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1. Introduction

The Geometry of Differential Equations has been a constant topic in the research by Josiph Krasil’shich, and a great
deal of this has been devoted to (the symmetry approach to) the study of symmetries of differential equations.

These were first considered systematically by Sophus Lie, who laid down the theory of point and contact symmetries.
This theory was later on generalized in several ways by many authors (including JK). The basic idea by Lie is that once
we know how the basic (independent and dependent, possibly allowing first derivatives to transform in a special way)
variables transform, we also know how higher derivative transform:this corresponds to the concept of prolongation of a
vector field, which is thus lifted from the phase manifold M to the associated jet bundle JkM or J∞M , of finite or infinite
order [1,7,22,39,40,43].

In most of the generalizations of Lie-point and contact symmetries, this feature is preserved: one considers more
general types of vector fields in M (e.g. generalized vector fields), but the action these induce in JkM or J∞M is still
obtained from the action in M by means of the standard prolongation operation — and hence the standard prolongation
formula.

There is, however, a class of generalizations for which this does not hold true; these were first considered by Muriel
and Romero [27,28] in the specific case of scalar ODEs,1 and in this case one speaks of λ-symmetries or of C∞-symmetries;
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1 From the point of view of the general theory built afterwards, this is a degenerate case in many ways; which made not so immediate to
understand the underlying Geometry.
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in the general case they are known as twisted symmetries [16,18]. For these, the very prolongation operation is modified, so
that the (twisted) prolongation of a vector field in M to JkM or J∞M does not describe its action on (standard) derivatives.
This notwithstanding, twisted symmetries turn out to be ‘‘as useful as standard ones’’ in reducing or solving nonlinear
differential equations (both ODEs and PDEs) and are thus of great interest both from the abstract and geometrical point
of view and from the concrete and applicative one.

Over the years, we have (separately) worked on this topic, and shown relations of it with two subjects which are also
central in the scientific interests of Josiph Krasil’shich; that is, the theory of coverings [22,24] on the one hand, and that
of gauge transformations [4,13,38] one the other one (for the relations with twisted symmetries, see [2,3] and [14,15,17]
respectively).

The purpose of this paper is to review, and partially reconcile, these two points of view on twisted symmetries, and
their relations with relevant geometric structures.

2. Symmetries of differential equations

We assume the reader is familiar with symmetry of differential equations; the purpose of this section is thus mainly
to fix notation.

We will consider differential equations2 with independent variables xi (i = 1, . . . , p) and dependent variables ua

(a = 1, . . . , q); partial derivatives will be denoted by ua
J , where J is a multi-index J = {j1, . . . , jp} of order |J| = j1+· · ·+ jp

and

ua
J =

∂ |J|ua

∂xj11 ...∂x
jp
p

(1)

(here and somewhere in the following we moved downstairs the vector index of the x for typographical convenience).
We denote by u(k) the set of all partial derivatives of order k, and by u[n] the set of all partial derivatives of order k ≤ n.
We also denote by J̃ = (J, i) the multi-index with entries j̃k = jk + δik.

The x are local coordinates in a manifold B, while u are local coordinates in a manifold U; we consider the phase
manifold M = B × U , which has a natural structure of bundle (M, π, B) over B with fiber U .

We also associate to M its Jet bundles JnM , which associate to any point (x, u) the set of equivalence classes of sections
being mutually tangent of order n; these are described in local coordinates by (x, u, u(1), . . . , u(n)). Note that JnM should
be thought as equipped with a contact structure, generated by the contact forms

ϑa
J := dua

J − ua
J,i dx

i . (2)

A (uni-valued) function u = f (x) corresponds to a section γf of (M, π, B); this is just the graph of f ,

γf = {(x, u) ∈ B × U : u = f (x)} .

We will denote the set of sections of M as Σ(M), and γf ∈ Σ(M).
If we assign u = f (x), we are implicitly assigning also all of its derivatives; thus γf ∈ Σ(M) also identifies prolongations

(of any order) γ (n)
f ∈ Σ(JnM); in multi-index notation,

γ
(n)
f = {(x, u[n]) ∈ JnM : uJ = (∂J f )(x) , |J| ≤ n} .

These can be thought of as sections of (JnM, πn, B).
If we consider a differential equation3 of order n, say

∆ := F ℓ(x, u, u(1), . . . , u(n)) = 0 (ℓ = 1, . . . , L) (3)

(we always assume F to be smooth in all of its arguments) this identifies a manifold in JnM , called the solution manifold
S∆; if ∆ is non-degenerate, this is a manifold of codimension s.

A function u = f (x) is a solution to ∆ if and only if

γ
(n)
f ⊂ S∆ ⊂ JnM .

This also means that vector fields Y in JnM which are both tangent to S∆ and preserve the contact structure map
solutions into solutions.

The condition to preserve the contact structure can be stated more precisely as follows: if Θ is the Cartan ideal
generated by the ϑa

J , then Y preserves the contact structure if

LY (Θ) ⊆ Θ ,

2 For the moment, ODEs or PDEs will not make a difference, and differential equations, are always possibly vector ones, i.e. systems; similarly,
functions are always possibly vector ones — albeit in some cases we will use vector indices explicitly to avoid possible confusion.
3 Note that by this we always mean possibly a system of equations, ODEs or PDEs.



D. Catalano Ferraioli and G. Gaeta / Journal of Geometry and Physics 151 (2020) 103620 3

i.e. if for any ω ∈ Θ we have LY (ω) ∈ Θ . In view of the properties of Cartan ideals, this is the case if and only if
LY (ϑa

J ) ∈ Θ , i.e. if and only if there are functions T aK
bJ ∈ C∞(JnM, R) such that

LY (ϑa
J ) = T aK

bJ ϑ
b
K .

By a standard computation, this is the case if and only if the coefficients of the vector field

Y = ξ i
∂

∂xi
+ ψa

J
∂

∂ua
J

satisfy the prolongation formula

ψa
J,i = Diψ

a
J − ua

J,k (Diξ
k) . (4)

Note that – setting ψa
0 = ϕa – this means that Y is the prolongation of the vector field on M

X = ξ i ∂i + ϕa ∂a ;

this is a well defined vector field in M provided

ξ i = ξ i(x, u) , ϕa
= ϕa(x, u) ;

we will assume this to be the case,4 and in this case we also write

Y = X (n)

to emphasize that the vector field we are considering in JnM is the prolongation of the vector field X in M .
If such a vector field is tangent to S∆, i.e.

X (n)
: S∆ → TS∆ , (5)

we say that X is a Lie-point symmetry for ∆. (More precisely, X is then the generator of a one-parameter local group of
symmetries; but this slight abuse of notation is commonplace in the literature, and we will adhere to it.)

If ∆ is written as in Eq. (3), then the condition that X is a Lie-point symmetry can be expressed as

X (n) [Fµ]F=0 = 0 . (6)

Remark 1. Note that in (6) we are only requiring the invariance of the level set F = 0, not of all the level sets F = c; in
the latter case, we would speak of strong symmetries. ⊙

3. Coverings and nonlocal symmetries

We consider the notion of (first order) covering of a differential equation; here we discuss it in terms of coordinates,
for the sake of brevity; see [22,24] for an intrinsic discussion.

Together with independent variables x ∈ B and dependent ones u ∈ U , with local coordinates respectively (x1, . . . , xp)
in B and (u1, . . . , uq) in U , we consider auxiliary variables w ∈ W , with W a smooth manifold with local coordinates
(w1, . . . , wr ).

Then the system of m equations

∆ := F a(x, u, u(1), . . . , u(n)) = 0 (a = 1, . . . ,m) (7)

is augmented to a system ∆̃ of m + s equations with a new set of s = r · p auxiliary first order equations

w
µ

i = Hµi (x, u, w) . (8)

This also means that the total derivative operators, which in JnM are

Di :=
∂

∂xi
+ ua

i
∂

∂ua + ua
ij
∂

∂ua
j

+ · · · ,

are now modified into total derivative operators acting in a larger space,

D̃i = Di + w
µ

i
∂

∂wµ
.

Note that Eqs. (8) have a compatibility condition; that is, we should require

D̃i H
µ

j = D̃j H
µ

i ∀µ = 1, . . . , r , ∀i, j = 1, . . . , p . (9)

The relevant – interesting and applicable – case occurs when these compatibility conditions (9) just amount to the original
equations (7). In this case indeed the original system ∆ is properly embedded in the system ∆̃, or – seen the other way
round – ∆̃ is a covering of the original system ∆.

4 In other words, here we are not considering contact or generalized vector fields and symmetries.
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Example 1. Consider the Gibbons–Tsarev equation [20]

uxx + ut uxt − ux utt + 1 = 0 ; (10)

A covering for this is provided by the equations [23,41]

wt =
1

ux + ut w − w2 := H(t) ,

wx =
w − ut

ux + ut w − w2 := H(x) .

Indeed, if we compute DtH(x) − DxH(t) and substitute for wt and wx according to the above equations, we obtain

1 − uttux + utuxt + uxx

[ux + (ut − w)w]2
,

and immediately recognize that this vanishes if and only if (10) holds. ⊙

Example 2. Consider the Burgers equation5

ut = uxx + u ux . (11)

A covering of the Burgers equation is provided by adding the auxiliary equations written in matrix form as

∂W
∂x

= A W ,
∂W
∂t

= B W , (12)

where we have defined the 2 × 2 real matrices

W =

(
w11 w12
w21 w22

)
;

A =

(
4η 2u + 4η

2u − 4η −4η

)
, B =

(
2uη u2

+ 2ux + 2uη
u2

+ 2ux − 2uη −2uη

)
.

In fact, computing χ = Dt [AW ] − Dx[BW ] and then substituting according to (12), we immediately obtain that χ = 0 if
and only if (11) holds. ⊙

Coming back to the general discussion, we can now look for standard symmetries of the augmented equation ∆̃.
These will be vector fields to be prolonged in the standard way in the augmented space: thus if X̃ is a vector field in
M̃ = M × W = B × U × W , given in local coordinates by

X̃ = ξ i(x, u, w)
∂

∂xi
+ ϕa(x, u, w)

∂

∂ua + ηµ(x, u, w)
∂

∂wµ

≡ ξ i ∂i + ϕa ∂a + ηµ ∂µ , (13)

its prolongation Ỹ = X̃ (n) will be a vector field

Ỹ = ξ i
∂

∂xi
+ ψa

J
∂

∂ua
J

+ χ
µ

J
∂

∂w
µ

J

≡ ξ i ∂i + ψa
J ∂

J
a + χ

µ

J ∂
J
µ , (14)

where J are multi-indices, ψa
0 := ϕa, χµ0 := ηµ, and the coefficients follow the standard prolongation rule, i.e. (recalling

the total derivative operators are now the D̃i)

ψa
J,i = D̃iψ

a
J − ua

J,k D̃iξ
k ,

χ
µ

J,i = D̃iχ
µ

J − w
µ

J,k D̃iξ
k .

If such a vector field on JnM̃ is tangent to the solution manifold for the system ∆̃, i.e. if X̃ is a symmetry for ∆̃, then
the restriction of X̃ to M will in general be a nonlocal symmetry for the equation ∆ [22,24].

It should be noted that if we just look at the restriction of Ỹ to JnM , this is

Y = ξ i
∂

∂xi
+ ψa

J
∂

∂ua
J

≡ ξ i ∂i + ψa
J ∂

J
a ;

5 As well known, this is mapped into the heat equation vt = vxx by the Hopf–Cole transformation. Note also that sometimes the equation is
written in a slightly different (potential) form, i.e. as wt = wxx + (1/2)w2

x ; taking the x derivative of this we get wxt = wxxx + wxwxx; setting now
u = wx we get (11).
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the coefficients ψa
J do now appear to follow – from the point of view of JnM – the modified prolongation rule

ψa
J,i =

(
Diψ

a
J − ua

J,k Diξ
k)

+ w
µ

i

(
∂µψ

a
J − ua

J,k (∂µξ
k)

)
=

(
Diψ

a
J − ua

J,k Diξ
k)

+ Hµi
(
∂µψ

a
J − ua

J,k (∂µξ
k)

)
. (15)

In the second line, we have used (8).

Remark 2. Note that if the Hµi in (8) are such that their solutions wµ can be expressed as a local function of the u —
which in particular is the case if we allow the Hµi to depend also on the x-derivatives of the u, e.g. hµi = cµa ua

i , or if the
Hµi depend only on the x but not on the u — then the above formulas still yield local (albeit not following the standard
prolongation formula) prolonged vector fields. ⊙

Finally, we note that one could as well consider generalized symmetries; that is – with the shorthand notation introduced
in (13) – vector fields

X̂ = ξ i ∂i + ϕa ∂a + ηµ ∂µ

where the functions ξ, ϕ, η depend not only on (x, u, w) but also on derivatives of u and w up to some order. If the
dependence on derivatives is only in the ηµ, and this is limited to derivatives6 of u, i.e. if we have

X̂ = ξ i(x, u, w)
∂

∂xi
+ ϕa(x, u, w)

∂

∂ua + ηµ(x, u, w; ux, uxx, . . .)
∂

∂wµ
, (16)

then we speak of semi-classical symmetries. This will play a special role in the following, see Section 7.

4. Twisted symmetries

All different symmetries, Lie-point, non-local, generalized etc., considered in the literature share the same fundamental
aspect: there is an action in M , and this is lifted – i.e. prolonged – to Jet bundles JnM requiring the prolonged vector field
preserves the contact structure; this requirement is embodied by the prolongation formula.

It was then rather surprising that in 2001 Muriel and Romero [27,28] proposed a different type of generalization,
where the prolongation formula itself was modified. Starting with these work (see also [26,29–37]), several kinds of
twisted symmetries have been considered in the literature [16,18].

For these, one considers a Lie-point vector field X in M , but the prolongation operation is deformed in a way
which depends on some kind of auxiliary object. In different realizations this can be a scalar function (λ-symmetries
[27,28]), a matrix-valued one-form satisfying the horizontal Maurer–Cartan equations — i.e. a set of matrices satisfying a
compatibility condition (µ-symmetries [8]) — or also a matrix acting in an auxiliary space (σ -symmetries [9]).7

It should also be stressed that twisted symmetries are more easily used for higher order differential equations (ordinary
or partial), while the case of first order equations is in some sense degenerate from this point of view, and presents several
additional problems.

Here we provide a sketchy discussion of different types of twisted symmetries; the reader can consult e.g. [16,18] for
further detail and a review.

4.1. λ-symmetries

The first type of twisted symmetries to be introduced was λ-symmetries (the name C∞ symmetries also appears in the
literature). These were originally introduced to deal with scalar ODEs of any order, and the name ‘‘λ-symmetries’’ refers
to the auxiliary C∞ function λ(t, x, ẋ) defining the twisted prolongation, which in this case is called λ-prolongation. In
fact, this is recursively defined as

ψa
(k+1) = Dxψ

a
(k) − ua

(k+1) Dx ξ + λ
(
ψa

(k) − ua
(k) ξ

)
= (Dx + λ)ψa

(k) − ua
(k+1) (Dx + λ) ξ . (17)

We will denote the λ-prolongation of order k of the vector field X in M as X (k)
λ .

The vector field X in M is said to be a λ-symmetry of the equation ∆ (of order k) if

X (k)
λ : S∆ → T S∆ . (18)

Note that in general a vector field is a λ-symmetry of a given equation only for a specific choice of the function λ.

6 Note that if the auxiliary equations are first order, this is automatically true.
7 An actual ‘‘twisting’’ only occurs in the latter cases, not for λ-symmetries — where one has instead a ‘‘stretching’’ — but it is convenient to use

this collective name in all cases where the prolongation operation is modified [16,18].
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Remark 3. In general, the commutator of the λ-prolongations of two vector fields X, Y in M is not the λ-prolongation of
their commutator, i.e. if Z = [X, Y ] then (in general, for λ ̸= 0)[

X (n)
λ , Y

(n)
λ

]
̸= Z (n)

λ . (19)

In fact, consider e.g. X = x∂u, Y = u∂u; in this case Z = [X, Y ] = X , and δ := [X (1)
λ , Y

(1)
λ ] − Z (1)

λ = xλ∂ux ̸= 0. ⊙

We recall that reduction of ODEs is based on properties of differential invariants for a prolonged vector field. In
particular, we know that once differential invariants of order zero and of order one – call them η and ζ (1) – are known,
then those of higher orders can be built by just applying total derivative operators; that is (denoting by x the independent
variable)

ζ (n+1)
:=

Dxζ
(n)

Dxη

is a differential invariant of order (n + 1) if ζ (n) is a DI of order n and η a DI of order zero. This property, which stems
from the algebra of the prolongation operation, is also known as ‘‘invariant by differentiation property’’, or IBDP.

Lemma (IBDP Lemma). The IBDP holds for λ-prolonged vector fields.

Proof. This follows from direct computation; see e.g. [27,28], or [16]. ⋄

Remark 4. It is the IBDP Lemma that makes λ-symmetries ‘‘as useful as standard ones’’, as discussed e.g. in [16,18]. ⊙

Remark 5. It was pointed out by Pucci and Saccomandi [42] that λ-prolonged vector fields can be characterized as the
only vector fields in JkM with the property that their integral lines are the same as the integral lines of some vector field
which is the standard prolongation of some vector field in M . This remark was fully understood only some time after
their paper, and was the basis for many of the following developments, discussed below. ⊙

4.2. µ-symmetries

The λ-prolongation is specifically designed to deal with ODEs (or systems thereof); a generalization of it aiming at
tackling PDEs (or systems thereof) is the µ-prolongation. This can of course also be applied to ODEs and Dynamical
Systems, as we will see below.

4.2.1. PDEs
Now the relevant object is not a single matrix, but an array of matrices Λi, one for each independent variable. These

are better encoded as a (GL(n,R)-valued) horizontal one-form

µ = Λi(x, u, ux) dxi . (20)

The matrices Λi should satisfy a compatibility condition, i.e.

DiΛj − DjΛi +
[
Λi,Λj

]
= 0 ; (21)

this is immediately recognized as the horizontal Maurer–Cartan equation, or equivalently as a zero-curvature condition for
the connection on TU identified by

∇i = Di + Λi . (22)

If µ satisfies (21), we can define µ-prolongations in terms of a modified prolongation formula, called of course
µ-prolongation formula (and which represents now an actual twisting of the familiar prolongation operation):

ψa
J,i = Diψ

a
J − ua

J,k Di ξ
k

+ (Λi)ab
(
ψb

J − ub
J,k ξ

k)
= (Di I + Λi)ab ψ

b
J − ub

J,k (Di I + Λi)ab ξ
k . (23)

We will denote the µ prolongation (of order k) of the vector field X in M as X (k)
µ . The vector field X in M is said to be

a µ-symmetry of the equation ∆ (of order k) if

X (k)
µ : S∆ → T S∆ . (24)

Note that in general a vector field is a µ-symmetry of a given equation only for a specific choice of the one-form µ.

Remark 6. In λ-prolongations the prolongation operation is modified, but it acts separately on the different vectorial
components in TU (and in TUJ ). In µ-prolongations, instead, the different vector components of TU (and of TUJ ) are
‘‘mixed’’ by the prolongation operation which thus operates a ‘‘twisting’’ among different components of the vector field;
this is the origin of the name ‘‘twisted symmetries’’. Obviously, λ-symmetries are – even in the vector framework – a
special case of µ-symmetries, with matrices Λi being multiple of the identity matrix through functions λi. ⊙
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Remark 7. It is known that µ-symmetries (and hence λ-symmetries) are related to nonlocal symmetries [2,31,36]; we
will discuss this relation below. ⊙

4.2.2. ODEs
In the case of ODEs one just replaces the scalar function λ : J1M → R with a matrix function Λ : J1M → Mat(n) and

define a ‘‘Λ-prolongation’’ [5,6] (which is just a special case of µ-prolongation, for µ = Λdx)

ψa
(k+1) = Dxψ

a
(k) − ua

(k+1) Dx ξ + Λa
b

(
ψb

(k) − ub
(k) ξ

)
= (Dx I + Λ)ab ψ

b
(k) − ub

(k+1) (Dx I + Λ)ab ξ . (25)

In this ODE case we just have µ = Λ dx (only one component), and (21) is identically satisfied.

Remark 8. The IBDP property is in general not holding for µ-prolonged vector fields, not even in the ODEs framework;
the exception is the case where the Λi are diagonal matrices. This means that in general µ-symmetries cannot be used
to obtain a symmetry reduction of ODEs (see however Remark 9). ⊙

4.2.3. Recursion formula
The µ-prolongation X (k)

µ , which we will now write in components as X (k)
µ = ξ i∂i + (ψa

J )(µ)∂
J
a, of a vector field X in

M is defined through (23); however in some cases and applications it is relevant to characterize these in terms of the
difference

F a
J :=

(
ψa

J

)
µ

−
(
ψa

J

)
0
. (26)

It can be shown [8,19] that the F a
J satisfy the recursion relation

F a
J,i = δab

[
Di

(
Γ J)b

c

]
(DiQ c) + (Λi)

a
b

[(
Γ J)b

c (DJQ c) + DjQ b
]
, (27)

where we have written

Q a
= ϕa

− ua
i ξ

i , (28)

and the Γ J are certain matrices whose detailed expression can be computed [8,19] but is not essential.

Remark 9. With the notation (28), the set IX of X-invariant functions is characterized by Q a
|IX = 0. It follows from (27)

that X (k)
µ coincides with X (k)

0 on IX . This means that µ-symmetries are as good as standard Lie-point symmetries to obtain
invariant solutions to differential equations — which is what we do when we have determined symmetries of PDEs. ⊙

4.3. σ -symmetries

When dealing with symmetries of differential equations we often use them one at a time, in particular for ODEs —
e.g. when we reduce the order of the equation. But in general we have a k-dimensional Lie algebra G of symmetries; the
prolongation acts separately on each vector field in G.

It turns out that a different kind of modification of the prolongation operation is possible when we consider a Lie
algebra G of vector field, or more generally a system of vector fields which are in involution (in the sense of Frobenius);
in this case the ‘‘twisting’’ corresponds to mixing the different vector fields in the prolongation operation. This approach
has received the name of ‘‘σ -prolongation’’ and correspondingly one speaks of ‘‘σ -symmetries’’ [9–12]. This approach is
specially suited to the study of dynamical systems.

We will not discuss this type of twisted symmetries here; the reader is referred to the original papers cited above or
to the reviews [16,18].

5. Twisted prolongations and gauge groups

Let us consider the case where the fields ua
= ua(x), i.e. the dependent variables, take values in a vector space U = Rq;

in this case M is a vector bundle.8
We can then operate an x-dependent change of frame in U; as well known, this means acting on our fields (and

equations) by a gauge transformation.
When we deal with JnM , there are natural coordinates ua

J in it. Note that for a given multi-index J the variables
uJ = (u1

J , . . . , u
q
J ) can be seen as belonging to a vector space UJ isomorphic to U; we can then prolong the gauge

transformation defined on U (more precisely, on the bundle (M, π, B)) to a gauge transformation in JNM (more precisely,
on the bundle (JnM, πn, B)) by acting in the same way on all the vector spaces UJ , |J| = 0, . . . , n.

8 The general case can be treated along the same lines; but as our considerations will be local, this would just lead to a heavier notation and
discussion.
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This induces an action on vector fields on M as well as on vector fields on JnM; it is rather obvious that such an action
is specially simple if we look at vertical vector fields, including the evolutionary representative

Xv = (ϕa
− ua

i ξ
i)

∂

∂ua := φa(x, u, ux)
∂

∂ua

of any Lie-point vector field

X = ξ i(x, u)
∂

∂xi
+ ϕa(x, u)

∂

∂ua

in M .9
Let us thus consider vector fields X on M and their prolongations X (n) on JnM , or better the evolutionary representatives

Xv and their prolongations X (n)
v ; and let us consider the gauge transformed of these. Due to the local nature of the gauge

transformation, the gauge transformed of X (n)
v is not the prolongation of the gauge transformed of Xv .

Let us denote the µ-prolongation operator defined in Section 4.2 as Prµ, with Pr = Pr0 the standard prolongation
operator, and denote by γ a given gauge transformation.

Then it turns out that the diagram (where now all vector fields are vertical, albeit this is not explicitly indicated in
order to keep notation simple)

X
γ

−→ W⏐⏐↓Pr0

⏐⏐↓Prµ

Y
γ

−→ Z
(29)

is commutative, provided γ = Ra
b(x, u) and µ are related by

µ = Ra
c

[
Di (R−1)cb

]
dxi := Λi dxi . (30)

This is readily seen for first prolongations10 just working in coordinates. We write

X = φa ∂

∂ua , W = (Ra
b φ

b)
∂

∂ua ;

the (standard) first prolongations of these are respectively

Y = X (1)
= φa ∂

∂ua + (Diφ
a)

∂

∂ua
i
,

Z = W (1)
= (Ra

bφ
b)

∂

∂ua + [Di(Ra
bφ

b)]
∂

∂ua
i

= Ra
bφ

b ∂

∂ua + Ra
b(Diφ

b)
∂

∂ua
i

+ (DiRa
b)φ

b ∂

∂ua
i

= Ra
b

[
φb ∂

∂ua + (Diφ
b)

∂

∂ua
i

]
+

[
(DiRa

ℓ) (R
−1)ℓm Rm

b φ
b] ∂

∂ua
i
.

On the other hand, it is immediate to see that the gauge transformed of Y is

γ (Y ) = Ra
b

[
φb ∂

∂ua + (Diφ
b)

∂

∂ua
i

]
;

thus in order to have a commutative diagram we need to choose

µ = − (DiR) R−1 dxi = RDiR−1 dxi .

In other words, the matrices Λi in the definition of the horizontal one-form µ must be chosen according to (30).
As mentioned above, this computation extends at once to higher order prolongations.

Remark 10. Note that the compatibility condition discussed in Section 4.2 is automatically satisfied. In fact, now

DiΛj − DjΛi = Di (RDjR−1) − Dj (RDiR−1)
= (DiR) (DjR−1) + R (DiDjR−1) − (DjR) (DiR−1) − R (DjDiR−1)
= (DiR) (DjR−1) − (DjR) (DiR−1) ;[

Λi,Λj
]

= R (DiR−1) · R (DjR−1) − R (DjR−1) · R (DiR−1)

9 Note that, as well known, Xv is in general (that is, unless ξ i = 0 for all i = . . . , p) a generalized vector field, and the formalism of evolutionary
representatives has full geometrical sense only when considering infinite jets J∞M [22].
10 And hence for higher ones as well, recalling that the (n + 1)th prolongation is the first prolongation of the nth prolongation.
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= − R[R−1 (DiR) R−1
] R (DjR−1) + R[R−1 (DjR) R−1

] R (DiR−1)
= − (DiR) (DjR−1) + (DjR) (DiR−1) .

Thus the horizontal Maurer–Cartan equation (21) is satisfied. ⊙

We summarize our discussion in the form of the following statements (their proof is in fact given by the previous
discussion):

Proposition 1. Z be the µ-prolongation of the vertical vector field W, defined on (M, π, B), to JnM. Then there are vertical
vector fields X on M and Y on JnM which are gauge-equivalent to W and Z respectively, and such that Y is the standard
prolongation of X. The gauge transformation realizing this equivalence and the horizontal one-form µ in J1M are related
by (30).

Corollary. Let W be a µ-symmetry for a given differential equation ∆. Then there is a vector field X on M such that a gauge
transform of its standard prolongation is tangent to S∆ ⊂ JnM.

6. Twisted prolongations and gauging of derivatives

A different approach, also based on gauge transformations, has been followed by Morando [25]. She noted that one can
describe λ and µ symmetries in terms of gauge-deformed Lie and exterior derivatives. We will follow her work, and work
directly with µ-prolongations and µ-symmetries; as already mentioned, this includes λ-prolongations and λ-symmetries
as a special case.

In the case of µ-prolongations, the fundamental object is the closed differential horizontal one-form µ = Λidxi. One
can define a deformed exterior derivative dµ acting on forms of any degree by

dµα := dα + µ ∧ α . (31)

It is immediate to check that d2
µ = 0; thus dµ allows to define a cohomology.

When µ = df , with f a C∞ function on B, we have

dµα = e−f d(ef α) ;

in this sense the deformed exterior derivative dµ corresponds to (a generalization of) a gauging of the standard exterior
derivative d.

Similarly, one can consider a deformed Lie derivative Lµ. For X a vector field, the deformed Lie derivative LµX is defined
to act on forms α and on vector fields Y by

LµX (α) = LXα + µ ∧ (X α) ,

LµX (Y ) = LX (Y ) − (Y µ) X .

Again, if µ = df these read

LµX (α) = e−f L(ef X) (α) ,

LµX (Y ) = e−f L(ef X)(Y ) ,

so this corresponds to (a generalization of) a gauging of the standard Lie derivative L.
Then, µ-prolonged vector fields can be characterized exactly in the same way as standardly prolonged ones, at the

exception that the deformed Lie derivative plays the role of the standard one.
That is, we consider the contact forms ϑa

J = dua
J − ua

J,idx
i and the Cartan ideal Θ generated by them. Then we have:

Proposition 2. A vector field Y on JnM is the µ-prolongation of the vector field X in M if and only if
(a) it admits a projection on M, and this coincides with X;
(b) it satisfies

LµY (Θ) ⊆ Θ ,

i.e. for any a, J there are smooth functions AµKJ,β such that

LµY (ϑ
a
J ) = AµKJβ ϑ

β

K .

Proof. This is Theorem 4 in [25], and the reader is referred to there for a proof, extensions, and a discussion. ⋄
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7. Twisted prolongations and coverings

The theory of coverings allows to provide a nonlocal interpretation of λ and more generally µ symmetries; that is, a
(local) µ symmetry for a given equation corresponds to a standard non-local one for the same equation. This generalizes
a property holding also for standard symmetries [22,24].

The idea is the following. If the auxiliary equations (8) are solved for w as a function of the x and u, say with

wµ = Θµ(x, u) , (32)

then we can restrict the vector field X̃ , see (13), to the (x, u) space; this will be

X̃0 = ξ i [x, u,Θ(x, u)]
∂

∂xi
+ ϕa [x, u,Θ(x, u)]

∂

∂ua . (33)

But in general – albeit not always – the functions Θµ(x, u) will contain integrals of x and u, as some trivial or less trivial
example can easily show.

Example 3. Consider the equation

du/dx = f (x, u) = u ; (34)

we add to this the equation

dw/dx = h(x, u, w) = uw ; (35)

note that the latter is rewritten as dw/w = udx and hence solved by

w(x) = exp
[∫

u dx
]
. (36)

Consider now Lie-point symmetries for the system (34), (35); these will be in the form (13). One of the symmetries of
the system turns out to be11

X̃ = uw ∂u + w ∂w ;

by using (36), the restriction of this to the (x, u) space is

X̃0 =

(
u exp

[∫
u dx

])
∂u , (37)

i.e. a non-local vector field. ⊙

Example 4 (See [22, Section 6.1]). Let us consider again the Burgers equation

ut = uxx + u ux .

Then we have symmetries

Xα := (α u − 2αx) exp
[
−

1
2

∫
udx

]
∂

∂u
,

with α = α(x, t) any solution to the heat equation αt = αxx.
If we look for solutions to the Burgers equation which are invariant under Xα , we have to solve for the system made

of the Burgers equation and of the condition Xα[u] = 0, i.e.

ut = uxx + u ux

(α u − 2αx) exp
[
−

1
2

∫
udx

]
= 0 .

The second equation requires u = 2αx/α; plugging this into the first one, we obtain

2
α2 [α Dx (αt − αxx) − αx (αt − αxx)] = 2 Dx

(
αt − αxx

α

)
.

In other words, the nonlocal symmetries Xα lead us to the Hopf–Cole transformation. ⊙

11 The action of this vector field is readily integrated to give w(s) = k1es , u(s) = k2 exp[w[s]]; the quantity ue−w is thus invariant under X̃ .
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7.1. λ-symmetries

Pretty much the same mechanism is at work also when one considers twisted rather than standard symmetries. In
particular the situation is fully understood in the case of λ-symmetries (while no much work in the context of µ and
σ -symmetries appears in the literature, see however the next subsection); in this context we have the following general
result, which is Proposition 1 in [2].

Proposition 3. Consider a given smooth function λ = λ(x, u, ux); consider moreover the ODE

∆0 :=
dku
dxk

= f (x, u, . . . , u(k−1))

and its covering ∆̃ consisting of the system

dku
dxk

= f (x, u, . . . , u(k−1))

dw
dx

= λ(x, u, ux) .

Then ∆ admits a λ-symmetry X if and only if ∆̃ admits a semi-classical symmetry Y = ξ∂x+ϕ∂u+η∂w such that [∂w, Y ] = Y .
Moreover, X is the projection to the (x, u) space of the restriction of Y to the solution manifold for the auxiliary equation
dw/dx = λ(x, u, ux), i.e. to

w(x) =

∫
λ(x, u, ux) dx .

Proof. For a detailed proof, the reader is referred to [2]. Here we give a sketch of it. For a given equation ∆0, we
consider the system ∆̃ consisting of it and of ∆1 given by wx = λ(x, u, ux). Suppose then that some Lie-point symmetry
X = ξ (x, u, w)∂x + ϕ(x, u, w)∂u + η(x, u, w)∂w for ∆̃ has been determined, and denote by Y the prolongation (of suitable
order) of X . This means that

[Y (∆0)]{∆0=0,∆1=0} = 0 , [Y (∆1)]{∆0=0,∆1=0} = 0 .

On the other hand, it is clear that Y (∆0) only involves the prolongation of X0 = ξ (x, u, w)∂x + ϕ(x, u, w)∂u, call it Y (0).
This is of the form

Y (0)
= ξ ∂x +

∑
k

ψ (k) ∂

∂u(k) ,

where ψ (0)
= ϕ and the ψ (k) obey the prolongation formula

ψ (k+1)
= Dxψ

(k)
− u(k+1) Dxξ . (38)

It is convenient to rewrite the total derivative operator

Dx = ∂x +

∑
k

u(k+1) ∂

∂u(k) +

∑
k

w(k+1) ∂

∂w(k)

in the form

Dx = D(0)
x + D(1)

x , (39)

having defined

D(0)
x = ∂x +

∑
k

u(k+1) ∂

∂u(k) ; D(1)
x =

∑
k

w(k+1) ∂

∂w(k) . (40)

With this notation, we rewrite Eq. (38) as

ψ (k+1)
= D(0)

x ψ
(k)

− u(k+1) D(0)
x ξ + D(1)

x ψ
(k)

− u(k+1) D(1)
x ξ . (41)

If we assume that the condition [Y (∆1)]{∆0=0,∆1=0} = 0 is satisfied, the other condition [Y (∆0)]{∆0=0,∆1=0} = 0 can be
rewritten solving explicitly ∆1 as

[Y (∆0)]{∆0=0,w=
∫
λdx} = 0 .

This in turn can be written as[̂
Y (∆0)

]
{∆0=0} = 0 ,



12 D. Catalano Ferraioli and G. Gaeta / Journal of Geometry and Physics 151 (2020) 103620

where the vector field Ŷ is defined by restricting the vector field Y to

w =

∫
λ(x, u, ux) dx (42)

and its differential consequences; note that under this restriction we get

D(1)
x = λ ∂w + (Dxλ) ∂wx + · · · =

∑
ℓ

(Dℓxλ)
∂

∂w(ℓ) . (43)

Thus if [∂w, Y ] = Y , it follows that ϕ and ξ are of the form

ϕ(x, u, w) = ew ϕ0(x, u) , ξ (x, u, w) = ew ξ0(x, u) , (44)

and then (41) reads just as the λ-prolongation formula.12 ⋄

The situation can be summarized in a diagram:

∆̃
sym
−→ X̃

Pr0
−→ Ỹ⏐⏐↓cov

⏐⏐↓∆1=0

⏐⏐↓∆1=0

∆0
λ−sym
−→ X (0) Prλ

−→ Y (0)

Here sym (respectively, λ− sym) refers to the fact we determine a symmetry (a λ-symmetry) of the equation, cov refers
to the fact ∆̃ is a covering of ∆0, and ∆1 = 0 refers to the restriction to the solution manifold for ∆1 (and its differential
consequences). Note here X̃ must be of the form (44).

We will illustrate this result by an example, also taken from [2], which we consider in some detail.

Example 5. Consider the equation, or actually the class of equations,

∆ := uxx =
u2
x

u
+

[
mg(x) ux + g ′(x) u

]
um , (45)

where g(x) is a smooth function and m ̸= 0 a real constant. This class of equations was studied by Gonzalez-Lopez [21],
and for general g(x) it has no Lie-point symmetries. On the other hand, it was shown by Muriel and Romero [28], and it
is easily checked, that it always admits as λ-symmetry the vector field

X = ∂u

provided one chooses

λ(x, u, ux) =
ux

u
+ mg(x) um .

In fact, the second λ-prolongation of X will be

Y = ∂u + ψ̂ (1) ∂ux + ψ̂ (2) ∂uxx ,

with the coefficients ψ (k) satisfying the λ-prolongation formula, which in this case (ξ = 0) reads simply

ψ (k+1)
= Dxψ

(k)
+ λψ (k) ,

and of course with ψ (0)
= 1. Thus we get

ψ (1)
= λ , ψ (2)

= Dxλ + λ2 .

Thus, by explicit computation,

Y [∆] =
u uxx − u2

x − um+1
[
mg(x) ux + u g ′(x)

]
u2 ;

substituting for uxx according to ∆ — i.e. according to Eq. (45) — we get indeed

[Y [∆]]∆=0 = 0 .

When we consider the system ∆̃ made by (45) and by the auxiliary equation

wx = λ(x, u, ux) (46)

and look for standard Lie-point symmetries, say of the simplified form

X̃ = ϕ(x, u, w) ∂u + η(x, u, w) ∂w

12 Note that the same condition [∂w, Y ] = Y also implies η(x, u, w) = ewη0(x, u).
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it turns out that choosing

ϕ = ew , η = (m + 1)
ew

u
,

or in other words

X̃ = ew
[
∂u +

m + 1
u

∂w

]
,

we have a symmetry. This can be checked by standard computations.
On the other hand, (46) is solved by

w =

∫
λ(x, u, ux) dx = log(u) + m

∫
u(x) g(x) dx ; (47)

thus the vector field X̃ restricted to the solution to (46) and projected to the (x, u) space reads

X̂ = exp [λ dx] ∂u ,

i.e. we have a non-local vector field.
Now if we look at the second prolongation of X̃ , we have

Ỹ = ew
[
∂

∂u
+ wx

∂

∂ux
+ (w2

x + wxx)
∂

∂uxx

]
+ ew

(m + 1)
u

[
∂

∂w
+

uwx − ux

u
∂

∂wx

+
2u2

x − 2uuxwx − uuxx + u2(w2
x + wxx)

u2

∂

∂wxx

]
.

When we restrict to solutions to (46), i.e. substitute for w and its derivatives according to (47), and project to the
(x, u, ux, uxx) space — i.e. to J2M — we get

Ỹ =

(
exp

[∫
λdx

]) [
∂

∂u
+ λ

∂

∂ux
+ (λ2 + Dxλ)

∂

∂uxx

]
. (48)

By construction, this is tangent to the solution manifold for ∆, Ỹ : S∆ → TS∆. But if this is the case, the same also applies
to any vector field which is collinear to Ỹ , in particular to

Ŷ = exp
[
−

∫
λ dx

]
Ŷ

=
∂

∂u
+ λ

∂

∂ux
+ (λ2 + Dxλ)

∂

∂uxx
. (49)

This is the λ-prolongation of the vector field X̂ = ∂u. ⊙

7.2. µ-symmetries

The discussion given above for λ-symmetries can be extended to µ-symmetries, provided we only consider vertical
vector fields, both in the (x, u) space and in the augmented (x, u, w) one.

Thus to a PDE or system of PDEs ∆0 of order n

∆0 : F ℓ(x, u, . . . , u(n)) = 0 , ℓ = 1, . . . , L (50)

for u = (u1, . . . , up) depending on the independent variables x = (x1, . . . , xq) we associate the auxiliary equations for
w = (w1, . . . , wm) given by

∆
β

i : w
β

i = hβi (x, u, w, ux) , (51)

where the functions hβi satisfy the compatibility condition

Dih
β

j = Djh
β

i (52)

for all pairs i, j = 1, . . . , q and for all µ = 1, . . . ,m. Note that now and in the following Di denotes the total derivative
w.r.t. xi in the augmented space, i.e. taking care of both the u and the w variables.

We will then consider the system ∆̃made of the original equation ∆0 and of the auxiliary equations ∆βi . When looking
for Lie-point symmetries of ∆̃, we will only be considering vertical vector fields, i.e. vector fields of the form

X = φa(x, u, w)
∂

∂ua + ηβ (x, u, w)
∂

∂wβ
. (53)
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In order to apply this to ∆̃, it suffice to consider prolongation to order n in the u derivatives but only to order one in the
w derivatives; we will write this as

Y = Ψ a
J
∂

∂ua
J

+ χ
β

i
∂

∂w
β

i

, (54)

where J is a multi-index of order |J| ≤ n, the index i runs on 1, . . . , q, and sum over repeated indices and multi-indices
is understood. Moreover we set Ψ a

0 = Φa, χβ0 = ηβ . We will also write, for later reference, the restriction of Y to the JnM
bundle (with M = B × U , and x ∈ B, u ∈ U the manifolds in which x and u take values) as

Y0 = Ψ a
J
∂

∂ua
J
.

Suppose that we are able to determine such a vector field which is a symmetry of ∆̃ and moreover such that

φa(x, u, w) = Ga
b(w) ϕb(x, u) . (55)

Then the coefficients in the first prolongation read

Ψ a
i = Diφ

a
= (DiGa

b)ϕ
b

+ Ga
b (Diϕ

b) .

As the matrix G only depends on w, while the vector ϕ only depends on (x, u) we can use the decomposition (39), (40),
and rewrite this – in vector notation for ease of writing – as

Ψi = G (D(0)
i ϕ) + G[G−1 (D(1)

i G)]ϕ = G
[
(D(0)

i ϕ) + (G−1 DiG)ϕ
]
. (56)

Defining the matrices Mi as Mi := G−1
(
D(1)
i G

)
, i.e. as

(Mi)ab = [G−1(w)]ac

[
w
β

i
∂Ga

b(w)
∂wβ

]
,

this is also rewritten as

Ψi = G
[
(D(0)

i ϕ) + Mi ϕ

]
. (57)

Let us now take the restriction of this to the set of solutions to the auxiliary equations ∆βi . Here w
β

i = hβi (x, u, w), and
the wβ themselves are written in terms of the (x, u) variables — in general through expressions containing integrals of
the ua. We will also denote the restrictions of G and M to ∆βi = 0 as

Ĝ := [G]
∆
β
i =0 , Λi := [Mi]∆βi =0 . (58)

Note that the Λi satisfy (21) by construction.
With this notation, let us consider the restriction of Y to the solutions of ∆βi and let us project it on the JnM bundle;

call the resulting vector field Ŷ . We then have

Ŷ = ψ̂a
J
∂

∂ua
J
,

where the coefficients ψ̂a
J satisfy ψ̂a

0 = φ̂a
= Ĝa

bϕ
b and obey the prolongation formula

ψ̂a
J,i = Ĝa

b

[
D(0)
i ψ̂b

J + (Λi)ab ψ̂
b
J

]
. (59)

Thus, if we consider the vector field

Ẑ = Ĝ−1 Ŷ = (̂G−1)ab ψ̂
b
J
∂

∂ua
J
,

then this is the µ-prolongation of

X0 = ϕa(x, u) (∂/∂ua) (60)

for the horizontal one-form

µ = Λi(x, u, ux) dxi . (61)

In this case we could summarize our discussion in the form of a diagram similar to the one given above for
λ-symmetries, i.e.

∆̃
sym
−→ X̃

Pr0
−→ Ỹ⏐⏐↓cov

⏐⏐↓∆βi =0

⏐⏐↓∆βi =0

∆0
µ−sym
−→ X (0) Prµ

−→ Y (0)
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where ∆βi = 0 refers to the restriction to the solution manifold for the whole set of auxiliary equations ∆βi , and we have
to require that the coefficient of the (x, u) variables in the vector field X are as above; note that we have not discussed
the functional form of the ηβ coefficients.13

It is maybe convenient to summarize our discussion as a formal statement (the previous discussion gives a proof
of it).

Proposition 4. Let the system made of Eqs. (50) and (51) — with functions hβi satisfying Eq. (52) — admit a Lie-point symmetry
of the form (53), (55). Then Eq. (50) admits the µ-symmetry X0 Eq. (60) with µ provided by Eq. (61).

8. Conclusions

We have discussed twisted symmetries; these were introduced as a practical tool to obtain (generalized) symmetry-
reduction and symmetry-invariant solutions for differential equations, but here we focused on their geometrical interpre-
tation and meaning.

In particular we considered three different approaches to them, looking at them in different ways:

(a) consider these as standard prolongation under a local gauge transformation, which yields the deformed prolongation
operator;

(b) consider these as prolongations obtained applying the standard prolongation operator but with gauge-deformed
(exterior and Lie) derivatives;

(c) consider these as the image of standard prolongations in a covering space when projected to the original one.

It is quite clear that these different approaches are related to each other, and we will now sketchily discuss such
relations; we hope to provide a more detailed discussion in a forthcoming work.

The approaches (a) and (b) are clearly and directly related, and are both based on considering gauge transformations.
In the first case this is acting on vector fields which are prolonged in a standard way, i.e. on prolongation operation based
on the requirement the Lie derivative of prolonged vector fields preserves the (Cartan) contact structure in JnM , while
in the second case the gauging is applied to the Lie derivative – and to the exterior derivatives appearing in the contact
forms – themselves. Thus we are in a way considering ‘‘active’’ and ‘‘passive’’ gauging.

The relation with the approach by covering is less immediate. As we have seen, covering is based on considering
new degrees of freedom (and corresponding auxiliary variables wβ ), and new equations for this; the vector fields are
prolonged in the standard way in the augmented phase space, but projecting this prolongation, or actually its restriction
to the solutions of the auxiliary equations — to the original space and its prolongations results in a vector field which is
equivalent to a vector field prolonged by the λ- or µ-prolongation formula.

Note that behind all of these approaches lies the basic remark – due originally to Pucci and Saccomandi [42] – that
twisted prolongations are vector field collinear to standard prolongations (of different vector fields), which allows them
to preserve the contact structure. This is essentially due to the very basic fact that in this only the integral curves of vector
fields are relevant, and not the way the flow generated by the vector field itself runs along them.

In concrete application, one or the other of the different approaches reviewed here can be more convenient: in several
cases, in particular if analyzing equations stemming from Physics, the gauge approach can yield more transparent results;
on the other hand, the approach through the theory of covering makes a direct connection with non-local symmetries,
which would be quite artificial in the gauge formalism.
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