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How long does a lockdown need to be?
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Cittadella Universitaria, 09042 Monserrato (Italy);

and
INFN, Sezione di Cagliari, 09042 Monserrato (Italy)

Giuseppe Gaeta†

Dipartimento di Matematica,
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Social distancing, often in the form of lockdown, has been adopted by many countries as a way
to contrast the spreading of COVID-19. We discuss the temporal aspects of social distancing in
contrasting an epidemic diffusion. We argue that a strategy based uniquely on social distancing
requires to maintain the relative measures for a very long time, while a more articulate strategy,
which also uses early detection and prompt isolation, can be both more efficient on reducing the
epidemic peak and allow to relax the social distancing measures after a much shorter time. We
consider in more detail the situation in Italy, simulating the effect of different strategies through a
recently introduced SIR-type epidemiological model. The short answer to the question in the title
is: “it depends on what else you do”.

I. INTRODUCTION

Faced with the first cases of COVID-19, many coun-
tries discovered it was spreading much faster than ex-
pected, and resorted to some form of more and less ex-
tensive lockdown to slow down its spreading.

This was in many cases successful – depending on how
prompt was the decision to implement restrictions – and
indeed it is well known from general properties of epi-
demic models that social distancing has the double effect
of lowering the epidemic peak and of slowing down the
whole epidemic dynamics. This slowing down allowed to
gain precious time to prepare hospitals to face the surge
in COVID cases, in particular of those who required hos-
pitalization in Intensive Care Units (ICU).

On the other hand, lockdown has deleterious effects in
other regards, in particular social and economical (and
also – in view of how it was implemented in several coun-
tries – sanitary, for what concerns treatment of different
pathologies), and poses a severe strain on social struc-
ture.

Thus, once the peak of the epidemic wave has passed, it
is natural to wonder for how long the restrictive measures
should be kept.

In recent papers [1–3] we have considered the tempo-
ral aspects of epidemic dynamic and the consequences
in this respect of actions aiming at modifying the main
parameters describing the dynamics in SIR-type mod-
els. We have shown that actions having the same effect
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in terms of the height of the peak (maximal number of
infectives over the epidemic time-span) and in terms of
the total number of people affected by the infection, can
have quite different consequences for what concern the
temporal development of the dynamics.

In this paper, we will first briefly recall our general re-
sults in this direction (these are also discussed in greater
detail in a companion paper [4]), then pass to consider
more specifically a SIR-type model which was quite suc-
cessful in describing the epidemic data for Italy, and
within this model discuss what would be the expected
outcomes, in particular for what concerns the time for
which the lockdown should be maintained, depending
on different strategies which could be implemented now,
when all seems to indicate that the peak is – at least with
the presently applied restrictive measures – behind us.

It should be stressed that these results, albeit applying
to a model which so far fits quite well the epidemiologi-
cal data, are merely indicative and not predictive. Any
model describing a population with average characteris-
tics, thus in terms of “equivalent” individuals, is clearly
too rough to make any sensible prediction. This is even
more true in the case of the ongoing COVID epidemics,
which affects in quite different ways different geograph-
ical regions on the one hand, and people with different
sex, age, other pathologies, and so on.

Despite this, the qualitative indications of the model
are quite clear and, in our opinion, also quite reliable.
These are that contrasting the COVID epidemic only by
social distancing means slowing down the dynamics to a
degree which is incompatible with other needs, while a
strategy combining social distancing with other actions,
in particular contact tracing, early detection and prompt

isolation of new infectives can reduce even more signifi-
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cantly the epidemic peak and the total number of infected
while keeping the period in which social distancing and
lockdown are necessary to a reasonable length.
This is no surprise, and actually just confirms in terms

of a mathematical model what has been preached theo-
retically, and implemented on the field in a most effective
way, by the Padua group working on the first burst of in-
fections in Veneto [5], and later on inspiring the regional
strategy for COVID. This strategy was specially success-
ful so far, as shown by the numbers and in particular by
the limited mortality in this region.

II. THE SIR MODEL

The classical SIR model [6–10] concerns averaged equa-
tions for a population of “equivalent” individuals (thus
in Physics’ language it is a mean field theory); each of
them can be in three states, i.e. being Susceptible (of in-
fection), Infected and Infective, and Removed (from the
infective dynamic).
The populations of these three classes are denoted as

S(t), I(t) and R(t) respectively, and the dynamic is de-
fined by the equations

dS/dt = −αS I

dI/dt = αS I − β I (1)

dR/dt = β I .

where α and β are constant parameters, discussed in a
moment.
Note that the third equation amounts to a direct inte-

gration, R(t) = R(t0) + β
∫ t

t0
I(y)dy. Moreover, the total

population N is constant in time (people dying for the
considered illness are considered as removed); this makes
sense when considering a limited span of time.
The SIR model is described in any textbook on Math-

ematical Biology, see e.g. [7, 9, 10]. Here we just recall
that the parameter α corresponds to a contact rate, while
the parameter β is a removal rate.
Thus social distancing measures work on the reduc-

tion of α, while early detection campaigns work on the
increase of β.

A. Epidemic threshold, epidemic peak

Some simple but relevant consequences follow immedi-
ately form the SIR equations (1). First of all, it is clear
that I(t) grows if and only if

S(t) >
β

α
:= γ ; (2)

for this reason γ is also known as the epidemic threshold.
An epidemic can start only if S(t0) > γ, and it stops
spontaneously when S(t) gets below γ.

An equivalent way to describe the epidemic threshold
is to introduce the reproduction number ρ(t) :

ρ(t) =
S(t)

γ
, (3)

which gives the expected new infections generated by a
single infection. The epidemic starts if ρ(t0) > 1 (this
is the basic reproduction number, usually denoted R0),
I(t) attains its peak value I∗ at t = t∗ when ρ(t∗) = 1.
Containment strategies aim, by reducing α and/or by
rising β, to reach ρ < 1, thus stopping the epidemic.
Also, considering the equations for S and I we eas-

ily get a relation between these quantities; moreover we
know that I reaches its maximum I∗ when S = γ; consid-
ering moreover that in the COVID the whole population
is initially susceptible to be infected (as far as we know
there is no natural immunity), and that the number of
infectives at the beginning of the epidemic is negligible
compared to the whole population (this approximation
will always be used from now on), this turns out to be

I∗ = N − γ − γ log(N/γ) . (4)

(Needless to say, this expression applies if and only if
N > γ respectively: if N < γ there is no epidemic.)
The relation between I and S also characterizes the

number R∞ of individuals going through the infected
state over the whole epidemic period; the number S∞

of those never being in contact with the pathogen is the
(lower) root of the equation

(S0 − S∞) = γ log(S0/S∞) . (5)

This transcendental equation cannot be solved in closed
form, but it is obvious that the solution will depend only
on γ. The number of individuals having gone through
infection is of course

R∞ = N − S∞ . (6)

B. Time to epidemic peak

The main quantity characterizing the time-span of the
epidemic is the time of occurrence t∗ of the peak. The
value of t∗ depends on the parameters α and β, not just
on their ratio, so that containment measures (aimed to
reduce I∗ and R∞) do in general have the effect of in-
creasing t∗. More precisely, t∗ can be written in terms of
the parameter α and β (see Ref. [1] for details) as

t∗ =

∫ τ∗

0

1

I0 + S0 − S0e−ατ ′

− βτ ′
dτ ′ ,

τ∗ =
1

α
log

(

S0

γ

)

. (7)

In the previous expression the integral has to be evalu-
ated numerically. An analytic expression for t∗ can be
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found using an approximate solution. In order to do this
we consider the relation between S and R; from the first
and third equation in (1) we easily get

S = S0 exp

[

−

(

R − R0

γ

)]

.

Using this and I(t) = N − S(t)−R(t), we can reduce to
consider a single ODE, say for R(t). This is written as

dR

dt
= β

[

N − S0 e
−(R−R0)/γ −R

]

. (8)

This is a transcendental equation, and cannot be solved
in closed form. It can of course always (and rather easily)
be solved numerically.
For (R − R0) ≪ γ, we can expand the exponential in

(8) in a Taylor series, and truncate it at order two. This
produces a quadratic equation, which is promptly solved
in general terms (see e.g. Sect. 10.2 in [7]), yielding

R(t) = R0 +
α2

S0

[(

S0

γ
− 1

)

+ κ tanh

(

β κ t

2
− φ

)]

,

(9)
with constants κ and φ given (for I0 ≃ 0) by

κ =

(

S0

γ
− 1

)

, φ =
1

κ
arctanh

[

S0

γ
− 1

]

. (10)

As dR/dt = βI(t), the epidemic peak corresponds to
the maximum of R′(t). The solution (9) allows to com-
pute the time t∗ at which this is attained in a straight-
forward manner; it results

t = t∗ =
2 φ

β κ
. (11)

Recalling now the expressions for κ and φ, we get that

t∗ =
2

β

arctanh
(

S0

γ − 1
)

(

S0

γ − 1
)2 . (12)

This shows that t∗ is inversely proportional to β. This
relation is not surprising, as β is the inverse of a time
(the removal time). In view of this remark, one has to
expect that the inverse proportionality holds also with-
out the assumption (R − R0) ≪ γ. This is indeed the
case; showing this goes through use of the scaling prop-
erties of the SIR equations and of the integral in Eq. (7)
when one reduces α by a factor λ > 1, i.e α → α/λ and
increases β by the same factor β → λβ. While under
these transformations I∗ and R∞ attain the same value,
because they do not depend on α and β separately but
only on their ratio γ, the value of t∗ is reduced by a fac-
tor 1/λ. (For a detailed discussion we refer to previous
works of ours [1, 2].)
This means that containment measures that increase

β, e.g. based on tracing and removal of infectives, have
a different effect than – and in some circumstances an

advantage over – those that reduce α, e.g based on social
distancing or lockdown; and this in particular for what
concerns the timescale of the epidemic. If by increasing
β we manage to bring ρ below the threshold we simply
stop the epidemic, but even if we do not go so far, we can
still reduce the size of an epidemic keeping under control
its timescale.
This is an advantage when the sanitary system can

cope with the epidemic, in that in this way the restric-
tive measures do not have to be implemented for too
long. The situation is of course different if and when the
sanitary system is overwhelmed by the epidemic (as it
happened in the first phase of the COVID-19 diffusion
in many countries or regions, also as a result of its un-
expectedly fast spreading [11]). In that situation slowing
down the increase of the number of patients is an es-
sential feature, and in this sense social distancing is an
essential tool [13].

III. EPIDEMIC MANAGEMENT IN THE SIR

FRAMEWORK

We have so far supposed that our problem was to an-
alyze the behavior of the SIR system for given control
parameters α, β and given initial conditions.
When we are faced to a real epidemic, as the ongoing

COVID one, any State will try to manage it, i.e. reduce
its effects. When we analyze the situation in terms of
the SIR model, this means acting on the parameters α
and/or β.
As discussed above, the strategy are based on two types

of actions, i.e. social distancing, which in some countries
took the extreme form of a lockdown, and early detec-

tion (followed of course by prompt isolation of infectives);
these impact respectively on the α and on the β param-
eter.
From the previous discussion it follows immediately

that acting on α and/or on β – in particular reducing α,
as in social distancing action – we can reduce the height
of the epidemic peak I∗ and simultaneously increase t∗,
i.e slow down the epidemic dynamic.
The formula (4) shows immediately that the height of

the epidemic peak depends only on γ, i.e. on the ra-
tio β/α of these two parameters. On the other hand,
Eq. (12) shows that the time development of the epi-
demic does not depend only on γ, but depends on β.
In particular, we have seen that t∗ is proportional (for

given γ) to β−1, i.e. decreases as β increase. But keep-
ing γ constant means that if β decreases then α also de-
creases, and viceversa. Thus a decrease in α at γ constant
corresponds to an increase of t∗, and more generally to
a slowing down of the epidemic dynamic.
This is well known, and indeed one of the reasons for

the lockdown is to slow down the epidemic increase so to
have time to prepare for the epidemic wave, e.g. in terms
of Hospital – or ICU – capacity, or in terms of Individual
Protection Devices (IPD) stocking.
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FIG. 1: Left side plot (A): Effect of varying parameters in the
SIR model while keeping γ constant. We have considered a
population N = 6∗107 and integrated the SIR equations with
initial conditions I0 = 10, R0 = 0. Setting α0 = 10−8, β0 =
10−1d−1, the runs were with α = α0, β = β0 (solid curve);
α = α0/2, β = β0/2 (dashed curve); and α = 2α0, β = 2β0

(dotted curve). The curves yield the value of I(t)/N , time
being measured in days. The epidemic peak reaches the same
level, with a rather different dynamics. Right side plot (B):
Contrasting the epidemic through different strategies. We
plot I(t)/N for the same system and initial conditions as in
plot (A). Now we consider α = α0, β = β0 (solid curve); α =
α0/2, β = β0 (dashed curve); and α = α0, β = 2β0 (dotted
curve). Actions reducing γ by the same factor through action
on the different parameters produce the same epidemic peak
level, but with a substantially different dynamics.

The problem is that social distancing measures – par-
ticularly when they take the form of a lockdown – are
extremely costly in economical and social terms. Thus,
once the first epidemic wave has passed and the Hospital
system has been reinforced, it is essential to be able to
conclude the lockdown in reasonably short times [14].

On the other hand, the main lesson which can be drawn
from the results of the previous section is that contain-
ment measures which increase β, such as tracing and
removal of infected individuals, are in many cases, i.e.
except when slowing down the pace of the epidemics is
essential due to unpreparedness of the Health System,
more suitable for fighting epidemics because they allow
to contain the number of infected people without expand-
ing too much the time over which the epidemic is active.

We will thus discuss for how long social distancing mea-
sures can be needed. In this respect, it is convenient to
look at Figure 1, where we show the effect of varying α
ad β in such a way that γ is constant; and we also show
the consequences of raising γ by the same factor (not suf-
ficient to eradicate the epidemic) through action on the
different parameters.

It is apparent from Fig. 1 (right panel) that the price
to pay for a strategy based uniquely on social distancing
measures – in whatever way they are implemented – is
that these should be maintained for a very long time. On
the other hand, a strategy based on early detection and
prompt isolation alone reduces the peak without slow-
ing down the dynamics. This feature can of course be a
positive or negative one, depending on how ready is the
Health System to face the epidemic wave.

In real situations, of course, one should act by combin-
ing both strategies; different mix of these will produce

50 100 150 200

0.1

0.2

0.3

0.4

0.5

FIG. 2: Combining action on the α and the β parameters.
Black curves are as in Fig. 1 (right panel), while the blue
curve corresponds to α = α0/2, β = 2β0.

different time development, and it is not obvious that
the choice should be necessarily for the strategy allowing
a greater reduction of the epidemic peak, once all kind
of sanitary, economic and social considerations are taken
into account. This is shown in Fig. 2, where it appears
that the strategy combining full action on both param-
eters reduces greatly the level of the epidemic peak, but
also makes the epidemic running for a very long time:
this may be convenient or not convenient depending on
factors which cannot be taken into account by the purely
epidemic model, but depends on the hospital and ICU
capacities and on the cost of the lockdown.

For example, we can consider that strict measures
should be in effect until the level of infectives descends
below a fraction 10−4 of the population; we denote as ts
the time at which this level is reached. What this means
in terms of the duration of the intervention in the dif-
ferent framework considered in Fig. 2 is summarized in
Table I.

Note also that here we considered a given initial time
of the epidemic and suppose the restrictive measures are
maintained until the situation improves enough. In real
situations, the restrictive measures will not be set as soon
as the epidemic reaches the country, but only after the
number of infectives raises above some alert threshold,
call this time ta; this has indeed been the pattern in most
countries, with some notable exceptions (such as Greece
and New Zealand – they were indeed very lightly struck
by COVID). Thus using ts as an estimate of the length
of lockdown leads to overestimating it, and the duration
of the measures is better measured by τ = ts − ta. This
is also considered in Table I, assuming the alert level is
the same as the safety one, i.e. I(ta) = I(ts) = 10−4

∗N .

In Table I we also give the value of R∞/N ; this shows
clearly that in these simulations we do not have R/γ ≪ 1
(recall N > γ), hence we can not use the approximation
leading to (12). In fact, e.g. in Fig. 2 it appears that rais-
ing β does lead to a (small) delay in the epidemic peak,
contrary to what is predicted by the “small epidemic”
formula (12).



5

α/α0 β/β0 γ/γ0 I∗/N t∗ ts τ R∞/N

1 1 1 0.535 35 125 113 0.997

1/2 1/2 1 0.535 70 251 226 0.997

2 2 1 0.535 17 63 56 0.997

1 2 2 0.300 41 94 78 0.940

1/2 1 2 0.300 82 189 157 0.940

1/2 2 4 0.063 144 246 182 0.583

TABLE I: SIR model. Height and timing of the epidemic
peak I∗ = I(t∗) and time for reaching the “safe” level (I(ts) =
10−4S0), together with duration of the interval τ = ts − ta
and the fraction R∞/N of individuals having gone through
infection, for the different combinations of parameters con-
sidered in the numerical runs of Fig. 1 and 2. See text. Note
that R∞/N depends only on γ, as guaranteed by Eqs. (5),
(6).

IV. THE A-SIR MODEL

The SIR model has a weak point when it comes to
modeling the COVID epidemic. That is, it does not take
into account the presence of a large set of asymptomatic

infectives.

In order to take this into account, we have recently pro-
posed a variant of the SIR model, called A-SIR (with the
“A” standing of course for “asymptomatic”), see [2]. In
this, there are two classes of infected and infective indi-
viduals, i.e. symptomatic ones I and asymptomatic ones
J . Correspondingly, there are two classes of removed,
R for those who are isolated – and eventually dead or
recovered – after displaying symptoms, and U for those
who are not detected as infective and hence are removed
only when naturally healing.

The key point is that the mechanism of removal is dif-
ferent for the two classes, and hence so is the removal
rate. We denote as β the removal rate for infectives with
symptoms; this corresponds to isolation, with a mean
time β−1 from infection to isolation. We denote by η the
removal rate for asymptomatic infectives, with a mean
time η−1 from infection to healing.

If an individual is infected, it has a probability ξ ∈

(0, 1) to develop symptoms. It is assumed that all infec-
tive with symptoms are detected and registered by the
Health System; as for asymptomatic ones, only a fraction
of them is actually detected, and in this case isolated once
detected.

Within this description, ξ is a biological constant [15];
on the other hand a campaign for detecting asymp-
tomatic infectives – e.g. by mass random testing – would
result in a reduction of the average time η−1, i.e. raising
η. On the other hand, a campaign for tracing contacts

of registered infectives would result in early isolation of
would-be new infectives – both symptomatic and asymp-
tomatic – and hence in a raising of both β and η.

The A-SIR model is described by the equations

dS/dt = −α S (I + J)

dI/dt = α ξ S (I + J) − β I

dJ/dt = α (1− ξ)S (I + J) − η J (13)

dR/dt = β I

dU/dt = η J .

Note that the last two equations amount to integrals,

i.e. are solved by R(t) = R0 + β
∫ t

0 I(y)dy, U(t) = U0 +

η
∫ t

0 J(y) dy. Moreover, the total population N = S +
I + J +R+ U is constant.
Unfortunately, for this model no analytical results are

available, and one can only resort to numerical simula-
tions. On the other hand, these show that the A-SIR
model can account quite well for the COVID epidemic in
Italy [2], i.e. in the only case where it has been tested
against real epidemiological data.
In the following it will be convenient to consider also

the total number of infectives; this will be denoted as

K(t) := I(t) + J(t) . (14)

V. EPIDEMIC MANAGEMENT IN THE A-SIR

FRAMEWORK

When working in the SIR framework, we have seen
that different strategies resulting in the same variation
of γ – and hence of the epidemic peak and the total
number of people going through infection – yield quite
different results in terms of the temporal development of
the epidemic. It is quite natural to expect that the same
happens in the frame of the A-SIR model.
Now, beside α and β, we have a third parameter η. We

can thus act on our system in three independent ways,
i.e. by social distancing (reducing α), by early isolation

of symptomatic infectives (raising β), and by detection of

asymptomatic, and of course their isolation (raising η).
It should be stressed that while implementation of the

first strategy is rather clear, at least in principles (things
are less clear when other, e.g. economical and social, con-
siderations come into play), for the other two strategies
the implementation is less clear, and in practice consists
of two intertwined actions: tracing contacts of known in-
fectives, and large scale testing. To put things in a simple
way, actions on β and on η go usually, in practice, to-

gether. Thus we should essentially distinguish between
social distancing on the one side, and other tools on the
other side.
In order to do this, we resort to numerical computa-

tions for a system with parameters strongly related to
those of the SIR numerical computations considered in
Sect. III above, and along the same lines. The results
of these are illustrated in Figs. 3 and 4; these should be
compared with Figs. 1 and 2.
We also consider the quantities analogous to those con-

sidered in Table I; these are given in Table II.
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FIG. 3: Effect of varying parameters in the A-SIR model
while keeping γ constant. We have considered a population
N = 6 ∗ 107 and integrated the A-SIR equations with ξ = 0.1
and initial conditions I0 = 10, J0 = 90, R0 = U0 = 0. Setting
α0 = 10−8, β0 = 10−1d−1, η0 = 4 ∗ 10−2d−1. The runs
were with α = α0, β = β0, η = η0 (solid curve); α = α0/2,
β = β0/2, η = η0/2 (dashed curve); and α = 2α0, β = 2β0,
η = 2η0 (dotted curve). The curves yield the value of K(t)/N ,
see (14), time being measured in days; the plots for I(t)/N
would look similar, with a different scale. The epidemic peak
reaches the same level, with a rather different dynamics.
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FIG. 4: Contrasting the epidemic through different strategies.
We plot K(t)/N for the same system and initial conditions
as in Fig. 1; the plots for I(t)/N would look similar, with a
different scale. Now we consider α = α0, β = β0, η = η0 (solid
curve, black); α = α0/2, β = β0, η = η0 (dashed curve); α =
α0, β = 2β0, η = 2η0 (dotted curve); and α = α0/2, β = 2β0,
η = 2η0 (solid curve, blue). Actions reducing γ by the same
factor through action on the different parameters produce the
same epidemic peak level, but with a substantially different
dynamics.

It is rather clear that the same general phenomenon
observed in the SIR framework is also displayed by the
A-SIR equations. That is, acting only through social dis-
tancing leads to a lowering of the epidemic peak but also
to a general slowing down of the dynamics, which means
restrictive measures and lockdown should be kept for a
very long time. On the other hand, less rough actions
such as tracing contacts and the ensuing early isolation
allow to reduce the peak without having to increase the
time length of the critical phase and hence of restrictions.

α/α0 β/β0 η/η0 γ/γ0 K∗/N I∗/N t1 t2 ts τ

1 1 1 1 0.730 0.058 29 28 94 82

1/2 1/2 1/2 1 0.730 0.058 58 55 188 164

2 2 2 1 0.730 0.058 14 14 47 41

1/2 1 1 2 0.568 0.039 60 57 129 104

1 2 2 2 0.568 0.039 30 29 65 52

1/2 2 2 4 0.348 0.020 68 65 124 92

TABLE II: A-SIR model. Height and timing of the epidemic
peak K∗[t1] and of the peak for symptomatic I∗ = I [t2] (note
t1 6= t2) and time for reaching the “safe” level (I(ts) =
10−4S0), together with duration of the interval τ = ts − ta
defined in terms of symptomatic infectives, for the different
combinations of parameters considered in the numerical runs
of Fig. 3 and 4. See text. In all cases nearly all the population
goes through infection, and a fraction ≈ ξ with symptoms.

VI. THE ONGOING COVID EPIDEMIC – ITALY

Our considerations were so far quite general, and in
the numerical computations considered so far we used
constant parameter values which are realistic but do not
refer to any concrete situation.
It is quite natural to wonder how these considerations

would apply in a concrete case; we will thus consider the
case we are more familiar with, i.e. the ongoing COVID
epidemic in Italy.
The problem in analyzing a real situation is that the

parameters are not constant: people get scared and adopt
more conservative attitudes, and government impose re-
strictive measures. All these impact mainly on social

distancing, i.e. on the contact rate α [16]. Moreover,
any measure shows its effect only after some delay, and
of course not in a sharp way – as incubation time is not
a sharp constant but rather varies from individual to in-
dividual.
In related works [1, 2] we have considered the SIR and

the A-SIR models, and estimated parameters values –
that is, α and β for the SIR model, α, β, η and ξ for the
A-SIR one – allowing them to satisfactorily describe the
first phase of the COVID epidemic in Italy; we have then
assumed that each set of restrictive measures has the
effect of changing α to rα (with 0 < r < 1 a reduction
factor), and that this effect shows on after a time β−1

from the introduction of measures. This is a very rough
way to proceed, but it is in line with the simple approach
of SIR-type modeling.
In Italy (total populationN ≃ 6∗107) a first set restric-

tive measures all over the national territory was adopted
on March 8, and another one on March 22. In the frame-
work of the A-SIR model, our estimate of the parameters
for the first phase of the epidemic (that is, before the first
set of measures could have any effect, i.e. before March
15) was the following, with time measured in days:

α0 ≃ 3.77∗10−9 , β−1
≃ 7 , η−1

≃ 21 ; ξ ≃ 1/10 .
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FIG. 5: Fit of epidemiological data (points) by the function
R(t) arising from numerical solution of the A-SIR equations;
see text for parameter values and other details. Here time is
measured in days, with day 0 being February 20. Reproduced
from [2].

See [2] for details on how these estimates are obtained.
When looking at data in the following time, we as-

sumed that the contact rate α is reduced by the restric-
tive measures (and public awareness) and is changed from
α0 into α1 = r1α0 between March 15 and March 29,
and then into α2 = r2α0 from March 29 on (until mea-
sures will changed; at the moment it is expected that this
should happen on May 4). Our best fit for the reduction
factors ri is

r1 = 0.5 ; r2 = 0.2 .

In Fig. 5 we plot epidemiological data for the cumula-
tive number of detected infections against the numerical
solutions to the A-SIR equations for these values of the
parameters, and for initial data obtained also from the
analysis of real data. This shows a rather good agree-
ment.

A. Simple strategies

We can now simulate further intervention, with four
possible simple strategies [17]:

1. Do nothing, i.e. keep the present social distancing
measures;

2. Further reduction of α by a factor σ;

3. Increase of β and η by a factor σ;

4. Simultaneous reduction of α and increase of β and
η, all by a factor σ;

We stress that these are not equally easy; we have con-
sidered the same reduction/increase factor in order to
better compare the outcome of these three actions, but
as so far all the intervention has been on α, one should
expect that further reducing it is very hard (even more
so considering “side effects” of this on society, economics,
and other sanitary issues – not to mention mental health

issues [12]); on the other hand, no specific campaign de-
signed to increase β has been conducted nationwide so far
(with the exception of Veneto, as recalled in a previous
footnote), so we expect action in this direction would be
quite simpler an has more room for attaining a significant
factor.
It should be mentioned, in this respect, that β−1 is

already at its “physiological” level, just above the incu-
bation time; so it can be further reduced only by contact
tracing; the situation leaves more room for improving on
η, as any campaign to identify asymptomatic infectives
would reduce η−1.
Despite these practical considerations, as already an-

nounced, we consider the same factor for the reduction
of the contact rate and for the increase of the removal
rates, and a homogeneous factor for the latter, in order
to have a more direct comparison of the effects of these
strategies.
We have then ran numerical simulations corresponding

to the different strategies listed above; the outcome of
these is given in Fig. 6. Note that within each strategy
the decay of I(t) is faster than that of K(t), and that the
ratio between I(t) ad K(t), i.e. x(t) = I(t)/K(t), is in
all cases rather far from ξ = 0.1.
We also report in Table III the relevant expected data

for the time ts at which a safety level Is – now assumed
to be Is = 3, 000, i.e. half of the level reached when
the first restrictive measures were taken – is reached, the
time interval τ = ts − 55 from the day the new strat-
egy is applied, and the total count R∞ of symptomatic
infected. This table also reports the asymptotic value
x∞ of the ratio x(t) = I(t)/K(t) of symptomatic to to-
tal infectives; this is relevant in two ways: one the one
hand one expects that only symptomatic infected may
need hospital care, so a low level of x means that albeit
a number of infections will still be around only a small
fraction of these will need medical attention, and COVID
will not absorb a relevant part of the Health System re-
sources; on the other hand, this also means that most
of the infectives will be asymptomatic, i.e. attention to
identifying and isolating them should be kept also when
the number of symptomatic infections is very low. Note
that for the strategy (1) what we report is not really an
asymptotic value, but the value expected at December
31, as the decay is too slow.
In this regard, it may be interesting to note that ac-

cording to our model at the end of April (day 70) we will
have

x ≃ 0.032 ,
R

R+ U
≃ 0.124 . (15)

Again according to our model and fit, at the same date
the fraction of individuals having gone through the in-
fection – and thus hopefully having acquired long-time
immunity – would however be still below 3% nationwide;
this is obviously too little to build any group immunity.
The situation could be different in the areas more heavily
struck by the epidemic, such as Bergamo and Brescia.
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FIG. 6: Simulation of different strategies after day 55 for
Italy. Strategies correspond to those listed in the text, with
factor σ = 2. The curves illustrate the predicted outcome
under different strategies: no action (black, dashed); further
reduction of α (blue); increase of β and η (yellow); reduction
of α and increase of β and η (red). The plots represents,
from the upper one to the lower one: cumulative number of
symptomatic infected R(t); number of symptomatic infectives
I(t); total number of infectives K(t) = I(t) + J(t); ratio of
symptomatic to total infectives, x(t) = I(t)/K(t).

α/α2 β/β0 η/η0 ts τ R∞ x∞

1. 1 1 1 289 234 > 5 ∗ 105 0.031

2. 1/2 1 1 107 52 2.4 ∗ 105 0.019

3. 1 2 2 81 26 2.4 ∗ 105 0.019

4. 1/2 2 2 68 13 2.1 ∗ 105 0.010

TABLE III: Time ts of reaching the safety level Is, time from
adoption of new strategy to ts, and total final count R∞ of
symptomatic infections, for the different strategies listed in
the text, with a factor σ = 2.

B. Discussion

Figure 6 and Table III show, in our opinion quite
clearly, that:

1. Continuing with present measures with no accom-
panying action is simply untenable, as it would
leave the country in this situation for well over one
further semester, and would also result in a large
number of new symptomatic infections – hence also
of casualties – with the ensuing continuing stress on
the Hospitals system.

2. Further restrictions in the direction of social dis-
tancing would have to be kept for nearly two fur-
ther months; they would be effective in reducing
the number of symptomatic infectives in the fu-
ture. On the other hand, as individual mobility
is already severely restricted, this would basically
mean closing a number of economic activities which
have been considered to be priorities so far (includ-
ing in the most dramatic phase), which appears
quite hard on social and economic grounds.

3. A campaign of early detection could be equally
effective in reducing the number of infected and
hence of casualties, but would require to main-
tain restrictions already in place for a much shorter
time, less than one month. This should be imple-
mented through contact tracing, which does not
necessarily has to go through the use of technology
endangering individual freedom, as shown by the
strategy used in Veneto.

4. Combining further social restrictions and early de-
tection would reduce the number of infections to a
slightly smaller figure and would need to be imple-
mented for an even shorter time. This would how-
ever meet the same problems mentioned in item (2)
above, albeit for a shorter time.

5. In all cases (except if no action is undertaken) the
fraction of symptomatic infectives should soon fall
to be between 1 and 2%. This means we fore-
see a reduced stress on the Hospital system, but
a continuing need to investigate, track and isolate
asymptomatic infections, to avoid that at the end
of restrictions they can spark a new epidemic wave.
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All in all, and repeating that we are not able to eval-
uate the social and economical cost of strategy 4, it ap-
pears that strategy 3, i.e. raising the removal rates β
and η, produces nearly optimal results with less strain
on society and economy.
These considerations are of course not final, also in

view of the roughness built-in in the approach of SIR-
type models; but we trust they offer a picture of what
the consequences of different strategies are for what con-
cerns strictly the epidemic dynamics. Decision makers
will have of course to consider other aspects: social,
economical, political, and also sanitary concerning other
kind of pathologies.
Last but not least, tracing should be implemented in a

way which is respectful of privacy and of individual free-
dom. We are of course not competent in discussing how
this should be done in practice, hence will not discuss
this point – nor recall this matter later on in our discus-
sion. We will just quote here Benjamin Franklin, who
wrote that “They who can give up essential Liberty to
obtain a little temporary Safety, deserve neither Liberty
nor Safety”.

C. Modulating the best simple strategy

It may be argued that reaching a factor 2 in the in-
crease of β and η may be too optimistic, and that impos-
ing further social distancing measures may be non ten-
able socially. As for the second objection, we can only
argue that – in the case we best know, i.e. for Italy –
some of the imposed limitations may have been reason-
able from a political point of view, but have very little
epidemiological sense and could be safely removed [18],
while the contact rate could be more effectively lowered
by strict regulations in workplaces, pushing the use of
bike commuting instead of crowded public transport, or
simply by making IPD widely available and their use en-
forced where it makes sense; this would reduce α without
any social strain.
As for the first objection, it is difficult to say how far

the increasing of the removal rates could be pushed, and
in this sense the first anticipations in the general press of
how the technological help for contact tracing would work
(basically again awaiting that symptoms appears) are not
very encouraging, as is the fact that only proximity of
persons would be considered, and not the possibility of
contagion through objects.
We have thus considered for the strategy 3 (increase of

β and η while maintaining α at its present level) different
degrees of success, i.e. different values for the factor σ.
The result of the simulations referring to this setting are
summarized in Fig. 7 and in Table IV.
We see from Fig. 7 that albeit a moderate factor σ,

e.g. σ = 1.5 or even σ = 1.25, produce a substantially
faster decay of the number of infectives compared with
the present situation, i.e. to the case where only social
distancing is pursued. This is confirmed by the numerical
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FIG. 7: Simulation of strategy 3 with different factor σ (see
text) after day 55 for Italy. The curves illustrate the predicted
outcome of strategy 3 with different factors: σ = 1, i.e. no
action (black, dashed); σ = 1.25 (blue); σ = 1.5 (yellow);
σ = 1.75 (green); σ = 2.0 (red). The plots represents the
number of symptomatic infectives I(t) and the total number
of infectives K(t) = I(t) + J(t).

σ 1.00 1.25 1.50 1.75 2.00

ts 289 147 108 91 81

τ 234 92 53 36 26

TABLE IV: Time for reaching again a safe level of infected
(ts) and delay τ from the beginning of new strategy on day
55, for strategy 3 implemented with different factors σ. See
text.

values reported in Table IV.
Summarizing, the computations in this subsection con-

firm the outcomes of our discussion above, and actually
strengthens them in that they show these are valid also
if we do not succeed in greatly raising β and η, albeit of
course the effect is stronger for higher raising factors σ.

D. Relaxing the social distancing measures?

One would hope that action on the removal time could
allow to relax the social distancing measures. We have
thus ran several numerical simulations as those shown in
Fig. 7, but with an α which is slightly higher than the
present one; in particular, we have considered α = r ∗α0

with r = 0.35, thus intermediate between that reached
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FIG. 8: Numerical simulation relaxing the contact rate re-
ducing measures to r = 0.35 after day 55 and simultaneously
raising b and η by a factor σ (see text). We plot the reference
solution, i.e. no variation in α, β, η (black, dashed) together
with the solutions obtained for σ = 1.5 (yellow), σ = 1.75
(green) and σ = 2.0 (red). The decay of infection is much
slower than in Fig. 7.

after the first restrictive measures and the present one (it
is conceivable this could be reached going back to the first
and milder restrictive measures but with a more efficient
implementation of these).
Unfortunately, and as it had to be expected, this turns

out to be possible without sparking a new epidemic
growth – nor slowing down the recovery from the present
outburst – only if the increase of β and η outweigh the
increase in α, i.e. roughly speaking if γ = β/α is not
lowered.
We in particular have ran some numerical computa-

tions with r = 0.35; these are depicted in Fig. 8. Run-
ning the same simulations with r = 0.5 – that is, imag-
ining one goes back to the contact rate reached after the
first set of measures – produces an increase of cases and

a large second maximum, with an epidemic peak about
twice that of the first maximum.

VII. CONCLUSIONS

We have considered – in the framework of “mean field”
epidemiological models of the SIR type, hence disregard-
ing any structure in the population – how different strate-
gies aiming at reducing the impact of the epidemic per-
form both in reducing the epidemic peak and the total
number of people going through the infection state, and
from the point of view of the time-span of the acute crisis
state.

This has been discussed in general terms, both within
the classical SIR model [6–10] framework and with use of
the recently formulated A-SIR model [2], providing also
some general results; in this setting, however, one deals
with models with given parameters, constant in time.

On the other hand, in a real epidemic – as the on-
going COVID one – growing public awareness and gov-
ernmental measures modify these parameters. We have
considered a real case (Italy) from this point of view. Af-
ter recalling that the models considered in this paper do
quite well fit the epidemiological data so far, we have dis-
cussed what would be the impact of different strategies
for the near future, showing that also in this case the
model predicts a much shorter duration of the critical
phase if further action concentrates on early detection of
infectives rather than on social distancing, and this also
if the shortening of the removal time is only quite small.

All in all, our model suggests something which experi-
enced epidemiologists working in the field already know
by direct experience [5]. In the first wave, if the Health
system is not ready to stand the epidemic wave or if the
speed of the epidemics has been under-estimated [11], it
is essential to slow down the contagion and social distanc-
ing, maybe in the form of a lockdown, is the simpler and
faster way to achieve it. After precious time has been ob-
tained in this way, and when it comes to considering also
the social and economic cost of a prolonged lockdown,
the focus should shift to all possible means (respecting
privacy and individual freedoms) of early detection and
prompt isolation of infectives; so far the most effective
means of achieving this is through tracing contacts, which
may allow to isolate infectives before symptoms arise and
thus to “break the incubation time barrier”.
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