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Asymptomatic infectives and R0 for COVID
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We discuss how the presence of a large set of asymptomatic infectives changes our estimate of the
COVID-19 basic reproduction number, also known as R0.

The most basic tool for modeling epidemic behavior is
the SIR model [1–5], partitioning the population into Sus-
ceptibles, Infected and Infectives, and Removed; in the
COVIDcontext, Removed means either healed (or dead)
or isolated. The SIR model is – in physicists’ language –
a mean field one: all individuals are assumed to be equal
and interact in the same way with any other one. These
assumptions are of course not realistic, but the model
ins an important tool to get some intuition about gen-
eral mechanisms, also present in more refined ones [2].
The SIR equations are

dS/dt = −αS I

dI/dt = αS I − β I (1)

dR/dt = β I .

The parameter β is the removal rate, and can be thought
of as the inverse of the infection time (time from infection
to removal); the parameter α takes into account many
factors, such as the capacity of the virus to infect an
organism it gets in contact with, the individual protection
measures, and the intensity of social contacts.
The number of infectives will raise as long as

S(t) >
β

α
:= γ ; (2)

this number γ is thus the epidemic threshold.
In the SIR equations, the term αSI represents the new

infected per unit of time; this means that each infective
gives origin to

δI = α S (δt)

new infections in the time δt. As each infective is active,
on the average, for a time β−1, and in the early phase we
can take S ≈ S0, this means that each infective will give
raise in this phase to

R0 =
α

β
S0 =

S0

γ
(3)

new infections. This number is the basic reproduction
number for the model. (The notation R0 is maybe un-
fortunate, as it may seem to refer to the initial datum for
R(t), but it is traditional and we will keep to it;moreover

in the case of COVID – as far as we know – there is
no natural immunity, so R(0) = 0 and no confusion can
arise.) In the case of COVID-19, estimates of R0 from
epidemiological data suggest R0 ≃ 2.5 − 3; this can be
compared with R0 for standard seasonal flu, which is
about half.
It is by now clear that in the case of COVID there is a

large set of asymptomatic infectives. We want to discuss
how this affects our estimate of R0.
In a recent contribution [6] I have introduced a modi-

fied version of the SIR model, taking into account the
relevant presence of asymptomatic infectives and thus
called A-SIR model. In this, there are two classes of
infected/infectives individuals, I and J , and two classes
of removed ones, R and U . Here I represents the known
infectives, J the unknown (in particular, asymptomatic)
ones; similarly R represents the registered recovered in-
dividuals, while U the unregistered ones – basically those
who went through an asymptomatic infection and are re-
moved from the epidemic dynamics only once they are
naturally healed. The model assumes that both classes
of infectives are equally infective (it would be easy to
formulate a variation removing this assumption, but we
want to deal with the simplest model accounting for
asymptomatic infectives); on the other hand, while symp-
tomatic infectives are promptly removed from the dy-
namics by Hospital or home isolation, asymptomatic ones
stay around for all the infective period. Thus the A-SIR
equations are

dS/dt = −α S (I + J)

dI/dt = α ξ S (I + J) − β I

dJ/dt = α (1− ξ) S (I + J) − η J (4)

dR/dt = β I

dU/dt = η J .

Note that the last two equations (like the last one for SIR)

amount to direct integrations, R(t) = R0 + β
∫
t

t0
I(y)dy,

U(t) = U0 + η
∫
t

t0
J(y)dy.

Here the parameter β represents again the inverse
of the removal time for registered infectives, while η
represents the removal time for unregistered infectives.
In practice, β−1 corresponds to incubation time (first
COVID symptoms appear usually after about 5 days)
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plus some delay for these to be recognized as such; our
fitting of early data for the epidemics in Northern Italy
gave the value β−1

≃ 7 days. On the other hand, η−1

represents the removal time for undetected infectives; this
corresponds to the incubation time plus the time needed
for the organism to spontaneously cancel the infection,
and our (clinically reasonable) working hypothesis in [6]
was η−1

≃ 21 days.
Here the number of new infected per unit of time is

αS(I + J), and again in the early phase of the epidemic
we can assume S ≈ S0. Thus each infective will give
origin in the time span δt to αS0δt new infectives; we
assume that each of these will be registered – and thus
isolated after an average time β−1 – with probability ξ,
while it will remain undetected – and thus disappear from
the epidemic dynamic – with a probability 1−ξ. Current
estimates of ξ range from ξ = 1/10 to ξ = 1/7 [7], albeit
smaller values have also been suggested (see [8]; see also
[9] in this context).
Thus we should look at the average removal rate B

or equivalently to the average infective time B−1 in the
early phase of the epidemic; in there the ratio between
registered and total infectives is simply

x :=
I

I + J
= ξ , (5)

while in later stages the proportion between I and J
changes, as individuals stay longer in the J class than
in the I class.
The average removal rate is

B = ξ β + (1− ξ) η . (6)

This means that each (symptomatic or asymptomatic)
infective individual will give direct origin, across its in-
fective and non-isolation period, not to R0 = αS0/β but
instead to

R̂0 =
α

B
S0 =

β

B
R0 (7)

new infectives. As β < B, this means that the actual

basic reproduction number R̂0 is larger –and possibly
substantially larger – than the value which is estimated
solely on the basis of registered infections.

A trivial computation on the basis of the values given
above – i.e. β−1

≃ 7, η−1
≃ 21, ξ ≃ 1/10 – provides

R̂0 =
5

2
R0 . (8)

This could explain why all Health Systems were sur-
prised by the rapid growth of the number of COVID-19
infections; in fact, the presence of a large set of asymp-
tomatic infectives was not realized when the epidemic
attacked the first countries, and is becoming clearly es-
tablished only now [7], also thanks to the large scale epi-
demiological studies recently conducted in Italy [10].
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