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In the deterministic realm, both differential equations and symmetry generators are geometrical objects,
and behave properly under changes of coordinates; actually this property is essential to make symmetry analysis
independent of the choice of coordinates and applicable. When trying to extend symmetry analysis to stochastic
(Ito) differential equations, we are faced with a problem inherent to their very nature: they are not geometrical
object, and they behave in their own way (synthesized by the Ito formula) under changes of coordinates. Thus it
is not obvious that symmetries are preserved under a change of coordinates. We will study when this is the case,
and when it is not; the conclusion is that this is always the case for so called simple symmetries. We will also
note that Kozlov theory relating symmetry and integrability for stochastic differential equations is confirmed
by our considerations and results, as symmetries of the type relevant in it are indeed of the type preserved under
coordinate changes.

1. Introduction

Symmetry methods are our most powerful tool in studying nonlinear deterministic differential equa-
tions [1H5]. It is thus natural to attempt using them also for the study of stochastic differential
equations (SDEs).

In fact, there is by now a substantial literature concerned with symmetries of SDEs; the reader
is referred to the extensive list of references in the recent review [6]] for a (more or less complete)
bibliography.

It should be mentioned that by a SDE (with no further specification) we will always intend an
Ito stochastic equationf'; as well known, these are the natural ones to be considered in view of proba-
bilistic properties [[7H12]], but other types of SDEs are also considered in the literature. In particular,
physicists also like to consider Stratonovich SDEs. These, at difference with Ito ones, (i) are sym-
metric under time reversal, and (i) transform under changes of coordinates in the “usual” way, i.e.
according to the chain rule — and we will see in the following they also enjoy other favourable prop-
erties from the point of view of symmetry. On the other hand, they present several problems from
the point of view of probabilistic foundations [7H12], so that the mathematical literature prefers
to consider Ito equations. It is also well known that for each Ito equation there is an “equivalent”
Stratonovich equation [[7-11]]. The exact nature of this equivalence is however rather delicate when
one looks carefully at it; see e.g. the discussion in [[12]. A physicist’s point of view focusing on
sample paths and Feynman’s path integrals is given in [13]].

The study of symmetry of SDEs concentrated first on Stratonovich equationﬂ but then extended
to Ito equations as well, and actually mainly focused on these.
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bWe ignore the reasons for this, albeit it is possible it is due to the fact symmetries are primarily of interest to physicists,
and as mentioned above there are good physical reasons to consider Stratonovich equations.



We also stress that we are always considering the stochastic version of an ODE; that is, we are
not considering stochastic PDEs. Thus when thinking of the (much better known and understood)
deterministic counterpart, we should think of the theory applying for ODEs.

Quite surprisingly, it appears that studies have so far not tackled an essential problem, concerned
with an equally essential difference between stochastic (Ito) equations and deterministic ones.

In fact, it is well known — and surely well known to the readers of this special issue of INMP,
devoted to symmetry of nonlinear equations — that a deterministic differential equation E has a
geometrical meaning as a submanifold Sg in a certain jet bundle; similarly, the generators of Lie-
point symmetries are vector fields X in the base manifold for the same bundle, extended to vector
fields X in the total space for the bundle by the prolongation operation. Symmetry corresponds to
these prolonged vector fields being tangent to the manifold representing the equation [[1H5]].

Such a relation is a geometric one, and hence it is of course independent of the coordinates
we are using. This is essential in several aspects; focusing on ODEs, in particular, we know that
symmetry reduction under a vector field X is based on using symmetry adapted coordinates — in
which the symmetry property guarantees the reduction is immediate (and reconstruction amounts
to a quadrature); see e.g. [[1H5]] for details. In case there are several Lie-point symmetries, we are
automatically guaranteed these will still be present in the new coordinateq] just due — as mentioned
a few lines above — to the fact vector fields, submanifolds, and hence tangency relations among
these, are geometrical objects, independent of the coordinates representation.

But when we enter in the stochastic realm, we get immediately a serious difference. Lie-point
symmetry generators are still vector fields, and surely they behave “properly” (i.e. according to the
familiar chain rule) under changes of coordinates. Stratonovich differential equations also behave
properly (in the same sense) under changes of coordinates, and actually this was the reason which
led Stratonovich to formulate his theory. But Ito equations do not transform according to the chain
rule; under a change of coordinate they transform according to the Ito rule. In other words, Ito
equations are not covariant ]

Thus, we expect some trouble can arise when we consider symmetry properties and change of
coordinates for an Ito equation (or systems thereof). This is not just a mathematical curiosity, but an
essential point when we try to apply symmetry theory to SDEs. A substantial (and for us, motivating)
example is given by Kozlov’s theory [14H16], establishing the connection between integrability of
a SDE and its symmetry properties, and more in general the possibility to reduce a system of SDEs
making use of its simple (he exact meaning of this term will be explained below) symmetries; this is
based on changes of coordinates, exactly as in the deterministic case. (We anticipate that Kozlov’s
theory is perfectly fine, thanks to some special property of the type of transformations which are
relevant in it.)

The purpose of this note is to clarify the point raised above, i.e. study how the symmetry prop-
erties of a SDE change under changes of coordinates.We have a special interest, of course, in the
case where these do not change with a change of coordinates — after all, this is what makes the
theory really applicable — and thus we will devote special attention to this question. The result is

€As well known, the preservation of symmetries is instead not automatic under the reduction operation; this depends on
the Lie algebraic structure of the symmetry algebra, and on performing the symmetry reduction “in the right order” [[1H5].
dThis problem seems not to have been discussed in the literature (including in contributions by the present authors),
possibly because it is “intuitively clear” that symmetries are such independently of the coordinates; as we will see in a
moment, such an intuition is indeed correct — at least for simple symmetries.



that, luckily, a large set of symmetries of an Ito equation are indeed preserved under changes of
coordinates; not all of them, but all the “useful” ones.

We would like to stress that we will only consider “proper”, i.e. first order, (systems of) Ito
equations. The literature also considers (systems of) higher order SDEs and their symmetries [6}17]];
we will not consider these, neither other possible generalizations of the setting we have chosen to
study.

2. Symmetry of stochastic differential equations

In the case of deterministic differential equationst|A of order n in the basis manifold M (this include
dependent and independent variables) there is a well developed theory identifying them with suit-
able submanifolds Sy in the Jet manifold J”M; a Lie-point symmetry is then a vector field X in M
which, when prolonged to J"M, is tangent to S C J"M.

In the case of a (Ito) stochastic differential equation (SDE)

dx' = f'(x,t)dt + &';(x,0)dw’ (2.1)

such a geometrical interpretation of the equation is missingﬂ, and we have to resort to a purely
algebraic notion of symmetry.

It should be mentioned that one could, in principles, consider general mappings in the (x,#,w)
space — albeit with some restrictions if these have to make physical sense, see e.g. [6,/18]] — but in the
context we are presently interested in, the only relevant ones are simple maps. By this we mean maps
leaving the time variable ¢ and the Wiener processes w unchanged. This simplifies considerably our
task.

Remark 1. The reason to focus on simple maps is their role in application. In fact, Kozlov [[14-16]
showed that the symmetries which are useful to integrate a system of SDEs are only the simple ones.
We refer the reader to his papers, or to the review [6]], for details on this theory. ®

In and below, t € R, x € R" (more general situations, with x taking values in a smooth
manifold, are also possible — but again we will not consider these here), f and ¢ are smooth vector
and matrix functions of their arguments, and w’/ (j = 1,...,m) are independent standard Wiener
processes.

2.1. Simple deterministic symmetries

Let us first consider a smoothf| map

(x,1) = (x,1), X=X(x,1); (2.2)

°By “differential equation” we will always mean possible a vector one, i.e. a system of differential equations, unless the
contrary is explicitly stated.

fIt is instead possible in the case of Stratonovich equations, see Sectionbelow.

2By “smooth” we will always mean C*, albeit in several steps it would be sufficient to consider C> smoothness. As
already stated, by “simple” we mean a map which acts only on the spatial variables, leaving the time 7 (and the Wiener
processes) unchanged. We will refer to such a map as “deterministic” (as opposed to the “random” ones to be considered
below, in which the Wiener processes w play a role) in that it only involves the (x,r) variables, albeit of course when we
introduce an Ito equation its solution x(¢) is a stochastic process.



such maps will be denoted as simple. This map (2.2) induces a map dx — dx and hence a map on
SDEs (2.1)); in particular if (2.2)) is (locally) inverted to give

x = dE 1), 2.3)

then by Ito formula

. od . Ly 1/ 9% \ _. _
i ~j - J <k .
dx' = (8)7!'> dx’ + ( 5 > dt + > (8)71'8)?7‘) 0’0 dt ; 2.4)

similarly the functions f?(x,¢) and Gij (x,1) are mapped into functions f(,) and c~$ij(f,t). In this
way, (2.1) is mapped into a new Ito equation

d¥ = fi(X1)dr + &'(%,1)dw ; (2.5

note that here the f and O take into account not only the change of their variables, but also the
contribution arising from dx expressed in the new variables via the Ito formula.

We say that (2.2) is a symmetry for (2.1) if (2.5) is identical to (2.1), i.e. if the (n+m-n)
conditions

~ ~

fixt) = fixr), 6'5(x1) = o'j(x1) (2.6)

are satisfied identically in (x,?).
We are specially interested in the case where the map (2.2)) is a near-identity one, ¥ = x + £(8x)’
and can hence be seen as the infinitesimal action of a vector field X on M,

i J i
X = (P()C,l‘)ﬁ = (p(x7t)ai- (27)
(Note that X has no component along the ¢ variable; this corresponds to the restriction made above,
see eq.(2.2)), for simple symmetries.) In this case we speak of a Lie-point (simple) symmetry.
Proceeding in this way (the reader is referred to [6,{19}20] for details and explicit computations)
we obtain the determining equations for (simple, deterministic) Lie-point symmetries of SDEs; these
read

) . . ) . 1 .
o + f1(d;0") — @' (d;f") = ~3 (Ag'), (2.8)
o’ (9;9") — ¢/ (9;0%) =0. 2.9)

Here and below we denote by A the Ifo Laplacian, which is in general (for functions possibly
depending also on the w¥, see next subsection) defined as

_ O f ik (9 i (9 i (S
Af = O [<8wf8wk> + 6';0%, <8x-iaxm> + o', <axi8w’") + Gj<8x-iawk>] . (2.10)

Remark 2. In previous works of ours [6,/18] the mixed derivative term was missing in the definition
of A; this entails that the concrete computations given there have to be revised, but also led to wrong
conclusions concerning the relation between symmetries of Ito versus Stratonovich equations; see
Section 3] (and Remark 3) in this respect. ©)




2.2. Simple random symmetries

We can consider more general transformations, involving also the w* variables; these will be called
random maps [18,21},22]]. In particular, for the sake of our investigation we can consider smooth
simple random maps,

(x,15w) — (N 1w) , X=X(x1w); (2.11)
and the corresponding symmetries, i.e. simple random symmetries. These are the vector fields
X = ¢'(x,1;w) 0, (2.12)

leaving the equation (2.T)) invariant
It is shown in [18] that the determining equations for simple random Lie-point symmetries of an
Ito SDE (2.0) read as

. . . . . 1 .
(@ ¢") + 7 (9;9") — ¢’ (9;f") = =5 (A¢"), (2.13)
(9) + 0% (3;0)) — ¢/ (9;0°) =0; (2.14)
here we have used the shorthand notation
=~ 0
o = Tk (2.15)

3. Symmetry of Ito versus Stratonovich equations

It is well known [7HI2] that to each Ito equation (2.1)) corresponds a Stratonovich stochastic differ-
ential equation

dx = bi(x,t)dt + &', (x,1) odw (3.1)
where the functions f’ appearing in (2.1 and the functions »’(x,¢) appearing here are related by

fi(x,1) = b'(x,1) + % [(;{(GT);(X,I)] oM (x,t) == bi(x,1) + pi(x,1). (3.2)

Note that for o constant we have p = 0, and hence b' = fi. See e.g. [7H11]] and in particular [|12]
for details on the Ito-Stratonovich correspondence.

It is natural to wonder if the equivalence between (2.1I) and (3.1) extends somehow to their
symmetries. It turns out this question is not so simply answered in general, but the answer is simple
in the case of simple symmetries.

First of all, we note that in the case of the Stratonovich equation (3.1)), its symmetries of the
form (2.7), i.e. its simple deterministic symmetries, are characterized as solutions to the determining
equations [[18]]

Q'+ bj(aj¢i) — ¢’ (9;b") =0, (3-3)
0} (9;9") — ¢/ (9;0%) =0. 34)

For the equation equivalent to (2.1J), i.e. taking into account (3.2)) and with p defined in there,



these read

A9+ 1040') — 9'(9,) = p'(9,9') — 97 (9P (35)
o7 (9;9") — ¢’ (d;0%) =0. (3.6)

Proposition 1 (Unal [23])). The simple deterministic symmetries of the Ito equation (2.1) and those
of the equivalent Stratonovich equation —i.e. if 3.2) holds — do coincide.

Remark 3. We stress that Unal studied more general cases as well (so Unal’s theorem is more
general than the version given here); as these are not of interest for our present discussion, we only
report the part of his result of direct relevance to us.

On the other hand, we stress that in the same work Unal showed that — even in the deterministic
framework — the result does not extend to non-simple symmetries; in particular if one considers
Lie-point symmetries with generator X = 7(d/dt) + ¢'(9d/dx'), the determining equations for the
Ito and the associated Stratonovich equation are equivalent if and only if 7 satisfies an additional
condition expressed by a third order PDE, more precisely (in our present notation)

. , 1 .
ot o [8,( (8,1: + f1(9;7) + 5040, (8majf)>:| =0;
note this is identically satisfied for T = 7(r) (i.e. for “acceptable” cases according to the discussion
in [[18]). ©

As for simple random symmetries of an Ito equation and of the equivalent Stratonovich one,
it was claimed in [18] that these are not necessarily the same. This statement followed from a
(trivially) wrong definition of the Ito Laplacian (see Remark 2 above).

Actually, we are able to prove that Unals theorem extends to random symmetries.

Proposition 2. The simple symmetries of the Ito equation and those of the equivalent
Stratonovich equation (3.1) i.e. if (3.2) holds do coincide.

Proof. The proof follows from direct (and rather boring) computations, reported in the Appendix;
they deal with simple random symmetries, but deterministic ones are a special case of the latter,
characterized by independence of the functions ¢’ (x,;w) on the w* variables. AN

4. Symmetry of Stratonovich equations and change of coordinates

As recalled above, see Section 2} in the case of deterministic differential equations, equations are
identified with suitable submanifolds — the solution manifold — in Jet spaces (or manifolds); sym-
metries are vector fields whose prolongation is tangent to the solution manifold [[1H5]]. As this is a
geometric relation, it is evident that it is unaffected by changes of coordinates, and we are immedi-
ately guaranteed that a vector field which is computed to be a symmetry in a given set of coordinates
is still such in different coordinates.

In the case of Ito SDEs, we cannot identify the equation with a similar solution manifold, and
symmetries are usually seen as maps on the underlying space which leave formally invariant the
SDE itself. As such, i.e. being identified by an algebraic rather than geometric relation (see again
Section [2)), we are not guaranteed that they are still symmetry when we pass to a different set of



coordinates. This would endanger the feasibility of a symmetry approach, or at least force us to
heavy computations to check that symmetry are conserved after each change of coordinates.

A possible way out is to parallel an alternative description of symmetries for deterministic dif-
ferential equations, and in particular for (systems of) first order ODE@ In fact, the equations

dx! ;
e flx,t) 4.1)

are equivalently described in terms of (the vanishing of) the differential one-forms
o = dx' — fi(x,r)dr. 4.2)

As well known, the property of X = £/9; of being a symmetry for the system of ODEs (according
to the standard notion of Lie symmetry) is equivalent to the property that

[Zx ()], =0, 4.3)
or equivalently that there are functions B} (x,t) such that
Zx(0') = Bi(x,1) o . (4.4)

Needless to say, these are also geometric relations and hence independent of any choice of coordi-
nate system (actually (4.3) is formulated with no reference to a coordinate system).

It is thus convenient to see symmetries of SDEs in a similar way; however, the quantities of
interest will transform covariantly (i.e. in the “usual” way, following the chain rule) only if we
consider SDEs in Stratonovich form.

In order to do this, we will see a Stratonovich equation as a (formal) one-form in the augmented
space (x,7,w) — where x and w can be vector of different dimensions. In this way the property of
being a symmetry will surely be preserved under any change of coordinates.

Definition. The differential equation is represented by the one form

o = dx' — b'(x,1)dr — o' (x,t) odw . (4.5)

Lemma 1. A vector field lies in the annihilator to the form ® representing the equation
if and only if it is a symmetry generator for (3.1)).

Proof. Using Cartan formula [24-26] for the Lie derivative of a differential form and (2.7), @.5),
we have

Z(0) =dX J0') + X Jdo’
=d(¢) + (979n) 2 (d A () + dwk A ((907)d + (d0%dr)
= (9,9")dt + (9;9")dx) — @/ (9;b')dt — @' (d;0",) odwF
= (9,9))dx + [(d¢) — @ (9;b))] dt — @/ (3;0%) odw .

"The same holds also for higher order equations and systems, of course, but in the case of first order ones we do not need
to introduce and discuss the contact structure [1H5]]. Moreover we only need these to discuss the case of Ito equations.



Restricting now to the annihilator of @', i.e. substituting for dx’ according to the Stratonovich equa-
tion itself, we get

(S (0h)],,_, = (9;0) [bfdt + Gjl;odwk} + [(3:9") — @7 (9;")] dt — @7 (9;0",) odwt
= [(39") + b/ (9;9") — @/ (9;b")] dr + {Gi(aj(l’i) — ¢/ (9;0%) | odw* .

We should then require the vanishing of this expression, which is equivalent to the vanishing of both
expressions in square brackets (the coefficients of, respectively, df and each of the dw*). These are
just the n+m - n determining equations (3.3), (3.4) given above, and obtained in the literature in the
“standard” way, i.e. with no reference to differential forms and Lie derivatives. A

Lemma 2. Symmetries of a Stratonovich equation are preserved under simple changes of coordi-

nates (2.2).

Proof. This follows at once from having set the Stratonovich equation in geometrical terms as
dw = 0 and by the independence of the condition .Zx (@) = 0 on any coordinate representation. A

Lemma 3. Simple symmetries of an Ito equation are preserved under simple changes of coordinates

Proof. This follows at once from Lemma 2 and Proposition 1. A

Remark 4. First of all we stress that Lemma 3 refers to all kind (deterministic or random) of simple
symmetries; thus it corrects wrong statements in previous work [|6,/18]] (see again Remark 2).

Our discussion allowed to grant preservation of symmetries (under simple changes of coordi-
nates) for Stratonovich equations; it extends to Ito equations only when we are sure of the corre-
spondence between symmetries of an Ito equation and of the equivalent Stratonovich one, i.e. for
simple symmetries, see Lemma 3.

This also means that when this correspondence is not granted, which is the case for non-simple
symmetries (with coefficient T depending on the spatial variables and/or on the Wiener processes
in the random case see Remark 3), it is possible (but not certain) that symmetries of an Ito equation
are not preserved under a change of variables. It should however be recalled that maps in which
t changes depending on the x and/or the w variables are not acceptable physically; see e.g. the
discussion in [6,/18]]. ©

5. Application: Kozlov theory

As mentioned in the Introduction, some of the more substantial results of symmetry theory in the
context of SDEs were obtained by R. Kozlov in a series of papers [[14-16] (see also [6] for a brief
summary) in which he investigated the possibility to parallel the classical symmetry treatment of
ODE:s in the case of SDEs; in particular he found sufficient symmetry conditions guaranteeing the
integrability of a scalar SDE, or reducibility of a system of SDEs (or integrability in the case the
symmetry algebra is sufficiently large and with the suitable algebraic structure — exactly as in the
ODE case).



Here we will only discuss the problem of integration of a scalar Ito SDE
dx = f(x,t)dt + o(x,t)dw (5.1)
which admits a simple Lie-point symmetry with generator
X = &(x,1) dy (5.2)

the case of systems would go through similar considerations for what concerns our point in this
paper (see also the companion paper [27]).

Kozlov’s approach is based on finding a change of coordinates, characterized by the coefficient
& (x,t) of the symmetry vector field, mapping the equation to a manifestly integrable one,

dy = f(t)dr + &(t)dw. (5.3)

More specifically, he gives the following result [14]ﬂ

Proposition 3. If the SDE admits a vector field as a (generator of a) Lie-point symmetry,
then it can be transformed into (5.3), and hence explicitly integrated.

The integrating change is provided by y = F (x,t), where F is the inverse to ®, i.e. D[F (x,1),t] =
x, F[®(y,t),t] =y, and

1
D(y,1) = /(p(y,t) dy . 5.4)

Proof. The proof of this results amount to a direct computation [|14]]. In particular, one considers the
suggested change of variables; we know it will change the equation (5.1)) into a new Ito equation,
which we write as

dy = f(y,t)dt + G(y,t)dw. 5.5)
On the other hand, the vector field X will be written, in the new coordinates, simply as
X =9. (5.6)

Now, assuming this is still a symmetry for the transformed equation it is a simple matter to check
from li 1D that necessarily f and 6 do not depend on y, i.e. the transformed equation is of the

form (5.3). AN

Remark 5. As stressed above, in the course of the proof one is assuming that X is a symmetry of
the transformed equation, and actually all of Kozlov theory [[14-16] is based on such an assumption.
As we have remarked in this paper, conservation of symmetries of an Ito equation under changes of
coordinates is however not granted apriori, given that Ito equations are not geometrical objects and
transform in their own way.

i Albeit this is a published result, we provide here a proof of it in order to stress how this depends on an assumption which
merits discussion, see Remark 5 below.



On the other hand, here we are considering a (deterministic) simple symmetry of the equation.
Our Lemma 3 guarantees this is indeed preserved under changes of coordinates, and the assumption
made above is perfectly justified — and hence Kozlov theory is well rooted and correct. O]

Example 1. The Ito equation

1
dy = (e_y - 2e_zy> dt + e Ydw 5.7

admits the vector field X = ¢™7d, as a (Lie-point) symmetry generator. In this case

LI R S
/(P(y)dy e + c;

hence we should consider the change of variables x = exp[y]. By a straightforward computation, we
have indeed that with this variable the initial equation (5.7) reads

dx = dt + dw; (5.8)
in these variables, X = 0. ®
Example 2. The equation
e ' (1+)%)? > (14y%)?
dy = ———= 7 (4 "By 42y —1))dt — ~—22-d 5.9
y 87 (—4y" + '3y +2y°— 1)) 2y (5.9)
looks too involved to be studied. However, it admits the vector field
(14y%)?
X = - (zy dy = ¢(y)dy

as a symmetry. In this case we have

1 1
dy = .
/ ?(y) 1+)y?
Passing to the variable x = 1/(1+y?), indeed, the equation (5.9) just reads
dx = e 'dt + dw; (5.10)

in these variable we have X = 0,. ®

6. Conclusions and perspectives

We noticed that symmetries of an Ito equation are defined only algebraically, not geometrically;
it follows that, contrary to the case of deterministic equations, in this context it is not granted that
symmetry are preserved under a change of variables. On the other hand, familiar properties are
present in the case of Stratonovich stochastic differential equations. We have thus considered the
relation between symmetries of an Ito equation and those of the associated Stratonovich equation.
In the case of simple symmetries the two sets coincide (Proposition 2), and hence preservation of
symmetries of the Stratonovich equation entails preservation of symmetries of the corresponding
Ito one (Lemma 3).



In particular, this sets on a solid ground the theory developed by Kozlov [14H16]], which relates
symmetry and integrability — or reducibility — of Ito SDEs pretty much as for deterministic ODE:s,
except that only simple symmetries are now relevant.

Note that one could consider more general sets of maps and hence symmetries; in particular,
simple random symmetries [18]]. In this case the identity between symmetries of an Ito equation and
those of the associated Stratonovich equation is also granted by Lemma 3. The extension of Kozlov
theory using random symmetries appears therefore possible; it will be discussed in a companion
paper [27].
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Appendix A. Proof of Proposition 2

In this Appendix we give a detailed proof of Proposition 2. We will actually prove a slightly stronger
result, which immediately implies Proposition 2.

Lemma A.1. The equations (2.8) and are just the same when restricted to the set of functions
satisfying the (identical) equations (2.9), (3.6).

Proof. Recalling (3.2)), and defining
L(u) = 2 [¢'(9p") — P (99)] (A1)
we can rewrite (3.5) as
o + 100" — ¢/9;f" = (1/2) Zg]. (A2)

Thus, comparing this and (2.8), we have to show that A(¢') = Z(¢'). More precisely, we have to
show that this holds when we restrict to the set . of functions ¢’ (x,?) satisfying (2.9), which is just
the same as (3.6) and which we rewrite here for ease of reference:

X*9' = ¢’ (9,0%) — 0% (99) . (A-3)
Thus, we have to show that

peS = A = 2(¢). (A4)



It is immediate — recalling also that the Gi do not depend on the AF variables — to obtain some
differential consequences of the (A.3) (which of course only hold on .¥), i.e.

909" = (9,97)(9,0%) + 97 (99,0 — (9,6%)(3,9") — 0%(90,9') :
)’ = (99") (9,0%) — &% (39
= ¢'(9,0%,)(9,0%) — 05,(ds <P")(f9 %) — 64(9,9") (9;0%,) — 0% 9’ (9,9,0",)
+ 0% (9,0%,) (3:9") + oF 6%, (9:0,9") ;
"9k’ = 9* (3,67)(9,0%) — o™ (397) (9,0%) — 0% (9,0°) (d;0™) — &% 9" (3:9,0™)
+6%(9,0™) (00") + 00 (Ad,0)
With these expressions, and some boring algebra, we can easily compute
[A9], = 8" (Oudkg") + 8™ &.0%,(910;0) + 207 (3jke)
= ¢ (2:6")(3,0%) — 0™ (2.97)(3,6%) — 0™ (3,0") (A0 — 0™ @' (29,0
7 (3,0%) (0.9') + 0 0% (30,0) + 00K (,9,9)) + 267 (3,07) (9,07
+20%¢?(9,0;6",) — 207/ (9;6%) (9,9") — 207* 6%, (9,0,¢")
= ¢°0"(9,9,0%) + ¢°(3,6™)(d,0%) — 0™ (9;0%) (9,9") -
Let us now come to compute X(¢'). Recalling that p' = (1/2) [(8k0ji)6kf} , we get (again with
some boring algebra)
L(9") = ¢/9[(9ka") 0] — (d0?) 0% (9,9")
= ¢’ (9;0k0"") o, + ¢’ (9ho™) (9;0",)
= ¢’ 0" (9;0:0",) + ¢’ (9;0%,) (9kc™)
= ¢’ 6"(9,9,0%) + ¢*(9,6™)(9,0")

— (9ko™) 6% (9,9")
G p
— 6"(9")(9,9")
— 0% (0,0%) (9,9") -
In the last line we have just renamed dummy indices to emphasize the relation with the result
obtained above; note that here we have not used (A.3), i.e. this computation holds on any (smooth)

function. However, we are interested in applying this general formula to functions lying in ..
We obtain, by direct inspection, that

[A(e") — Z(9)], = 0.
This shows that (A.4) holds and hence completes the proof. A
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