This model can be mapped on

a biased random walk, with a rate of forward jumps k+ and of backward

jumps k−. The total displacement of this walker corresponds to the dif-

ference between the number of isomers E1 converted into E2 minus the

number of reverse conversions. The master equation of this system is given
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by
d

dt
Pn(t) = k−Pn+1(t)− (k+ + k−)Pn(t) + k+Pn−1(t), (1)

where Pn(t) the probability to be at time t at the position n. The detailed

balance relation takes the form
k+

k−
= eA, (2)

where A is the dimensionless affinity given our choice of units, kBT = 1.

In order to characterize the fluctuations of the variable n, we introduce

the generating function:

Ψ(λ, t) =
∑

n

eλnPn(t). (3)

Using the master equation (1), this generation function evolves according

to the equation
dΨ(λ, t)

dt
= θ(λ)Ψ(λ, t), (4)

where we have defined

θ(λ) ≡ lim
t→∞

1

t
ln
〈

enλ
〉

= k−eλ − (k+ + k−) + k+e−λ. (5)

The mean and the variance of n can be expressed in terms of the deriva-

tives of θ(λ) at λ = 0 as follows:

J = lim
t→∞

〈n〉

t
= θ′(0) = k+ − k−, (6)

D = lim
t→∞

〈n2〉 − 〈n〉2

2t
=

θ′′(0)

2
=

k+ + k−

2
. (7)

Using these expressions, Barato et al.1 have derived an “uncertainty re-

lation” involving the following measure of the precision of the fluctuating

variable n:

ǫ2 =
〈n2〉 − 〈n〉2

〈n〉2
=

k+ + k−

(k+ − k−)2t
. (8)

For a duration t, the total energy cost C is the product of the entropy

production rate by the time t, so C = AJt where J is the average conversion

rate introduced above. Then the product of this cost C by the relative

uncertainty ǫ2 can be expressed by means of the detailed balance relation,

Eq. (2), as

Cǫ2 =
2DA

J
= A coth

(

A

2

)

≥ 2, (9)

where the last inequality follows from a well known property of hyperbolic

tangent. Importantly, this relation expresses a trade-off between the preci-

sion quantified by ǫ and the cost quantified by C. Note that the inequality

in Eq. (9) holds arbitrarily far from equilibrium, and becomes saturated

only in the linear regime close to equilibrium when A → 0.



April 4, 2018 0:28 ws-rv9x6 Book Title Final page 4

4 K. Proesmans, L.Peliti and D. Lacoste

2.2. The reversible Michaelis-Menten reaction

We now consider another important unicyclic network, namely the well-

known Michaelis-Menten kinetics.3 In this chemical network, a substrate

S is transformed into a product P due to the presence of an enzyme E via

the formation of an unstable complex ES:

S + E
k+
1

k−
1

ES
k+
2

k−
2

P + E,

where k+1 is proportional to the substrate concentration and k−2 is propor-

tional to the product concentration. The local detailed balance relation is

now given by

k+1 k
+
2

k−1 k
−

2

= eA. (10)

We introduce pα,n(t) as the probability to have the enzyme in the state

α = 0, 1 with α = 0 representing the free state and α = 1 the bound state,

and with n molecules of P produced. This probability satisfies the master

equations:

dp0,n
dt

= k−1 p1,n + k+2 p1,n−1 − (k+1 + k−2 )p0,n; (11)

dp1,n
dt

= k+1 p0,n + k−2 p1,n+1 − (k−1 + k+2 )p1,n. (12)

We introduce again generating functions associated to these probability

distributions by

Ψα(λ, t) =

+∞
∑

n=−∞

eλ(n+α/2)pα,n(t). (13)

By convention a half integer value of n is assigned to states where the

enzyme is bound, and a integer number when the enzyme is free. By trans-

forming the master equation into an evolution equation for the generating

function we find:

d

dt

(

Ψ0

Ψ1

)

= L(z)

(

Ψ0

Ψ1

)

, (14)

with the evolution matrix

L(z) =

(

−(k+1 + k−2 ) z−1k−1 + zk+2
zk+1 + z−1k−2 −(k−1 + k+2 )

)

, (15)
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where z = eλ/2. By the Perron-Frobenius theorem, there is a non-

degenerate positive leading eigenvalue of L, which we denote θ(z(λ)). Ex-

plicit evaluation of this function yields

J =
dθ

dλ

∣

∣

∣

∣

λ=0

=
k+1 k

+
2 − k−1 k

−

2

k+1 + k−1 + k+2 + k−2
; (16)

D =
1

2

d2θ

d2λ

∣

∣

∣

∣

λ=0

=
k+1 k

+
2 + k−1 k

−

2 − 2J2

2(k+1 + k−1 + k+2 + k−2 )
. (17)

In the context of enzymatic kinetics, the Fano factor characterizes the

fluctuations in the formation of product by the enzyme. It is defined as

F =
2D

J
. (18)

Using the above expressions for J and D together with the detailed balance

condition (10) we find that

F = coth

(

A

2

)

−
2k−2 k

−

1 (e
A − 1)

(k−2 + k+2 + k−1 + k+1 )
2
. (19)

A lower bound for the Fano factor can be obtained by minimizing the right-

hand side of Eq. (19) with respect to all the transition rates. The minimum

is obtained when k+1 = k+2 ≡ k+, and k−1 = k−2 ≡ k−. Then, using the

detailed balance condition, one proves the inequality3

F ≥
1

2
coth

(

A

4

)

≥
2

A
. (20)

Since the relation Cǫ2 = FA holds generally, both Eq. (9) and Eq. (20)

are particular cases of a general inequality for Cǫ2 valid for a unicyclic

enzyme containing N states. In their original work,1 Barato et al. provided

an inequality involving, A and N/nc where nc was defined as the number of

consumed substrate molecules in each cycle. If one defines the Fano factor

per molecule instead of per cycle, as we do here, there is no need for nc,

and the result is simpler to state: the Fano factor of a unicyclic enzyme

containing N states is bounded by an expression that only depends on A

and N :7

F ≥
1

N
coth

(

A

2N

)

. (21)

The example we gave previously of an isomerization reaction satisfies this

relation with N = 1, while the Michaelis-Menten scheme does so with

N = 2. In Fig. 1, we verify this bound by computing the Fano factor

for 1000 random transition rates of the form k+1 = 102r1−1 where r1 is a
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uniform random number in [0, 1], while keeping a fixed value of the affinity

A.

An affinity-independent bound follows from Eq. (21) by letting A →

∞31,32

F ≥
1

N
. (22)

The limit A → ∞ is realized in practice as soon as one transition con-

tributing to the affinity A becomes irreversible. Note that Eq. (22) can

also be derived from an analysis of current fluctuations in a periodic one

dimensional lattice.33 It represents a central result of statistical kinetics,

since it allows to estimate the number of states in an enzymatic cycle from

measurements of fluctuations.34

As shown in Fig. 1, all the points are indeed above the bound Fmin = 0.5

in the case of Michaelis-Menten kinetics. In order to explore further Fano

Fig. 1. The Fano factor F as a function of the affinity A in the Michaelis-Menten
kinetics. The black horizontal dashed line represents Fmin = 0.5, the blue line the
bound 2/A, the green line is the hyperbolic bound of Eq. (20).

factor bounds, we now move to more complex examples.

2.3. The active catalysis

In this type of chemical reaction, the folding of the substrate molecule A

into the product molecule B is accompanied by the hydrolysis of an ATP

molecule. This reaction can be represented as a unicyclic network with four

intermediate states E, E1, E2 and E3 for the enzyme and two substrates

A and B as shown in Fig. 2. The various reactions are
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B

EATP

E1=E•ATP

A

E2=E•ATP•A

ADP+P

E3=E•B

Fig. 2. Cycle representation of the reactions involved in the active catalysis

ATP + E
k+
1

k−
1

E1, E1 + A
k+
2

k−
2

E2,

E2

k+
3

k−
3

E3 + ADP + P, E3

k+
4

k−
4

E + B ·

The local detailed balance condition takes the form

k+1 k
+
2 k

+
3 k

+
4

k−1 k
−

2 k
−

3 k
−

4

= eA, (23)

where the affinity of the cycle now reads A = µA−µB+∆µ, in terms of µA

(resp. µB) the chemical potential of the substrate A (resp. B) and ∆µ the

chemical potential difference associated with the ATP hydrolysis reaction.

The framework of the previous section applies again here: now the

evolution of the generation function is governed by a 4 × 4 matrix, and

for this reason there is no simple analytic expression for its eigenvalues.

Nevertheless, it is still possible to compute the corresponding currents and

diffusion coefficients without having to obtain these explicitly by exploiting

a method due to Koza as explained in Ref. 3,35

By following this method, we obtain the plot shown in Fig. 3. As shown

in this figure, the bound satisfies to the general property expected for a

unicyclic enzyme given in Eq. (21) with N = 4 intermediate states.

3. Bounds for multi-cyclic networks: the misfolding reaction

We now switch to multi-cyclic reaction networks. As a simple example we

consider the misfolding reaction, which describes an enzyme that can make

errors. More precisely, the enzyme can bind a molecule A and lead to the

production of the “correct” molecule, say, B, or a “wrong” one, say C. This
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Fig. 3. The Fano factor F as a function of the affinity A for the active catalyst kinetics.
The black horizontal dashed line represents Fmin = 0.25, the blue line the bound 2/A,
the green line is the hyperbolic bound of Eq. (21) with N = 4.

scheme represents a network with two cycles, characterized by the same free

and bound state of the enzyme. The two possible reactions that can occur

are:

A + E
k+
1

k−
1

E*
k+
2

k−
2

B + E,

A + E
k+
1

k−
1

E*
k+
3

k−
3

C + E.

We now have two different affinities driving each one of these reactions,

defined by:

k+1 k
+
2

k−1 k
−

2

= eA1 ;

k+1 k
+
3

k−1 k
−

3

= eA2 .

(24)

The master equations describe the evolution of the probability of being in

the two different enzyme states (bound and free) as a function two integer

chemical variables n (resp. m), which represent the number of B (resp. C)
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produced since an arbitrary time. We then have

dp0(n,m, t)

dt
= k−1 p1(n,m, t) + k+2 p1(n− 1,m, t) + k+3 p1(n,m− 1, t)

− (k+1 + k−2 + k−3 )p0(n,m, t);

dp1(n,m, t)

dt
= k+1 p0(n,m, t) + k−2 p0(n+ 1,m, t) + k−3 p0(n,m+ 1, t)

− (k−1 + k+2 + k+3 )p1(n,m, t).

(25)

The generating function for this system can be defined by

Ψα(λ, t) =
∑

n,m

eλ·(n+α/2,m+α/2)pα(n,m, t), (26)

where λ is a vector containing the two variables λ1 and λ2 associated to

the degrees of freedom n and m respectively. The evolution matrix that

governs the dynamics of the generating function is given by

L(z1, z2) =

(

−(k+1 + k−2 + k−3 ) (z1z2)
−1k−1 + z1

z2
k+2 + z2

z1
k+3

z1z2k
+
1 + z2

z1
k−2 + z1

z2
k−3 −(k−1 + k+2 + k+3 )

)

(27)

Again, the leading eigenvalue of L(z1, z2), called Θ(z1, z2), allows us to

obtain the currents J1 and J2 and their diffusion coefficients D1 and D2.

Using these parameters, we can compute two Fano factors F1 and F2,

defined by Fi = 2Di/Ji, where i = 1, 2. Similarly, we define the correspond-

ing cost-fluctuations parameters Cǫ2i = FiΣ/Ji, which instead contain the

total entropy production rate Σ = A1J1 +A2J2.

The error-cost parameters Cǫ2i are constrained by the uncertainty rela-

tion3 :

Cǫ2i ≥
Ā

2
coth

(

Ā

4

)

≥ max(2,
Ā

2
), (28)

where Ā is the minimum of the two cycle affinities A1 and A2.

We have verified numerically this inequality in the left panel of Fig. 4,

which was constructed by generating randomly transition rates for 5000

iterations and then evaluating the error-cost parameters and the two dif-

ferent cycle affinities A1 and A2 using the detailed balance conditions (24).

In this case where the affinities A1 and A2 differ, we observe that a

bound of the form of Eq. (21) does not hold in general for the two Fano

factors Fi in terms of the affinities Ai or Ā. In contrast to that, the two

Fano factors Fi are always bounded by 1/2, which is the limit expected for

unicycles with N = 2 states. This confirms that the bound in 1/N for the
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Fig. 4. Left: Error-cost parameters Cǫ2
i
as a function of the minimum Ā of the two

different affinities A1 and A2 of the two cycles. The blue solid and black dashed line
illustrate the bound of Eq. (28). Right: Fano factor Fi as function of the single affinity
A = A1 = A2. The blue solid and black dashed line illustrate the bound of Eq. (21). In
both figures, red points represent i = 1 and green points i = 2.

Fano factor—a central result in statistical kinetics—holds in general and is

not just a consequence of the thermodynamic uncertainty relation.

In the particular case where the two affinities A1 and A2 are equal, then

the bound of the form of Eq. (21) holds again for the two Fano factors Fi

as shown in the right panel of Fig. 4. Thus, we have illustrated the bound

for the error-cost parameter which is linked to the the uncertainty relation,

but importantly we find that no affinity dependent bound of this type exist

for the two Fano factors except in the particular case where all the cycles

have the same affinity.

4. Bound on the fluctuations of first-passage times

The Fano factor bounds derived above represent a general property of cur-

rent fluctuations probed for a fixed observation time. It is also interesting

to look at these results from a different point of view, which focuses instead

on fluctuations of first-passage times to reach a threshold of time-integrated

current.24

In this section, we derive the corresponding relations for the examples

we have studied above. We rely on the so-called renewal equation to analyze

first-passage times for Markovian jump processes. This equation connects

the propagator p(n, t), i.e., the probability of being in n at time t given

that one starts from 0 at time 0, to the probability F (n, t) to reach the
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state n for the first time at time t [36, p. 307]:

p(n, t) = δn,0δt,0 +

∫ t

0

dτ F (n, τ)p(0, t− τ), (29)

where one assumes that the initial state is at n = 0 and that the process is

translation invariant. Taking the Laplace transform of this equation gives

F̃ (n, s) =
p̃(n, s)

p̃(0, s)
, (30)

with F̃ (n, s) (resp. p̃(x, s)) the Laplace transforms of F (n, t) (resp. p(n, t)).

Since F̃ (x, s) is the moment generating function of the first-passage time to

reach n, which we now denote T , the first and second cumulants of T are:

〈T 〉 = −
d

ds
ln
(

F̃ (n, s)
)

∣

∣

∣

∣

s=0

, Var(T ) =
d2

ds2
ln
(

F̃ (n, s)
)

∣

∣

∣

∣

s=0

. (31)

The connection between current fluctuations probed for a fixed obser-

vation time and first-passage times fluctuations goes in fact beyond the

first and second moments. Indeed, let us evaluate the cumulant generating

function of the first-passage time T :

g(s) = lim
n→∞

1

n
ln
〈

e−sT
〉

= lim
n→∞

1

n
ln F̃ (n, s) (32)

One can then show that g(s) is related to the cumulant generating function

of the flux of n, which is the function we have denoted earlier by θ(s), by

the following relation:24

g(s) = θ−1(s). (33)

4.1. Isomerization relation

Let us now verify these new relations, starting with the isomerization re-

action. In this case, the equation obtained by Laplace transforming the

master equation Eq. (1) admits a solution of the form p̃n(s) = Nλ(s)n

when W+ ≥ W− and n ≥ 0, with

λ(s) =
s+W+ +W− −

√

(s+W+ +W−)2 − 4W+W−

2W+
. (34)

Using Eq. (30), one obtains F̃ (n, s) = λ(s)n. Then with Eq. (31), one finds

〈T 〉 =
n

W+ −W−
, Var(T ) =

n(W+ +W−)

(W+ −W−)3
. (35)

We recall that the energy cost C is related to the entropy production rate

Σ by C = tΣ = AJt, with the affinity A defined in Eq. (2) and the average
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current J defined in Eq. (6). Then, one obtains the uncertainty relation

complementary to Eq. (9):

Σ
Var(T )

〈T 〉
= A coth

(

A

2

)

≥ 2. (36)

This relation means that fluctuations in first-passage times can be reduced

only at the price of an increase of dissipation. Note that fluctuations of

first-passage times are not constrained by dissipation when W+ ≤ W−,

because in this case the mean first-passage time is infinite.

The relation between the generating functions of first-passage time and

current is also easily verified. Indeed, since F̃ (n, s) = λ(s)n,

g(s) = lnλ(s). (37)

Then, from the definition of the cumulant generating function of n intro-

duced in Eq. (4), one finds

s = θ[θ−1(s)] = W+eθ
−1(s) +W−e−θ−1(s) − (W+ +W−), (38)

therefore

θ−1(s) = ln

(

s+W+ +W− −
√

(s+W− +W+)2 − 4W−W+

2W+

)

, (39)

which is clearly equivalent to plugging Eq. (34) into Eq. (37) in agreement

with Eq. (33).

4.2. Michaelis-Menten reaction

The first-passage time uncertainty relation can be validated in an analo-

gous way for the Michaelis-Menten reaction. We first need to determine

p̃0/1,n(n, s). This can be done by taking the Laplace transform of Eq. (12):

(s+ k+1 + k−2 )p̃0,n = k−1 p̃1,n + k+2 p̃1,n−1, (40)

(s+ k−1 + k+2 )p̃1,n = k+1 p̃0,n + k−2 p̃0,n+1. (41)

Along the lines of the isomerization reaction, we assume that p̃0/1,n(s) =

N0/1λ(s)
n, leading to

λ(s) =
s2 +Ks+ k+ + k− −

√

(s2 +Ks+ k+ + k−)2 − 4k+k−

2k−
, (42)

where we have introduced

K = k+1 + k+2 + k−1 + k−2 , k− = k−1 k
−

2 , k+ = k+1 k
+
2 (43)
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to simplify notations. This again leads to the first two cumulants:

〈T 〉 =
Kn

k+ − k−
, Var(T ) =

(

K2(k+ + k−)− 2(k+ − k−)2
)

n

(k+ − k−)3
. (44)

The thermodynamic uncertainty relation for first-passage times, Eq. (36)

can now be verified easily.

As mentioned before, the cumulant generating function associated with

the first-passage time is given by g(s) = lnλ(s), where λ(s) is given by

Eq. (42). One can invert this expression to determine the cumulant gener-

ating function θ(µ) associated with the number of produced particles:

θ(s) = g−1(s) =

√

K2 + 4(es − 1)(k− − k+e−s)−K

2
(45)

4.3. Misfolding reaction

As a final example, we shall now turn to the misfolding reaction. This

reaction network can be decomposed into two independent fluxes: the pro-

duction of B molecules and the production of C molecules. Let us focus

on the first-passage time to produce n molecules of B type. This prob-

lem can be mapped on the Michaelis-Menten reaction: indeed B is pro-

duced from E∗ at a rate k+2 and produces E∗ at a rate k−2 . On the other

hand, E∗ is constructed from some other source (either A or C) at the rate

k′
+
1 = k+1 + k−3 and deconstructed at rate k′

−

1 = k−1 + k+3 . Therefore the

system can be mapped onto a Michaelis-Menten system with k1 replaced by

k′1. One concludes that Eqs. (42–44) also hold for the misfolding reaction,

with the appropriate change of rates. Using the expression for the entropy

production rate Σ determined in Section 3, leads to the thermodynamic

uncertainty relation in the form:

Σ
Var(T )

〈T 〉
≥ 2. (46)

5. Conclusion

In this chapter, we have illustrated a number of thermodynamic bounds for

chemical kinetics and particularly for chemical cycles. In both unicyclic and

multicyclic networks, we have confirmed the thermodynamic uncertainty

relation which limits the precision that a chemical system can achieve for

a given cost in terms of chemical dissipation. We have pointed out that

only in unicyclic networks or in multicyclic networks subjected to a single

affinity, there is a simple affinity dependent bound. In contrast to that,
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there is always an affinity independent bound for the Fano in terms of the

inverse number of states, but this bound does not contain any trade-off.

Very recently, Gingrich and Horowitz reported a relation between the

large deviation functions for currents and first-passage times in general

Markov chains.24 They also made an interesting connection between the

thermodynamic uncertainty relation and first-passage time statistics. In

this chapter, we have also verified their result on our examples. In future

work, we would like to explore this connection further, because it could be

used in both ways: on one hand one could gain insights into currents fluc-

tuations using results on first-passage time statistics and on the other hand

one can understand better first-passage time statistics using large-deviation

techniques, originally introduced for the analysis of current fluctuations in

non-equilibrium systems.
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