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Storing memory for molecular recognition is an efficient strategy for responding to external stimuli.
Biological processes use different strategies to store memory. In the olfactory cortex, synaptic connections
form when stimulated by an odor and establish an associative distributed memory that can be retrieved
upon reexposure to the same odors. In contrast, the immune system encodes specialized memory by diverse
receptors that can recognize a multitude of evolving pathogens. Despite the mechanistic differences
between memory storage in the olfactory system and the immune system, these processes can still be
viewed as different information encoding strategies. Here, we develop analytical and numerical techniques
for a generalized Hopfield network to probe the utility of distinct memory strategies against both static and
dynamic (evolving) patterns. We find that while classical Hopfield networks with distributed memory can
efficiently encode a memory of static patterns, they are inadequate against evolving patterns. To follow an
evolving pattern, we show that a Hopfield network should use a higher learning rate, which can in turn
distort the energy landscape associated with the stored memory attractors. Specifically, we observe the
emergence of narrow connecting paths between memory attractors that lead to misclassification of evolving
patterns. We demonstrate that compartmentalized networks with specialized subnetworks are the optimal
solutions to memory storage for evolving patterns. We postulate that evolution of pathogens may be the
reason for the immune system to be encoded in a focused memory, in contrast to the distributed memory
used in the olfactory cortex that interacts with mixtures of static odors. Our approach offers a principled
framework to study learning and memory retrieval in out-of-equilibrium dynamical systems.
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I. INTRODUCTION

Storing memory for molecular recognition is an efficient
strategy for sensing and response to external stimuli in
biology. Apart from the cortical memory in the nervous
system, memory is also an integral part of the immune

response, present in a broad range of organisms from the
CRISPR-Cas system in bacteria [1–3] to adaptive immunity
in vertebrates [4–6]; CRISPR is an acronym for “clustered
regularly interspaced short palindromic repeats” and Cas
stands for “CRISPR associated protein”. In all of these
systems, an encounter with a pattern is encoded as a memory
at the molecular level, and is later retrieved and activated in
response to a similar stimulus, be it a pathogenic reinfectionor
a reexposure to a pheromone. Despite this high-level sim-
ilarity, the immune system and the synaptic nervous system
utilize vastly distinct molecular mechanisms for storage and
retrieval of their memory.
Memory storage, and in particular, associative memory

in the hippocampus and olfactory cortex, has been a focus
of theoretical and computational studies in neuroscience
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[7–11]. In the case of the olfactory cortex, the input is a
combinatorial pattern produced by olfactory receptors
which recognize the constituent monomolecules of a given
odor. An odor signal is transmitted from the receptors to
the olfactory cortex, which serves as a pattern recognition
device and enables an organism to distinguish orders-of-
magnitude more odors compared to the number of olfactory
receptors [12–14]. The synaptic connections in the cortex
are formed as they are costimulated by a given odor pattern,
thus forming a distributed associative memory that can be
retrieved in future exposures [7–11,15–18]. Notably, the
distributed representation of odor stimuli has been dem-
onstrated through optical imaging experiments in the piri-
form cortex, which is a subregion of the olfactory cortex
[17,18]. While this description of the olfactory memory
may be incomplete, as it does not include the role of
the anterior olfactory nucleus [19], it still highlights the
significance of distributed associative memory in accu-
rately determining the identity of odor stimuli.
Immune memory is encoded very differently from

associative memory in the nervous system. Immune
receptors are extremely diverse and can specifically
recognize pathogenic molecules without the need for a
distributed and combinatorial encoding. In vertebrates, for
example, the adaptive immune system consists of tens of
billions of diverse B and T cells that can recognize and
mount specific responses against the multitude of patho-
gens [5]. Immune cells activated in response to a pathogen
can differentiate into memory cells, which are long-lived
and can more efficiently respond to reinfections. Unlike
the distributed memory in the olfactory cortex, the
receptors encoding immune memory are specialized for
a given pathogen class. However, within the same class,
they can recognize evolved variants of a primary pathogen,
in response to which memory was originally generated
[5,20–25].
Learning and encoding of memory in the nervous system

has inspired the development of efficient algorithms in
machine learning with artificial neural networks [26–29].
In one class of such networks, input patterns trigger
interactions among encoding nodes. Such an ensemble
of interacting nodes can keep a robust distributed memory,
since their coactivation enables the network to reconstruct a
memory from even an incomplete pattern. This mode of
memory storage resembles the coactivation of synaptic
connections in a cortex. Energy-based models, such as
Hopfield neural networks with Hebbian update rules [30],
are among such systems, in which memory is stored as
the network’s energy minima [31]. These algorithms are
effective in disentangling signal from noise, which makes
them highly efficient in encoding static inputs with noise.
Although some specialized machine-learning approaches
allow for learning dynamically evolving inputs [26,27], we
still lack a general framework for learning evolving
patterns, relevant for many real-life applications [27].

Inspired by the ability of the immune memory in
recognizing evolving patterns (pathogens), we propose a
flexible model of learning with neural networks that can
interpolate between the specialized and the distributed
memory strategies used by the immune system and the
nervous system. We formulate this problem as an optimi-
zation task to find a strategy (i.e., learning rate and network
structure) that confers the highest accuracy for memory
retrieval from the static and the dynamic (evolving) patterns.
In contrast to the static case, we show that a distributed

memory in the style of a classical Hopfield model [31] fails
to efficiently work for evolving patterns. We show that the
optimal learning rate should increase with faster evolution
of patterns, so that a network can follow the dynamics of
the evolving patterns. This heightened learning rate tends to
carve narrow connecting paths (mountain passes) between
the memory attractors of a network’s energy landscape,
through which patterns can equilibrate in and be associated
with a wrong memory. Importantly, we demonstrate that the
problem of memory retrieval for continuously evolving
patterns is distinct from that of the noisy patterns [32].
Unlike noise, evolution can systematically eliminate shared
features among patterns, making it difficult to retrieve a
pattern from an associative memory over time. To over-
come this misclassification, we demonstrate that special-
ized memory compartments emerge in a neural network as
an optimal solution to efficiently recognize and retrieve a
memory of out-of-equilibrium evolving patterns.
Our results suggest that evolution of pathogenic patterns

may be one of the key reasons for the immune system to
encode a focused (compartmentalized) memory, as opposed
to the distributed memory used in the olfactory system, for
which molecular mixtures largely present static patterns.
Our approach provides a flexible framework to charac-

terize the utility of different memory strategies inspired by
the distinct organization of memory in the olfactory system
and the immune system. However, it should be noted that
such a top-down approach inevitably ignores many mecha-
nistic and biological details, including the interaction
between the adaptive and innate immunity in responding
to pathogens [5] and the role of anterior olfactory nucleus in
odor recognition [19]. Nonetheless, the proposed model
can guide our biological intuition and offer a principled
analytical framework to study learning and memory gen-
eration in out-of-equilibrium dynamical systems.

II. RESULTS

A. Model of working memory for evolving patterns

To probe memory strategies for different types of stimuli,
we propose a generalized energy-based model of associa-
tive memory, in which a Hopfield-like neural network is
able to learn and subsequently recognize binary patterns.
This neural network is characterized by an energy land-
scape, and memory is stored as the network’s energy
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minima. We encode the target of recognition (stimulus) in a
binary vector σ (pattern) with L entries: σ ¼ ðσ1;…; σLÞ
with σi ¼ �1, ∀ i [Fig. 1(a)]. To store associative memory,
we define a fully connected network represented by an
interaction matrix J ¼ ðJi;jÞ of size L × L and use a
Hopfield-like energy function (Hamiltonian) to describe
pattern recognition [31] [Fig. 1(c)]

EJðσÞ ¼ −
1

2L

X
ij

Ji;jσiσj ≡ −
1

2
hσjJjσi: ð1Þ

Here, we use a shorthand notation to denote the normalized
(scaled) pattern vector by jσi≡ ð1= ffiffiffiffi

L
p Þσ, its transpose by

hσj, resulting in a normalized scalar product hσjσ0i≡
ð1=LÞPi σiσ

0
i and a matrix product hσjJjσi≡

ð1=LÞPi;j σiJi;jσj.
The network undergoes a learning process, during which

different patterns are presented sequentially and in random

order [Fig. 1(b)]. As pattern σα is presented, the interaction
matrix J is updated according to the following Hebbian
update rule [33]:

Ji;j → J0i;j ¼
� ð1 − λÞJi;j þ λσαi σ

α
j ; if i ≠ j;

0 otherwise:
ð2Þ

Here, λ is the learning rate. In this model, the memorized
patterns are represented by energy minima associated with
the matrix J. We consider the case where the number N of
different pattern classes is below the Hopfield capacity of
the network (i.e., N ≲ 0.14L; see Refs. [31,34,35]). Apart
from this Hebbian learning rule, we also consider other
learning protocols, including the Storkey learning rule [36],
the gradient-descent learning rule [37], and sparse Hebbian
learning (Appendix D). As we discuss throughout the
manuscript, we find that our main conclusions are quali-
tatively insensitive to the choice of the learning rule, and

σ(t) = (− 1,1,…,1, 1)

σ(t + 1) = (− 1,1,…,1,− 1)

Pattern evolution Hebbian update of memory

Mutation rate
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α
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FIG. 1. Model of working memory for evolving patterns. (a) The targets of recognition are encoded by binary vectors fσg of length L.
Patterns can evolve over time with a mutation rate μ denoting the fraction of spin flips in a pattern per network update event. (b) Hebbian
learning rule is shown for a network J, which is presented a set of N patterns fσαg (colors) over time. At each step, one pattern σα is
randomly presented to the network, and the network is updated with learning rate λ [Eq. (2)]. (c) The energy landscape for networks with
distributed memory with optimal learning rate for static (left) and evolving (right) patterns are shown. The equipotential lines are shown
in the bottom 2D plane. The energy minima correspond to memory attractors. For static patterns (left), equilibration in the network’s
energy landscape drives a pattern toward its associated memory attractor, resulting in an accurate reconstruction of the pattern. For
evolving patterns (right), the heightened optimal learning rate of the network results in the emergence of connecting paths (mountain
passes) between the energy minima. The equilibration process can drive a pattern through a mountain pass toward a wrong memory
attractor resulting in pattern misclassification. (d) A network with distributed memory (left) is compared to a specialized network with
multiple compartments (right). To find an associative memory, a presented pattern σα with energy EðJ; σαÞ in network J equilibrates
with inverse temperature βH in the network’s energy landscape and falls into an energy attractor σαatt. Memory retrieval is a two-step
process in a compartmentalized network (right): First, the subnetwork Ji is chosen with a probability Pi ∼ exp½−βSEiðJi; σαÞ�, where βS
is the inverse temperature for this decision. Second, the pattern equilibrates within the subnetwork and falls into an energy attractor σαatt.
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therefore, we limit our analysis in the main text to the
Hebbian learning rule in Eq. (2).
With the update rule in Eq. (2), the network develops

energy minima as associative memory close to each of the
previously presented pattern classes σα (α ∈ f1;…; Ng)
[Fig. 1(c)]. Although the network also has minima close to
the negated patterns, i.e., to −σα, they do not play any role
in what follows (Appendix C). To find an associative
memory, we let a presented pattern σα equilibrate in the
energy landscape, whereby we accept spin flips σα → σ̃α

with a probability min ð1; e−βH(EJðσ̃Þ−EJðσÞ)Þ, where βH is the
inverse equilibration (Hopfield) temperature (Appendix A).
In the low-temperature regime (i.e., high βH), equilibration
in networks with working memory drives a presented
pattern σα toward a similar attractor σαatt reflecting the
memory associated with the corresponding energy mini-
mum [Fig. 1(c)]. This is measured similarly by the overlap
qα ≡ jhσαattjσαij and determines the accuracy of the asso-
ciative memory.
Unlike the classical cases of pattern recognition by

Hopfield networks, we assume that patterns can evolve
over time with a mutation rate μ per site per network update
event [Fig. 1(a)]. Therefore, the expected number of spin
flips in a given pattern between two encounters is
NμL≡ μeffL, since two successive encounters of the same
pattern are on average separated by N − 1 encounters (and
updates) of the network with the other patterns. We work in
the regime where the mutation rate μ is small enough such
that the evolved patterns stemming from a common
ancestor σαðt0Þ at time t0 (i.e., the members of the class
α) remain more similar to each other than to members of the
other classes (i.e., μNL ≪ L=2).
The special case of static patterns (μeff ¼ 0) can reflect

distinct odor molecules, for which associative memory is
stored in the olfactory cortex. On the other hand, the
distinct pattern classes in the dynamic case (μeff > 0) can
be attributed to different types of evolving pathogens (e.g.,
influenza, HIV, etc.), and the patterns within a class as
different variants of a given pathogen. In our model, we use
the mutation rate as an order parameter to characterize the
different phases of memory strategies in biological systems.

B. Optimal learning rate for evolving patterns

In the classical Hopfield model (μeff ¼ 0), the learning
rate λ is set to very small values for the network to
efficiently learn the patterns [33]. For evolving patterns,
the learning rate should be tuned so the network can
efficiently update the memory retained from the prior
learning steps. At each encounter, the overlap qαðt; λÞ ¼
jhσαattðt; λÞjσαðtÞij between a pattern σαðtÞ and the corre-
sponding attractor for the associated energy minimum
σαattðt; λÞ determines the accuracy of pattern recognition;
the parameter λ explicitly indicates the dependence of
the network’s energy landscape on the learning rate. We
declare the recognition of a pattern σα as successful if and

only if the accuracy of reconstruction (overlap) is larger
than a set threshold qαðtÞ ≥ 0.8. However, our results are
insensitive to the exact value of this threshold (Appendix C
and Supplemental Material [38] Fig. S1). We define a
network’s performance as the asymptotic accuracy of its
associative memory averaged over the ensemble of all
(recognized and unrecognized) pattern classes [Fig. 2(a)],

QðλÞ≡ E½qαðt; λÞ�

≃ lim
T→∞

1

T

XT
t¼0

1

N

XN
α¼1

jhσαattðt; λÞjσαðtÞij: ð3Þ

The expectation E½·� is an empirical average over the
ensemble of presented pattern classes over time, which in
the stationary state approaches the asymptotic average of the
argument. The optimal learning rate is determined by
maximizing the network’s performance λ� ¼ argmaxλQðλÞ.
The optimal learning rate increases with growing muta-

tion rate so that a network can follow the evolving patterns
[Fig. 2(b)]. Although it is difficult to analytically calculate
the optimal learning rate, we can use an approximate
approach and find the learning rate that minimizes the
expected energy of the patterns E½Eλ;ρðJ; σÞ�, assuming that
patterns are shown to the network at a fixed order
(Appendix B). In this case, the expected energy is given by

E½Eλ;ρðJ; σÞ� ¼
L − 1

2
×

λ

1 − λ
×

1

ρ−2Nð1 − λÞ−N − 1
; ð4Þ

where ρN≡ð1−2μÞN ¼1–2NμþOðμ2Þ≈1−2μeff is the
upper bound for the overlap between a pattern and its
evolved form when separated by the other N − 1 patterns
that are shown in between. The expected energy grows
slowly with increasing mutation rate (i.e., with decreasing
overlap q), and the approximation in Eq. (4) agrees very well
with the numerical estimates for the scenario where patterns
are shown in a random order [Fig. 2(c)]. In the regime where
memory can still be associated with the evolved patterns
(μeff ≪ 0.5), the minimization of the expected energy
[Eq. (4)] results in an optimal learning rate

λ�ðμÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8μ=ðN − 1Þ

p
ð5Þ

that scales with the square root of the mutation rate. Notably,
this theoretical approximation agrees well with the numerical
estimates [Fig. 2(b)].

C. Reduced accuracy of distributed associative
memory against evolving patterns

Despite using an optimized learning rate, a network’s
accuracy in pattern retrieval QðλÞ decays much faster than
the naive expectation solely based on the evolutionary
divergence of patterns between two encounters with a given
class [i.e., Q0 ¼ ð1 − 2μÞN ≈ 1–2μeff ]; see Fig. 2(a).
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A similar decline in performance can be seen when up-
dating the network with other learning rules (i.e., Storkey
learning [36], gradient-descent learning rule [37], and
sparse Hebbian learning); see Fig. S3 in the Supple-
mental Material [38] and Appendix D.
It should be noted that a classical Hopfield network with

a small learning rate can accurately retrieve the memory of
noisy static patterns by relying on the shared features of the
patterns within a class [32] (see Supplemental Material
Fig. S4 [38]). However, continuous evolution can system-
atically eliminate the shared features among patterns
of a given class, resulting in a significant reduction in
the accuracy of memory retrieval for evolving patterns.
There are two reasons for such a reduced accuracy: (i) the
lag in the network’s memory and (ii) the misclassification
of presented patterns.
The memory attractors associated with a given pattern

class can lag behind the evolution and reflect only the
older patterns presented prior to the most recent encounter
of the network with the specified class. We characterize
this lag glag by identifying a previous version of the
pattern that has the maximum overlap with the net-
work’s energy landscape at a given time t: glag ¼
argmaxg≥0E½hσðt − gNÞjJðtÞjσðt − gNÞi� (Appendix B).
glag measures time in units of N (i.e., the effective
separation time of the pattern of the same class). An
increase in the optimal learning rate reduces the time lag
and enables the network to follow the evolving patterns
more closely (see Supplemental Material Fig. S5 [38]).
The accuracy of the memory subject to such a lag decays
as Qlag ¼ ρglagN ≈ 1–2glagμeff , which is faster than the

naive expectation (i.e., 1 − 2μeff ); see Fig. 2(a). This
memory lag explains the loss of performance for patterns
that are still reconstructed by the network’s memory
attractors [i.e., those with qα > 0.8; see Supplemental
Material Fig. S5(a) [38]]. However, the overall perfor-
mance of the network QðλÞ remains lower than the expect-
ation obtained by taking into account this time lag [Fig. 2(a)]
—a discrepancy that leadsus to the second root of reduction in
accuracy, i.e., pattern misclassification.
As the learning rate increases, the structure of the

network’s energy landscape changes. In particular, we
see that with large learning rates, a few narrow paths
emerge between the memory attractors of the networks
[Fig. 1(c)]. As a result, the equilibration process for pattern
retrieval can drive a presented pattern through the con-
necting paths toward a wrong memory attractor (i.e., one
with a small overlap hσattjσi), which leads to pattern
misclassification [see Supplemental Material Figs. S1(a),
S1(c), and S6(a) [38]]. These paths are narrow, as there are
only a few possible spin flips (mutations) that can drive a
pattern from one valley to another during equilibration
[see Supplemental Material Figs. S1(b), S1(d), S7(a), and
S7(c) [38]]. In other words, a large learning rate carves
narrow mountain passes in the network’s energy landscape
[Fig. 1(c)], resulting in a growing fraction of patterns to
be misclassified. Importantly, the attractors into which
the patterns mistakenly fall are all associated with memory
from the previously encountered patterns [see
Supplemental Material Figs. S1(a) and S1(c) [38]], and
pattern misclassification is not due to the appearance of
additional random energy minima.

(a) (b) (c)

FIG. 2. Reduced performance of Hopfield networks in retrieving memory of evolving patterns. (a) The optimal performance of a
networkQ� ≡Qðλ�Þ [Eq. (3)] is shown as a function of the effective mutation rate μeff ¼ Nμ. The solid lines show the simulation results
for networks encountering different number of patterns (colors). The black dotted line shows the naive expectation for the performance
solely based on the evolutionary divergence of the patterns Q0 ≈ 1–2μeff , and the colored dashed lines show the expected performance
after accounting for the memory lag glag, Qlag ≈ 1–2glagμeff ; see Fig. S5 in the Supplemental Material [38] for more details. (b) The
optimal learning rate λ� is shown as a function of the effective mutation rate. The solid lines are the numerical estimates, the shaded areas
indicate the uncertainty in the estimated optimal learning rate, and dashed lines show the theoretical predictions [Eq. (5)]; see
Appendix A and Supplemental Material Fig. S2 [38] for the numerical optimization protocol and the estimation of the uncertainty.
(c) The mean energy obtained by simulations of randomly ordered patterns (solid lines) and the analytical approximation [Eq. (4)] for
ordered patterns (dotted lines) are shown. Error bars show the standard error from the independent realizations (Appendix A). The color
code for the number of presented patterns is consistent across panels, and the length of patterns is set to L ¼ 800.
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Interestingly, pattern misclassification occurs even in the
absence of mutations for networks with an increased
learning rate [see Supplemental Material Fig. S6(a) [38]].
This suggests that mutations only indirectly contribute to
the misclassification of memory, as they necessitate a larger
learning rate for the networks to optimally operate, which
in turn results in the emergence of mountain passes in the
energy landscape.
To understand the memory misclassification, particularly

for patterns with moderately low (i.e., nonrandom) energy
[Fig. 2(c)], we use spectral decomposition to characterize
the relative positioning of patterns in the energy landscape
(see Appendix C). The vector representing each pattern jσi
can be expressed in terms of the network’s eigenvectors
fΦig, jσi ¼ P

i mijΦii, where the overlap mi ≡ hΦijσi is
the ith component of the pattern in the network’s coordinate
system. During equilibration, we flip individual spins in a
pattern and accept the flips based on their contribution to
the recognition energy. We can view these spin flips as
rotations of the pattern in the space spanned by the
eigenvectors of the network. Stability of a pattern depends
on whether these rotations could carry the pattern from its
original subspace over to an alternative region associated
with a different energy minimum.
There are two key factors that modulate the stability

of a pattern in a network. The dimensionality of the
subspace in which a pattern resides, i.e., support of a
pattern by the network’s eigenvectors, is one of the key
determining factors for pattern stability. We quantify the
support of a pattern σ using the participation ratio πðσÞ ¼
ðPi m

2
i Þ2=

P
i m

4
i [39,40] that counts the number of

eigenvectors that substantially overlap with the pattern.
A small support πðσÞ ≈ 1 indicates that the pattern is
spanned by only a few eigenvectors and is restricted to a
small subspace, whereas a large support indicates that the
pattern is orthogonal to only a few eigenvectors. As the
learning rate increases, patterns lie in lower-dimensional
subspaces supported by only a few eigenvectors [see
Supplemental Material Figs. S7(b) and S7(d) [38]]. This
effect is exacerbated by the fact that the energy gap between
the eigenstates of the network also broaden with increasing
learning rate (see Supplemental Material Fig. S8 [38]). The
combination of a smaller support for patterns and a larger
energy gap in networks with increased learning rate leads to
the destabilization of patterns by enabling the spin flips
during equilibration to drive a pattern from one subspace to
another through the mountain passes carved within the
landscape; see Appendix C [Eq. (C14)] and Supplemental
Material Fig. S9 [38] for the exact analytical criteria for
pattern stability. The change in the structure
of the energy landscape by increasing the learning rate
also leads to larger differences in the depth of the energy
minima across the landscape. This effect can be seen as
the increase of energy variance with the learning rate in
Fig. 2(c). The differences in depth across energy minima

enable patterns to transition from one valley to another
during equilibration.

D. Compartmentalized learning and memory storage

Hopfield-like networks can store accurate associative
memory for static patterns. However, these networks fail
to perform and store retrievable associative memory for
evolving patterns (e.g., pathogens), even when learning is
done at an optimal rate (Fig. 2). To overcome this difficulty,
we propose to store memory in compartmentalized net-
works, with C subnetworks of size Lc (i.e., the number of
nodes in a subnetwork). Each compartment (subnetwork)
can store a few of the total N pattern classes without
interference from the other compartments [Fig. 1(d)].
Recognition of a pattern σ in a compartmentalized

network involves a two-step process [Fig. 1(d)]: First, we
choose a subnetwork Ji associated with compartment iwith
a probability Pi ∼ exp½−βSEðJi; σÞ�, where βS is the inverse
temperature for this decision. A larger inverse temperature
βS implies that when associating a presented pattern with a
memory compartment, the system is more sensitive to
differences in recognition energy across compartments.
The inverse temperature βS can be thought of as the efficacy
of information processing during decision-making [41]. In a
previous work on decision-making for immune response,
we have argued that inverse temperature can be viewed as
the accumulated evidence for a given infection, e.g., through
contact between the immune memory cells and the repli-
cating pathogens [24]. In this view, a larger inverse temper-
ature βS corresponds to a larger sampling size (i.e.,
encounter rate with pathogens) for memory cells as they
accumulate information about the infection, and results in a
higher sensitivity of immune cells to their cognate patho-
gens. Indeed, such a correspondence between the inverse
temperature in thermodynamics and the effect of sample
size has been previously introduced in the context of
statistical inference [42,43].
Once the compartment is chosen, we follow the recipe

for pattern retrieval in the energy landscape of the asso-
ciated subnetwork, whereby a pattern equilibrates into a
memory attractor.
On average, each compartment stores a memory for

Nc ¼ N=C pattern classes. To keep the networks with
different number of compartments C comparable, we scale
the size of each compartment Lc to keep C × Lc ¼
constant, which keeps the (Hopfield) capacity of the
network α ¼ Nc=Lc invariant under compartmentalization.
Moreover, the mutation rate experienced by each subnet-
work scales with the number of compartments μc ¼ Cμ,
which keeps the effective mutation rate μeff ¼ Ncμc invari-
ant under compartmentalization. As a result, the optimal
learning rate [Eq. (5)] scales with the number of compart-
ments C as λ�c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8μc=ðNc − 1

p Þ ≈ Cλ�1 (Fig. 3). However,
since updates are restricted to subnetworks of size Lc at a
time, the expected number of updates within a network
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Lcλc remains invariant under compartmentalization. Lastly,
since the change in energy by a single spin flip scales as
ΔE ∼ 1=Lc, we introduce the scaled Hopfield temperature
βHc

≡ CβH to make the equilibration process comparable
across networks with different number of compartments.
No such scaling is necessary for βS.
By restricting the networks to satisfy the aforementioned

scaling relationships, we are left with two independent
variables, i.e., (i) the number of compartmentsC and (ii) the
learning rate λc, which define a memory strategy fC; λcg.
A memory strategy can then be optimized to achieve the
maximum accuracy for retrieving an associativememory for
evolving patterns with a given effective mutation rate μeff .

E. Phases of learning and memory production

Pattern retrieval can be stochastic due to the noise in
choosing the right compartment from the C subnetworks
(tuned by the inverse temperature βS), or the noise in
equilibrating into the right memory attractor in the energy
landscape of the chosen subnetwork (tuned by the
Hopfield inverse temperature βHc

). We use mutual infor-
mation to quantify the accuracy of pattern-compartment
association, where larger values indicate a more accurate
association; see Appendix A and Fig. 4. The optimal
performance Q� determines the overall accuracy of
memory retrieval, which depends on both finding the
right compartment and equilibrating into the correct
memory attractor. The amplitudes of intra- versus inter-
compartment stochasticity determine the optimal strategy
fC�; λ�cg used for learning and retrieval of patterns with a
specified mutation rate. Varying the corresponding
inverse temperatures (βHc

; βS) results in three distinct
phases of optimal memory storage.

1. Small intra- and intercompartment noise
(βHc

≫ 1, βS ≫ 1)

In this regime, neither the compartment choice nor the
pattern retrieval within a compartment are subject to strong
noise. As a result, networks are functional with working
memory, and the optimal strategies can achieve the highest
overall performance. For small mutation rates, we see that
all networks perform equally well and can achieve almost
perfect performance, irrespective of their number of com-
partments [Figs. 3(a), 4(a), and 4(b)]. As the mutation rate
increases, networks with a larger number of compartments
show a more favorable performance, and the 1-to-1
specialized network, in which each pattern is stored in a
separate compartment (i.e., N ¼ C), reaches the optimal
performance 1 − 2μeff [Figs. 3(a), 4(c), and 4(d)]. As
predicted by the theory, the optimal learning rate for
compartmentalized networks scales with the mutation rate
as λ�c ∼ μ1=2c , except for the 1-to-1 network in which λ�c → 1
and subnetworks are steadily updated upon an encounter
with a pattern [Fig. 3(b)]. This rapid update is expected

since there is no interference between the stored memories
in the 1-to-1 network, and a steady update can keep the
stored memory in each subnetwork close to its associated
pattern class without disrupting the other energy minima.

2. Small intra- and large intercompartment
noise (βHc

≫ 1, βS ≪ 1)

In this regime, there is low noise for equilibration within
a compartment but a high level of noise in choosing the
right compartment. The optimal strategy in this regime is to
store patterns in a single network with a distributed
memory, since identifying the correct compartment is
difficult due to noise [Figs. 4(b) and 4(d)]. For static
patterns, this strategy corresponds to the classical Hopfield
model with a high accuracy [Figs. 2(a), 4(a), and 4(b)]. On
the other hand, for evolving patterns this strategy results in

(a)

(b)

FIG. 3. Compartmentalized memory storage. (a) The optimal
performance is shown as a function of the effective mutation rate
[similar to Fig. 2(a)] for networks with different number of
compartments C (colors) ranging from a network with distributed
memory C ¼ 1 (blue) to a 1-to-1 compartmentalized network
C ¼ N (red). (b) The optimal (scaled) learning rate λc=C is shown
as a function of the effective mutation rate for networks with
different number of compartments [colors according to (a)]. Full
lines show the numerical estimates, and the dashed line is from
the analytical approximation λ�c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8μc=ðNc − 1

p Þ ≈ Cλ�1. The
scaled learning rates collapse on the analytical approximation for
all networks except for the 1-to-1 compartmentalized network
(red), where the maximal learning rate λ ≈ 1 is used, and each
compartment is fully updated upon an encounter with a new
version of a pattern. The number of presented patterns is set to
N ¼ 32. We keep L × C ¼ const, with L ¼ 800 used for the
network with C ¼ 1.
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a partial memory [Figs. 4(c) and 4(d)] due to the reduced
accuracy of the distributed associative memory, as shown in
Fig. 2(a). Interestingly, the transition between the optimal
strategy with highly specific (compartmentalized) memory
for evolving patterns in the first regime and the generalized
(distributed) memory in this regime is very sharp
[Fig. 4(d)]. This sharp transition suggests that depending
on the noise in choosing the compartments βS, an optimal
strategy either stores memory in a 1-to-1 specialized

fashion (C ¼ N) or in a distributed generalized fashion
(C ¼ 1), but no intermediate solution (i.e., quasispecialized
memory with 1 < C < N) is desirable.

3. Large intracompartment noise (βHc
< 1)

In this regime, there is a high level of noise in
equilibration within a network, and memory cannot be
reliably retrieved [Figs. 4(a) and 4(c)], regardless of the

(a)

(b)

(c)

(d)

FIG. 4. Phases of learning and memory production. Different optimal memory strategies are shown. (a) The heat map shows the
optimal memory performance Q� as a function of the (scaled) Hopfield inverse temperature βHc

¼ βHC and the inverse temperature
associated with compartmentalization βS for networks learning and retrieving a memory of static patterns (μ ¼ 0); colors are
indicated in the color bar. The optimal performance is achieved by using the optimal strategy (i.e., learning rate λ�c and the number of
compartments c�) for networks at each value of βHc

and βS. The three phases of accurate, partial, and no memory are indicated.
(b) The heat map shows the memory strategies for the optimal number of compartments (colors as in the legend) corresponding to
the memory performance shown in (a). We limit the optimization to the possible number of compartments indicated in the legend to
keep N=C an integer. The dashed region corresponds to the case where all strategies perform equally well. Regions of distributed
memory (C ¼ 1) and the 1-to-1 specialized memory (C ¼ N) are indicated. The top panel shows the optimal performance Q� of
different strategies as a function of the Hopfield inverse temperature βHc

. The right panel shows the mutual information MIðΣ; CÞ
between the set of pattern classes Σ≡ fσαg and the set of all compartments C normalized by the entropy of the compartments HðCÞ
as a function of the inverse temperature βS; see Appendix A. This normalized mutual information quantifies the ability of the system
to assign a pattern to the correct compartment. (c),(d) Similar to (a),(b) but for evolving patterns with the effective mutation rate
μeff ¼ 0.01. The number of presented patterns is set to N ¼ 32 (all panels). Similar to Fig. 3, we keep L × C ¼ const, with L ¼ 800
used for networks with C ¼ 1.
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compartmentalization temperature βS. However, the impact
of the equilibration noise βHc

on the accuracy of memory
retrieval depends on the degree of compartmentalization.
For the 1-to-1 specialized network (C ¼ N), the transition
between the high and the low accuracy is smooth and
occurs at βHc

¼ 1, below which no memory attractor can be
found. As we increase the equilibration noise (decrease
βHc

), the networks with distributed memory (C < N) show
two-step transitions, with a plateau in the range of
1=Nc ≲ βHc

≲ 1. Similar to the 1-to-1 network, the first
transition at βHc

≈ 1 results in the reduced accuracy of the
networks’ memory retrieval. At this transition point, the
networks’ learning rate λc approaches its maximum value 1
(see Supplemental Material Fig. S10 [38]), which implies
that the memory is stored (and steadily updated) for only
C < N patterns (i.e., one pattern per subnetwork). Because
of the invariance of the networks’ mean energy under
compartmentalization, the depth of the energy minima
associated with the stored memory in each subnetwork
scales as N=C, resulting in deeper and more stable energy
minima in networks with smaller number of compartments
C. Therefore, as the noise increases (i.e., βHc

decreases), we
observe a gradient in transition from partial retrieval to a
no-memory state at βH ≈ 1=Nc, with the most compart-
mentalized network (larger C) transitioning the fastest,
reflecting the shallowness of their energy minima.
Taken together, the optimal strategy leading to working

memory depends on whether a network is trained to learn
and retrieve dynamic (evolving) patterns or static patterns.
Specifically, we see that the 1-to-1 specialized network is
the unique optimal solution for storing working memory
for evolving patterns, whereas the distributed generalized
memory (i.e., the classical Hopfield network) performs
equally well in learning and retrieval of memory for static
patterns. The contrast between these outcomes can shed
light on the distinct strategies used by different biological
systems to encode memory.

III. DISCUSSION

Storing and retrieving memory from prior molecular
interactions is an efficient scheme to sense and respond to
external stimuli. Here, we introduce a flexible energy-based
neural network model that can adopt different memory
strategies, including distributed memory, similar to the
classical Hopfield network, or compartmentalized memory.
The learning rate and the number of compartments in a
network define a memory strategy, and we probe the
efficacy of different strategies for static and dynamic
patterns. We find that Hopfield-like networks with distrib-
uted memory are highly accurate in storing associative
memory for static patterns, even when patterns are noisy.
However, these networks fail to reliably store retrievable
associative memory for evolving patterns, even when
learning is done at an optimal rate.

To achieve high accuracy, we show that a retrievable
memory for evolving patterns should be compartmental-
ized, where each pattern class is stored in a separate
subnetwork. In addition, we find a sharp transition between
the different phases of working memory (i.e., compart-
mentalized and distributed memory), suggesting that inter-
mediate solutions (i.e., quasispecialized memory) are
suboptimal against evolving patterns.
The contrast between these memory strategies is reflec-

tive of the distinct encoding of memory in the adaptive
immune system and in the olfactory cortex. Although some
organisms use chemical deception to mimic other odors
[44,45], the constituent odor molecules can still be assumed
to be static. Consistently, the memory of such static odor
molecules is stored in a distributed fashion in the olfactory
cortex [7–11,15–18]. Notably, recording from a large
number of neurons has shown that the identity of odors,
irrespective of their intensity, is encoded by unique and
distributed ensembles of neurons in the piriform region of
the olfactory cortex [18]. The resulting distributed memory
allows for a robust and accurate retrieval of a stimulus
identity across a broad range of odor concentrations [46]—
a feature that is critical for olfactory behavior.
The adaptive immune system, on the other hand,

interacts with pathogenic epitopes that constantly evolve.
Consistently, the adaptive immune system allocates distinct
immune cells (i.e., compartments) to store a memory for
different types of pathogens (e.g., different evolved variants
of influenza or HIV) [5,20–25]—a strategy that resembles
that of the 1-to-1 specialized networks. In this case, the
two-step process of finding the right compartment and then
equilibrating within the compartment can be thought of as
recognizing an infecting pathogen with the correct memory
cell, and then adjusting the structural conformation of the
memory receptor to form strong chemical bonds with the
target epitope on the pathogen.
Although distributed memory fails to distinguish

evolving pattern classes from each other, it can still
discriminate between preencountered and random patterns
[see Supplemental Material Figs. S1(a) and S1(c) [38]].
Indeed, in a related work, we have shown that the statistics
of the recognition energy in memory repertoires can be
used to classify familiar and novel patterns [47].
It is conceivable that memory allocation may be a

limiting factor in some biological systems, resulting in a
cost for adding extra compartments to the network, which is
currently missing from our model. In this case, we expect
the transition between the performance of the distributed
memory and the 1-to-1 specialized strategy to be a
smoother function of the patterns’ evolutionary rate, and
that a partially compartmentalized network to be the
optimal strategy, dependent on the exact form of the cost
function. Nevertheless, if the cost inflicted by the reduced
memory performance of a partially compartmentalized
system outweighs the (biological) cost of allocating
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additional memory compartments, the 1-to-1 memory
strategy can remain the optimal solution.
This appears to be the case for the immune system,

where the harm caused by an uncontrolled infection out-
weighs the cost of storing a highly diverse and specialized
memory repertoire. It is estimated that the adaptive immune
system in humans can roughly generate 1017 unique B-cell
receptors [48], which is much larger than the total of about
1010 B cells circulating in a human body. B-cell clones
within individuals follow a long-tail distribution [49,50],
indicating the variability in their extent of clonal expansion
in response to different infections. Although it is not clear
how sequence diversity translates to immune function, the
diverse and preferentially expanded repertoires of immune
receptors can efficiently mount specific responses against
the multitude of infecting pathogens [5]. Similar to other
biophysical interactions, immune-pathogen recognition is
cross-reactive. Nonetheless, an immune receptor is only
efficient in recognizing pathogenic epitopes that are within
a limited antigenic distance, and therefore, a given memory
cell can respond only to close evolutionary variants of a
given pathogen and not across pathogens. As such, the
encoding of memory in the adaptive immune system seems
to be consistent with the 1-to-1 specialized memory.
One of the features of our model is that memory is

updated upon presentation of evolved patterns to the net-
work. For 1-to-1 compartmentalized networks, this update
resembles maturation of memory B cells in the immune
system in response to reinfections. Antibody-secreting B
cells can specialize through a process of affinity maturation,
which is a form of somatic Darwinian evolution with
mutation and selection within an individual to enhance
the affinity of B-cell receptors to pathogens [51]. Several
rounds of mutation and selection can increase the binding
affinities of receptors up to (10–10 000)-fold [52]. Stored
immune memory cells can also initiate affinity maturation
during a secondary or later responses to new variants of a
pathogen [53,54], during which new receptors are formed
that are specific to the new variant. Analysis of B-cell
repertoires in HIV patients has shown accumulation of such
mutations in B-cell lineages over years of infection, which
are likely to have stemmed from memory responses [55,56].
Similar features are reported for immune response to
vaccination against evolving viruses like influenza [57,58].
The increase in the optimal learning rate in anticipation

of patterns’ evolution significantly changes the structure of
the energy landscape for associative memory. In particular,
we find the emergence of narrow connectors (mountain
passes) between the memory attractors of a network, which
destabilize the equilibration process and significantly
reduce the accuracy of memory retrieval. Indeed, tuning
the learning rate as a hyperparameter is one of the
challenges of current machine-learning algorithms with
deep neural networks (DNNs) [28,29]. The goal is to

navigate the trade-off between the speed (i.e., rate of
convergence) and accuracy without overshooting during
optimization. It will be interesting to see how the insights
developed in this work can inform rational approaches to
choose an optimal learning rate in optimization tasks
with DNNs.
Machine-learning algorithms with DNNs [28] and modi-

fied Hopfield networks [59–62] are able to accurately
classify hierarchically correlated patterns, where different
objects can be organized into an ultrametric tree based on
some specified relations of similarity. For example, faces of
cats and dogs have the oval shape in common but they
branch out in the ultrametric tree according to the organ-
ism-specific features, e.g., whiskers in a cat, and the cat
branch can then further diversify based on the breed-
specific features. A classification algorithm can use these
hierarchical relations to find features common among
members of a given subtype (cats) that can distinguish
them from another subtype (dogs). Although evolving
patterns within each class in our model are correlated,
the random evolutionary dynamics of these patterns does
not build a hierarchical structure where a pattern class
branches in two subclasses that share a common ancestral
root. Therefore, the optimal memory strategies found here
for evolving patterns are distinct from those of the
hierarchically correlated patterns. It will be interesting to
see how our approaches can be implemented in DNNs to
classify dynamic and evolving patterns.
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APPENDIX A: COMPUTATIONAL PROCEDURES

In the following, we describe the numerical procedure
used in this manuscript.
The code used to produce and analyze the data, as well as

some example notebooks to generate data for smaller
systems can be accessed through Ref. [63].

1. Initialization of the network

A network J (with elements Jij) is presented with N
random (orthogonal) patterns jσαi (with α ¼ 1;…; N)
with entries σαi ∈ f−1; 1g reflecting the N pattern classes.
For a network with C compartments (with 1 ≤ C ≤ N),
we initialize each subnetwork Js at time t0 as Jsi;jðt0Þ ¼
½1=ðN=CÞ�Pα∈As

σαi σ
α
j and J

s
iiðt0Þ ¼ 0; here, As is a set of

N=C randomly chosen (without replacement) patterns
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initially assigned to the compartment (subnetwork) s. We
then let the network undergo an initial learning process. At
each step, an arbitrary pattern σν is presented to the
network, and a subnetwork Js is chosen for an update
with a probability

Ps ¼
expf−βSE½JsðtÞ; σνðtÞ�gP
C
r¼1 expf−βSE½JsðtÞ; σνðtÞ�g

; ðA1Þ

where the energy is defined as

E(JsðtÞ; σνðtÞ) ¼ −1
2L

X
i;j

Jsi;jðtÞσνi ðtÞσνjðtÞ

≡ −1
2

hσνðtÞjJsðtÞjσνðtÞi; ðA2Þ

and βS is the inverse temperature associated with choosing
the right compartment. We then update the selected subnet-
work Js using the Hebbian update rule

Jsi;jðtþ 1Þ ¼
� ð1 − λÞJsi;jðtÞ þ λσνi σ

ν
j; if i ≠ j;

0 otherwise:
ðA3Þ

For dynamic patterns, the presented patterns undergo
evolution with mutation rate μ, which reflects the average
fraction of flipped spins in a given pattern per network
update event (Fig. 1). For noisy patterns, the actual patterns
remain unchanged, but the network is presented with noisy
versions of these patterns. Here, the noise amplitude
reflects the average fraction of flipped spins between
presented and actual patterns.
Our goal is to study the memory retrieval problem in a

network that has reached its steady state. The state of a
network JðtnÞ at the time step n can be traced back to the
initial state Jðt0Þ as

JðtnÞ¼ð1−λÞnJðt0Þþλ
Xn
i¼1

ð1−λÞn−ijσðtiÞihσðtiÞj: ðA4Þ

The contribution of the initial state Jðt0Þ to the state of
the network at time tn decays as ð1 − λÞn [Eq. (A4)].
Therefore, we choose the number of steps to reach
the steady state as nstat ¼ max f10N; 2Cceil½log 10−5=
logð1 − λÞ�g. This criteria ensures that ð1 − λÞnstat ≤ 10−5

and the memory of the initial state Jðt0Þ is removed from
the network JðtÞ. We then use this updated network to
collect the statistics for memory retrieval. To report a
specific quantity from the network (e.g., the energy), we
pool the nstat samples collected from each of the 50
realizations.

2. Pattern retrieval from associative memory

Once the trained network approaches a stationary state,
we collect the statistics of the stored memory.

To find a memory attractor σαatt for a given pattern σα we
use a Metropolis algorithm in the energy landscape
EðJs; σαÞ [Eq. (A2)]. To do so, we make spin flips in a
presented pattern σα → σ̃α and accept a spin flip with
probability

Pðσα → σ̃αÞ ¼ min ð1; e−βHΔEÞ; ðA5Þ

where ΔE ¼ EðJs; σ̃αÞ − EðJs; σαÞ, and βH is the inverse
(Hopfield) temperature for pattern retrieval in the network
(see Fig. 1). We repeat this step for 2 × 106 steps, which is
sufficient to find a minimum of the landscape (see
Supplemental Material Fig. S5 [38]).
For systems with more than one compartment C, we first

choose a compartment according to Eq. (A1) and then
perform the Metropolis algorithm within the associated
compartment.
After finding the energy minima, we update the systems

for n0stat ¼ max½2 × 103; nstat� steps. At each step, we
present patterns as described above and collect the statistics
of the recognition energy E(JsðtÞ; σαðtÞ) between a pre-
sented pattern σα and the memory compartment JsðtÞ
assigned according to Eq. (A1). These measurements are
used to describe the energy statistics (see Fig. 2 and
Supplemental Material Fig. S6 [38]) of the patterns and
the accuracy of pattern-compartment association [Figs. 4(b)
and 4(d)]. After the n0stat steps, we again use the Metropolis
algorithm to find the memory attractors associated with the
presented patterns. We repeat this analysis for 50 indepen-
dent realizations of the initializing pattern classes fσαðt0Þg
for each set of parameters fL;N; C; λ; μ; βS; βHg.
When calculating the mean performance Q of a strategy

(see Figs. 2–4 and Supplemental Material Fig. S10 [38]),
we set the overlap between the attractor and pattern
qα ¼ jhσαattjσαij equal to zero when the patterns are not
recognized (qα < 0.8). As a result, the systems can achieve
only a nonzero performance if they recognize some of the
patterns. This choice eliminates the finite-size effect of a
random overlap of approximately 1=

ffiffiffiffi
L

p
between an attractor

and a pattern (see Supplemental Material Fig. S5 [38]). This
correction is especially important when comparing systems
with different subnetwork sizes (Lc ≡ L=C) in the βH < 1
regime (see Fig. 4 and Supplemental Material Fig. S10 [38]),
where random overlaps for smallLc could otherwise result in
a larger mean performance compared to larger systems that
correctly reconstruct a fraction of the patterns.

3. Optimization procedure

We use grid search to find the optimal learning rate for a
given parameter set (fL;N; C; μ; βS; βHg). In the first step,
we use the full range of learning rates (λ ∈ ð0; 1�) to get a
rough estimate λ̃� for the optimal learning rate. We then run
simulations for a grid with 60 points between λ ¼ 10−4 and
3λ̃� to estimate the optimal learning rate λ� more precisely.
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The reported optimal learning rates in Fig. 2(b) are obtained
by averaging over a minimum of 200 independent repe-
titions of such a grid search. Through this process, we
gather statistics from at least 200 × 2 × N pattern retrieval
events, and for each case, we evaluate the overlap between
the presented pattern and the attractor hσattjσi.
Despite the large number of realizations used for this

optimization, the estimated performances along the
grid can still be noisy, especially for small mutation and
learning rates (μ and λ); note that a single unsuccessful
recognition can lead to fluctuations in the results (see
Supplemental Material Fig. S2 [38]). These fluctuations
could lead to a noisy estimate of the optimal learning rate.
We characterize the statistics of the optimal learning rate
in the following way: For each λ on the grid, we calculate
the mean performance of all the n recorded patterns
(Q ¼ ð1=nÞPn

i¼1 q
i). We also record the number n0 of

misclassified patterns (patterns with qi < 0.8). Since the
overlap q for misclassified patterns is close to zero and for
recognized patterns it is close to 1 (Supplemental Material
Fig. S1 [38]), misclassifying an additional pattern would
reduce the performance Q by 1=n. Assuming that the
number of misclassified patterns for a given learning rate is
Poisson distributed, the expected fluctuations in perfor-
mance due to pattern misclassification should be given byffiffiffiffiffi
n0

p
=n. This error goes to zero in the limit of a large

number of realizations n. To characterize the statistics of
the optimal learning rate [Fig. 2(b)], we pull all the grid
realizations whose performances Q lie within the error
range

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2max½1; n0�

p
=n of the highest recorded perfor-

mance. We use the median of the learning rates associated
with these realizations as the optimal learning rate λ�, and
their standard deviation as the confidence interval indicated
by the shaded area in Fig. 2(b).

4. Accuracy of pattern-compartment association

We use the mutual information MIðΣ; CÞ between the set
of pattern classes Σ≡ fσαg and the set of all compartments
C to quantify the accuracy in associating a presented pattern
with the correct compartment,

MIðΣ; CÞ ¼ HðCÞ −HðCjΣÞ
¼ −

X
c∈C

PðcÞ logPðcÞ

−
�
−
X
σα∈Σ

PðσαÞ
X
c∈C

PðcjσαÞ logPðcjσαÞ
�
: ðA6Þ

Here,HðCÞ andHðCjΣÞ are the entropy of the compartments
and the conditional entropy of the compartments given the
presented patterns, respectively. If chosen randomly, the
entropy associated with choosing a compartment is
HrandomðCÞ ¼ logC. The mutual information [Eq. (A6)]
measures the reduction in the entropy of compartments
due to the association between the patterns and the compart-
ments measured by the conditional entropy HðCjΣÞ.
Figures 4(b) and 4(d) show the mutual information
MIðΣ; CÞ scaled by its upper bound HðCÞ in order to
compare networks with a different number of compartments.

APPENDIX B: ESTIMATING ENERGY
AND OPTIMAL LEARNING RATE

FOR WORKING MEMORY

1. Approximate solution for optimal learning rate

The optimal learning rate is determined by maximizing
the network’s performance QðλÞ [Eq. (2)] against evolving
patterns with a specified mutation rate:

λ� ¼ argmaxλQðλÞ: ðB1Þ
We can numerically estimate the optimal learning rate as
defined by Eq. (B1); see Figs. 2 and 3. However, the exact
analytical evaluation of the optimal learning rate is difficult,
andweusean approximate approach and find the learning rate
that minimizes the expected energy of the patterns in the
stationary state E½Eλ;ρðJ; σÞ�, assuming that patterns are
shown to the network at a fixed order. Here, the subscripts
explicitly indicate the learning rate of the network λ and the
evolutionaryoverlap of thepatternρ. To evaluate an analytical
approximation for the energy, we first evaluate the state of the
network JðtÞ at time step t, given all the prior encounters of
the networks with patterns shown at a fixed order

1

L
(JðtÞ þ 1) ¼ λ

X∞
j¼1

ð1 − λÞðj−1Þjσðt − jÞihσðt − jÞj ðB2Þ

¼ λ
X∞
i¼1

ð1 − λÞði−1ÞN
XN
α¼1

ð1 − λÞα−1jσα(t − α − ði − 1ÞN)ihσα(t − α − ði − 1ÞN)j
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

sum over N pattern classes|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
sum over time ðgenerations;iÞ

ðB3Þ

¼ λ
XN
α¼1

X∞
i¼0

ð1 − λÞðα−1ÞþiN jσαðt − α − iNÞihσαðt − α − iNÞj
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

sum over time|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
sum over patterns

: ðB4Þ
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Here, we refer to the (normalized) pattern vector from
the class α presented to the network at time step t by
jσαðtÞi≡ ð1= ffiffiffiffi

L
p ÞσαðtÞ. Without loss of generality, we

assume that the last pattern presented to the network at
time step t − 1 is from the first pattern class jσ1ðt − 1Þi,
which enables us to split the sum in Eq. (B2) into two

separate summations over pattern classes and N time-step
generations [Eq. (B3)]. Adding the identity matrix 1 on the
left-hand side of Eq. (B2) assures that the diagonal
elements vanish, as defined in Eq. (A3).
The mean energy of the patterns, which in our setup is the

energy of the pattern from the Nth class at time t, follows

E½Eλ;ρðJ; σÞ� ¼ E

�
−
1

2
hσNðtÞjJðtÞjσNðtÞi

�

¼ E

�
−
L − 1

2
λ
XN
α¼1

X∞
i¼0

ð1 − λÞðα−1ÞþiNhσNðtÞjσαðt − α − iNÞihσαðt − α − iNÞjσNðtÞi
�
: ðB5Þ

Since the pattern families are orthogonal to each other,
we can express the overlap between patterns at different
times as hσαðt1Þjσνðt2Þi ¼ δα;νð1 − 2μÞjt2−t1j ≡ δα;νρ

jt2−t1j

and simplify the energy function in Eq. (B5),

E½Eλ;ρðJ;σÞ� ¼ −
L− 1

2
λ
X∞
i¼0

ð1− λÞðN−1ÞþiNρ2ðNþiNÞ

¼ −
L− 1

2
λð1− λÞðN−1Þρ2N

X∞
i¼0

(ð1− λÞNρ2N)i

¼ −
L− 1

2
λ
ð1− λÞðN−1Þρ2N

1− ð1− λÞNρ2N : ðB6Þ

Since accurate pattern retrieval depends on the depth
of the energy valley for the associative memory, we use
the expected energy of the patterns as a proxy for the
performance of the network. We can find the approximate
optimal learning rate that minimizes the expected energy by
setting ∂E½Eλ;ρðJ; σÞ�=∂λ ¼ 0, which results in

ð1 − 2μÞ2N ¼ ð1 − λ�Þ−Nð1 − Nλ�Þ

⇒ 1 − 4NμþOðμ2Þ ¼ 1þ 1

2
ðN − N2Þðλ�Þ2 þOðλ3Þ;

⇒ λ�ðμÞ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8μ=ðN − 1Þ

p
; ðB7Þ

where we use the fact that both the mutation rate μ and the
learning rate λ are small, and therefore, expand Eq. (B7) up
to the leading orders in these parameters.
In addition, Eq. (B7) establishes an upper bound for

the learning rate λ < ð1=NÞ. Therefore, our expansion in
mutation rate [Eq. (B7)] is only valid for 8μ < ð1=NÞ, or

equivalently, for μeff ¼ Nμ < 12.5%; the rates used in our
analyses lie far below these upper bounds.

2. Lag of memory against evolving patterns

The memory attractors associated with a given pattern
class can lag behind the evolution and reflect only the older
patterns presented prior to the most recent encounter of the
network with the specified class. As a result, the upper
bound for the performance of a network Qlag ¼ ρglagN ≈
1–2glagμeff is determined by both the evolutionary diver-
gence of patterns between two encounters μeff and the
number of generations glag by which the stored memory
lags. We measure glag in units of generations; one gen-
eration is defined as the average time between a network’s
encounter with the same pattern class, i.e.,N. We character-
ize this lag glag by identifying the past pattern (at time
t − glagN) that has the maximum overlap with the network’s
energy landscape at given time t:

glag ¼ argmaxg≥0E½hσðt − gNÞjJðtÞjσðt − gNÞi�
≡ argming≥0E½ElagðgÞ�; ðB8Þ

where we introduce the expected lagged energy E½ElagðgÞ�.
Here, the vector jσðtÞi refers to the pattern σ presented to
the network at time t, which can be from any of the pattern
classes. Because of the translational symmetry in time in
the stationary state, the lagged energy can also be expressed
in terms of the overlap between a pattern at time t and the
network at a later time tþ gN. We evaluate the lagged
energy by substituting the expression for the network’s
state Jðtþ gNÞ from Eq. (B2), which entails
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2

L − 1
E½ElagðgÞ� ¼ −

1

L − 1
E½hσðtÞjJðtþ gNÞjσðtÞi� ðB9Þ

¼ −E
�

1

L − 1
ð1 − λÞNghσðtÞjJðtÞjσðtÞi þ λ

XgN−1

j¼0

ð1 − λÞgN−1−jhσðtÞjσðtþ jÞi2
�

ðB10Þ

¼ 2

L − 1
ð1 − λÞNgE½Eλ;ρðJ; σÞ� − λ

Xg−1
i¼0

XN−1

α¼0

ð1 − λÞgN−1−Ni−αhσNðtÞjσN−αðtþ Niþ αÞi2 ðB11Þ

¼ 2

L − 1
ð1 − λÞNgE½Eλ;ρðJ; σÞ� − λ

Xg−1
i¼0

ð1 − λÞgN−1−Niρ2Ni ðB12Þ

¼ −λ
�ð1 − λÞNðgþ1Þρ2N

1 − ð1 − λÞNρ2N þ ð1 − λÞNðgþ1Þ−1 − ð1 − λÞN−1ρ2Ng

ð1 − λÞN − ρ2N

�
: ðB13Þ

Here, we use the expression of the network’s matrix J in
Eq. (A4) to arrive at Eq. (B10), and then follow the
procedure introduced in Eq. (B3) to arrive at the double
summation in Eq. (B11). We then use the equation for
pattern overlap hσαðt1Þjσνðt2Þi ¼ δα;νρ

jt2−t1j to reduce the
sum in Eq. (B12) and arrive at the result in Eq. (B13) by
evaluating the geometric sum and substituting the empirical
average for the energy E½Eλ;ρðJ; σÞ� from Eq. (B6).
We probe this lagged memory by looking at the perfor-

mance Q for patterns that are correctly associated with their
memory attractors (i.e., those with hσattjσi > 0.8). As shown
in Fig. S5 of the Supplemental Material [38], for a broad
parameter regime, the mean performance for these correctly
associated patterns agrees well with the theoretical expect-
ation Qlag ¼ ρglagN , which is lower than the naive expect-
ation Q0.

APPENDIX C: STRUCTURE OF THE ENERGY
LANDSCAPE FOR WORKING MEMORY

1. Formation of mountain passes in the energy
landscape of memory for evolving patterns

As shown in Fig. 1, large learning rates in networks
with memory for evolving patterns result in the emergence
of narrow connecting paths between the minima of the
energy landscape. We refer to these narrow connecting
paths as mountain passes. In pattern retrieval, the Monte
Carlo search can drive a pattern out of one energy minimum
into another minimum and potentially lead to pattern
misclassification.
We use two features of the energy landscape to probe the

emergence of the mountain passes. First, we show that if a
pattern is misclassified, it has fallen into a memory attractor
associated with another pattern class and not a spuriously
made energy minima. To do so, we compare the overlap of
the attractor with the original pattern jhσαattjσαij (i.e., the

reconstruction performance of the patterns) with the maxi-
mal overlap of the attractor with all other patterns
maxν≠α jhσαattjσνij. Indeed, as shown in Fig. S5(a) of the
Supplemental Material [38], for evolving patterns, the
memory attractors associated with 99.4% of the originally
stored patterns have either a large overlap with the correct
pattern or with one of the other previously presented
patterns; 71.3% of the patterns are correctly classified
[stable patterns in sector I in Fig. S5(a) of the Supplemental
Material [38]], whereas 28.1% of them are associated with
a secondary energy minima after equilibration [unstable
patterns in sector II in Fig. S5(a) of the Supplemental
Material [38]]. Avery small fraction of patterns (< 1%) fall
into local minima given by the linear combinations of
the presented patterns [sector IV in Fig. S5(a) of the
Supplemental Material [38]]. These minima are well known
in the classical Hopfield model [64,65]. Moreover, we see
that equilibration of a random pattern (i.e., a pattern
orthogonal to all the presented classes) in the energy
landscape leads to memory attractors for one of the
originally presented pattern classes. The majority of these
random patterns lie in sector II of Fig. S5(a) of the
Supplemental Material [38]; i.e., they have a small overlap
with the network since they are orthogonal to the originally
presented pattern classes, and they fall into one of the
existing memory attractors after equilibration.
Second, we characterize the possible paths for a pattern

to move from one valley to another during equilibration
using a Monte Carlo algorithm with the Metropolis
acceptance probability,

ρðσ → σ0Þ ¼ min ð1; e−β(EðJ;σ0Þ−EðJ;σÞ)Þ: ðC1Þ

We estimate the number of beneficial spin flips (i.e.,
open paths) that decrease the energy of a pattern at the start
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of equilibration [Supplemental Material Fig. S1(b) [38]].
The average number of open paths is smaller for stable
patterns compared to the unstable patterns that are mis-
classified during retrieval [Supplemental Material Fig. S1(b)
[38]]. However, the distributions for the number of open
paths largely overlap for stable and unstable patterns.
Therefore, the local energy landscapes of stable and unstable
patterns are quite similar, and it is difficult to discriminate
between them solely based on the local gradients in the
landscape. Figure S7(a) in the Supplemental Material [38]
shows that the average number of beneficial spin flips grows
with the mutation rate of the patterns, but this number is
comparable for stable and unstable patterns. Moreover, the
unstable stored patterns (blue) have far fewer open paths
available to them during equilibration compared to random
patterns (red) that are presented to the network for the first
time [Supplemental Material Figs. S1(b) and S7(a) [38]].
Notably, on average, half of the spin flips reduce the energy
for random patterns, irrespective of the mutation rate. This
indicates that even though previously presented pattern
classes are statistically distinct from random patterns, they
can still become unstable, especially in networks which are
presented with evolving patterns.
It should be noted that the evolution of the patterns only

indirectly contribute to the misclassification of memory, as
it necessitates a larger learning rate for the networks to
optimally operate, which in turn results in the emergence of
mountain passes. To clearly demonstrate this effect,
Figs. S1(c), S1(d), and S7(d) in the Supplemental
Material [38] show the misclassification behavior for
networks trained to store memory for static patterns while
using a larger learning rate that is optimized for evolving
patterns. Indeed, we see that pattern misclassification in this
case is consistent with the existence of mountain passes in
the network’s energy landscape.

2. Spectral decomposition of the energy landscape

We use spectral decomposition of the energy landscape
to characterize the relative positioning and the stability of
patterns in the landscape. As shown in Figs. S1 and S6 in
the Supplemental Material [38], destabilization of patterns
due to equilibration over mountain passes occurs in net-
works with high learning rates, even for static patterns.
Therefore, we focus on how the learning rate impacts the
spectral decomposition of the energy landscape in networks
presented with static patterns. This simplification will
enable us to analytically probe the structure of the energy
landscape, which we will compare with the numerical
results for evolving patterns.
We can represent the network J (of size L × L) that

stores a memory of N static patterns with N nontrivial
eigenvectors jΦii with corresponding eigenvalues Γi and
N − L degenerate eigenvectors jΨki with corresponding
trivial eigenvalues γk ¼ γ ¼ −1:

J ¼
XN
i¼1

ΓijΦiihΦij þ
XL−N
k¼1

γkjΨkihΨkj: ðC2Þ

The nontrivial eigenvectors span the space of the
presented patterns, for which the recognition energy can
be expressed by

EðJ; σαÞ ¼ −
1

2

XN
i¼1

ΓihσαjΦiihΦijσαi: ðC3Þ

An arbitrary configuration χ, in general, can have
components orthogonal to the N eigenvectors jΦii,
as it points to a vertex of the hypercube and should be
expressed in terms of all the eigenvectors fΦ1;…;ΦN;
Ψ1;…;ΨL−Ng:

EðJ;χÞ ¼ −
1

2

�XN
i¼1

ΓihχjΦiihΦijχi
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

stored patterns

þ
XL−N
k¼1

γhχjΨkihΨkjχi
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

trivial space

�
:

ðC4Þ

Any spin flip in a pattern (e.g., during equilibration) can
be understood as a rotation in the eigenspace of the network
[Eq. (C4)]. As a first step in characterizing these rotations,
we remind ourselves of the identity

jχi ¼
XN
i¼1

hΦijχijΦii þ
XL−N
k¼1

hΨkjχijΨki; ðC5Þ

with the normalization condition

XN
i¼1

ðhΦijχiÞ2 þ
XL−N
k¼1

ðhΨkjχiÞ2 ¼ 1: ðC6Þ

In addition, since the diagonal elements of the network are
set to Jii ¼ 0 [Eq. (A3)], the eigenvalues should sum to
zero, or alternatively,

XN
i¼1

Γi ¼ −
XL−N
k¼1

γk ¼ L − N: ðC7Þ

To asses the stability of a pattern σν, we compare its
recognition energy EðJ; σνÞ with the energy of the rotated
pattern after a spin flip EðJ; σ̃νÞ. To do so, we first consider
a simple scenario, where we assume that the pattern σν has a
large overlap with one dominant nontrivial eigenvector ΦA

(i.e., hσνjΦAi2 ¼ m2 ≈ 1). The other components of the
pattern can be expressed in terms of the remaining N − 1
nontrivial eigenvectors with mean-squared overlap
1 −m2=N − 1. The expansion of the recognition energy
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for the presented pattern is restricted to the N nontrivial
directions [Eq. (C4)] resulting in

EðJ; σνÞ ¼ −
1

2

�
m2ΓA þ

X
i≠A

1 −m2

N − 1
Γi

�

¼ −
1

2
ðm2ΓA þ ð1 −m2ÞΓ̃Þ; ðC8Þ

where Γ̃ ¼ ½1=ðN − 1Þ�Pi≠A Γi ¼ ½ðNΓ̄ − ΓAÞ=ðN − 1Þ� is
the mean eigenvalue for the nondominant directions.
A spin flip (jσνi → jσ̃νi) can rotate the pattern out of the

dominant direction ΦA and reduce the squared overlap
by ϵ2. The rotated pattern jσ̃νi, in general, lies in the
L-dimensional space and is not restricted to the
N-dimensional (nontrivial) subspace. We first take a mean-
field approach in describing the rotation of the pattern after
a spin flip. Because of the normalization condition
[Eq. (C6)], the loss in the overlap with the dominant
direction should result in an average increase in the overlap
with the other L − 1 eigenvectors by ϵ2=ðL − 1Þ. The energy
of the rotated pattern after a spin flip EðJ; σ̃νÞ can be
expressed in terms of all the L eigenvectors [Eq. (C4)],

EðJ; σ̃νÞ ¼ −
1

2

�
ðm2 − ϵ2ÞΓA þ

X
i≠A

�
1 −m2

N − 1
þ ϵ2

L − 1

�
Γi

þ
X
k

ϵ2

L − 1
γk

�

¼ EðJ; σνÞ þ ϵ2

2

�
ΓA −

1

L − 1

�X
i≠A

Γi þ
X
k

γk

��

ðC9Þ

¼ EðJ; σνÞ þ ϵ2

2
ΓA

�
1þ 1

L − 1

�
; ðC10Þ

where in Eq. (C10) we use the fact that the eigenvalues
should sum up to zero. On average, a spin flip jσνi → jσ̃νi
increases the recognition energy by EðJ; σ̃νÞ − EðJ; σνÞ ¼
ðϵ2=2ÞΓA½1þOðL−1Þ�. This is consistent with the results
shown in Figs. S5(b), S5(d), S6(a), and S6(d) in the
Supplemental Material [38], which indicate that the majority
of the spin flips keep a pattern in the original energy
minimum, and only a few of the spin flips drive a pattern
out of the original attractor.
In the analysis above, we assume that the reduction in

overlap with the dominant eigenvector ϵ2 is absorbed
equally by all the other eigenvectors (i.e., the mean-field
approach). In this case, the change in energy is equally
distributed across the positive and the negative eigenvalues
[Γ’s and γ’s in Eq. (C9)], resulting in an overall increase in
the energy due to the reduced overlap with the dominant
direction jΦAi. The destabilizing spin flips are associated
with atypical changes that rotate a pattern onto a secondary

nontrivial direction jΦBi (with positive eigenvalue ΓB), as a
result of which the total energy could be reduced. To better
characterize the conditions under which patterns become
unstable, we introduce a perturbation to the mean-field
approach used in Eq. (C10). We assume that a spin flip
results in a rotation with a dominant component along a
secondary nontrivial direction jΦBi. Specifically, we
assume the reduced overlap ϵ2 between the original pattern
jσνi and the dominant direction jΦAi is distributed in an
imbalanced fashion between the other eigenvectors, with a
fraction p projected onto a new (nontrivial) direction jΦBi,
while all the other L − 2 directions span the remaining
ð1 − pÞϵ2. In this case, the energy of the rotated pattern is
given by

EðJ; σ̃νÞ ¼ −
1

2

�
ðm2 − ϵ2ÞΓA þ

�
1 −m2

N − 1
þ pϵ2

�
ΓB

þ
X
i≠A;B

�
1 −m2

N − 1
þ ð1 − pÞϵ2

L − 2

�
Γi

þ
X
k

ð1 − pÞϵ2
L − 2

γk

�

¼ EðJ; σνÞ þ ϵ2

2
½ΓA − pΓB þOðL−1Þ�: ðC11Þ

Therefore, a spin flip is beneficial if ΓA < pΓB. To
further concretize this condition, we estimate the typical
loss ϵ2 and gain pϵ2 in the squared overlap between the
pattern and its dominating directions due to rotation by a
single spin flip.
Let us consider a rotation jσνi → jσ̃νi by a flip in the

nth spin of the original pattern jσνi. This spin flip reduces
the original overlap of the pattern m ¼ hσνjΦAi with the
dominant direction jΦAi by the amount ð2= ffiffiffiffi

L
p ÞΦA

n , where
ΦA

n is the nth entry of the eigenvector jΦAi. Since the
original overlap is large (i.e., m ≃ 1), all entries of the
dominant eigenvector are approximately ΦA

i ≃1=
ffiffiffiffi
L

p
; ∀ i,

resulting in a reduced overlap of the rotated pattern
hσνjΦAi ¼ m − ð2=LÞ. Therefore, the loss in the squared
overlap ϵ2 by a spin flip is given by

ϵ2 ¼ hσνjΦji2 − hσ̃νjΦji2

¼ m2 −
�
m2 − 4

m
L
þ 4

1

L2

�

¼ 4
m
L
þO

�
1

L2

�
: ðC12Þ

Similarly, we can derive the gain in the squared overlap
pϵ2 between the pattern jσνi and the new dominant direction
jΦBi after a spin flip. Except for the direction jΦAi, the
expected squared overlap between the original pattern (prior
to the spin flip) and any of the nontrivial eigenvectors
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including jΦBi is hσνjΦBi2 ¼ ½ð1 −m2Þ=ðN − 1Þ�. The flip
in the nth spin of the original pattern increases the overlap of
the rotated pattern with the new dominant direction jΦBi by
2ðΦB

n=
ffiffiffiffi
L

p Þ, where ΦB
n should be of the order of

ffiffiffiffiffiffiffiffi
1=L

p
.

Therefore, the largest gain in overlap due to a spin flip is
given by

pϵ2 ¼ hσ̃νjΦBi2 − hσνjΦBi2

≃
�
1 −m2

N − 1
þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

N − 1

r
ΦB

nffiffiffiffi
L

p þ 4
ðΦB

n Þ2
L

�
−
1 −m2

N − 1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

N − 1

r
ΦB

nffiffiffiffi
L

p þO
�
1

L2

�
: ðC13Þ

By using the results from Eqs. (C12) and (C13), we can
express the condition for beneficial spin flips to drive a
pattern over the carved mountain passes during equilibra-
tion [Eq. (C11)],

ϵ2ΓA < ϵ2pΓB →
ΓA

ΓB
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2

m2

r
1ffiffiffi
α

p ΦB
n ; ðC14Þ

where α ¼ N=L. This result suggests that the stability of a
pattern depends on how the ratio of the eigenvalues
associated with the dominant projections of the pattern
before and after the spin flip ΓA=ΓB compare to the overlap
m of the original pattern with the dominant eigenvector ΦA

and the change due to the spin flip ΦB
n .

So far, we have constrained our analysis to patterns that
have a dominant contribution to only one eigenvectorΦA. To
extend our analysis to patterns which are instead constrained
to a small subspaceA spanned by nontrivial eigenvalues, we
define the squared pattern overlap with the subspace m2

A ¼P
a∈AhσνjΦai2 and a weighted average eigenvalue in the

subspace ΓA ¼ P
a∈AhσνjΦai2Γa. As a result, the differ-

ence in the energy of a pattern before and after a spin flip
[Eq. (C11)] can be extended to EðJ; σνÞ − EðJ; σ̃νÞ ¼
ðϵ2=2Þ½ΓA − pΓB þOðL−1Þ�. Similarly, the stability con-
dition in Eq. (C14) can be extended to ðΓA=ΓBÞ <ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ð1 −m2

AÞ=m2
A�

q
ð1= ffiffiffi

α
p ÞΦB

n . Patterns that are constrained

to larger subspaces are more stable, since the weighted
average eigenvalue for their containing subspace ΓA is closer
to the mean of all eigenvalues Γ̄ ¼ 1 − N=L (law of large
numbers). Therefore, in these cases a much larger eigenvalue
gap (or a broader eigenvalue spectrum) is necessary to satisfy
the condition for pattern instability.
Figure S9 in the Supplemental Material [38] compares

the loss in energy with the original dominant direction
ϵ2ΓA to the maximal gain in any of the other directions
ϵ2pΓB to test the pattern stability criteria presented in
Eq. (C14). To do so, we identify a spin flip n in a secondary
direction B that confers the maximal energy gain: ϵ2pΓB≈
maxn;B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 −m2Þ=ðN − 1Þ

p
ðΦB

n=
ffiffiffiffi
L

p ÞΓB. In Figs. S9(a)

and S9(c) of the Supplemental Material [38], we specifi-
cally focus on the subset of patterns that show a large
(squared) overlap with the one dominant direction (i.e.,
m > 0.85). Given that evolving patterns are not a constraint
to the fΦg (nontrivial) subspace, we find a smaller fraction
of these patterns to fulfill the condition for such a large
overlap m [see Supplemental Material Fig. S9(a) [38]]
compared to the static patterns [Supplemental Material
Fig. S9(c) [38]]. Nonetheless, we see that the criteria in
Eq. (C14) can be used to predict the stability of patterns in a
network for both static and evolving patterns; note that here
we use the same learning rate for both the static and
evolving patterns.
We then relax the overlap condition by including all

patterns that have a large overlap with a subspaceA spanned
by up to ten eigenvectors (i.e., m2

A¼P
α∈AhσjΦαi2>0.85).

For these larger subspaces, the transition between stable and
unstable patterns is no longer exactly given by Eq. (C14).
However, the two contributions ϵ2ΓA and ϵ2pΓB still clearly
separate the patterns into stable and unstable classes for
both static and evolving patterns [Supplemental Material
Figs. S9(b) and S9(d) [38]]. The softening of this condition is
expected, as in this regime we can no longer assume that a
single spin flip can reduce the overlap with all the eigen-
vectors in the original subspace. As a result, the effective loss
in the overlap becomes smaller than ϵ2 and patterns become
unstable below the dotted line in Supplemental Material
Figs. S9(b) and S9(d) [38].
As the learning rate increases, the gap between the

eigenvalues ΓB=ΓA (Supplemental Material Fig. S8 [38])
becomes larger; note that the inverse of this gap sets the
lower bound for destabilization condition in Eq. (C14).
At the same time, with increasing learning rate, patterns
become more constrained to smaller subspaces
[Supplemental Material Figs. S6(c) and S6(d) [38]]. As
a result of these two effects, more patterns satisfy the
instability criteria in Eq. (C14). These patterns are mis-
classified, as they fall into a wrong energy minimum by
equilibrating through the mountain passes carved in the
energy landscape of networks with large learning rates.

APPENDIX D: ALTERNATIVE
LEARNING RULES

In the main text, we focus on the standard Hebbian
learning rule [Eq. (2)], both for the entire network and for
individual compartments. Hopfield networks are among the
most studied models for learning. Thus, it is no surprise that
many other learning rules have been developed for these
networks [37].
Here, we discuss a number of these rules and assess their

impact on our results. We focus on local and incremental
learning rules, in which the updates of the weights depend
only on one pattern at a time. Other learning rules, such as
the Kraut-Mézard class [66], use the information from all
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patterns during each round of update, which makes them
unrealistic for biological systems. With this condition in
mind, we introduce and discuss the consequences of the
Storkey learning rule [36], the gradient-descent learning
rule [37], and the sparse Hebbian learning rule.

1. Storkey learning

Introduced by Storkey in 1997, this rule had the goal of
increasing the capacity of Hopfield networks [36]. Indeed,
Hopfield networks that are trained with this rule have a
capacity of L=

ffiffiffiffiffiffiffiffiffiffiffi
2 lnL

p
[36], which is significantly larger

than the capacity of L=ð2 lnLÞ reached with the conven-
tional Hebbian learning [35].
This rule was originally designed for a learning phase in

which all patterns are known. In that case, the update to the
interaction matrix Ji;j is given by

ΔJi;j ¼
� 1

N ðσi − fi;jÞðσj − fjiÞ; if i ≠ j;

0 otherwise;
ðD1Þ

where fi;j is the local field on the spin σi except for the
contribution from σj,

fi;j ¼
1

L − 2

�X
k

Ji;kσk − Ji;iσi − Ji;jσj

�
: ðD2Þ

To use this learning rule for consecutive encounters with
(evolving) patterns, we add a learning rate λ to Eq. (D1) and
then use the rule

ΔJi;j ¼
�
λðσi − fi;jÞðσj − fjiÞ; if i ≠ j;

0 otherwise:
ðD3Þ

2. Gradient descent

The discussion of gradient descent in the Hopfield model
follows from Ref. [37].
Gradient descent is the foundation of many optimization

problems. With respect to the Hopfield model, we want to
construct energy minima associated with the stored
memory that are as deep as possible. For any given pattern
σ, this is achieved ifWσ ¼ σ, whereWi;j ¼ ½1=ðL − 1Þ�Ji;j
is a normalized interaction matrix. In other words, we want
to minimize the distanceDðpÞðσ;WσÞ between the pattern σ
and its projection Wσ. Here, DðpÞð·; ·Þ is the distance
measure for a general Lp-norm, which for the L2-norm
follows

Dð2Þðσ;WσÞ ¼
X
i

�
σi −

X
j
Wi;jσj

�
2

: ðD4Þ

The derivative of the L2 distance with respect to the element
Wi;j is given by

d
dWi;j

Dð2Þðσ;WσÞ ¼ −2
�
σi −

X
k

Wi;kσk

�
σj: ðD5Þ

Therefore, we can define the gradient-descent learning rule
toward the energy minimum with learning rate (step size) λ
that is consistent with minimization of the L2 distance as

ΔJi;j ¼
8<
:

λ
	
σi −

P
k
Wi;kσk



σj; if i ≠ j;

0 otherwise:
ðD6Þ

Interestingly, when using an L1-norm distance, the
gradient-descent learning rule is equivalent to the original
Hebbian learning rule [Eq. (2)]. This can be shown by first
evaluating the derivative of the distance for the L1-norm
with respect to the element Wi;j as

d
dWi;j

Dð1Þðσ;WσÞ ¼ −
ðσi −

P
kWi;kσkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðσi −
P

kWi;kσkÞ2
q σj

¼ −sign
	
σi −

X
k

Wi;kσk


σj

¼ −σiσj; ðD7Þ

where we use the fact that jσij ≥ jPk Wi;kσkj, which
results in signðσi−

P
kWi;kσkÞ¼ signðσiÞ¼σi. Therefore,

for the L1-norm distance, we recover the original Hebbian
learning rule with ΔJi;j ¼ λσiσj.

3. Sparse Hebbian learning

Machine-learning algorithms often enforce sparsity to
regularize neural networks to avoid overfitting [29].
While a direct translation of such a regularization to the
Hopfield model is nontrivial, we can enforce sparsity on the
interaction matrix Ji;j. To achieve a sparsity of X% in
the interaction matrix Ji;j, we use the standard Hebbian
learning rule [Eq. (2)] and set entries Ji;j with absolute
values smaller than ð100 − XÞ% of all entries to zero.

4. Performance of networks
with alternative learning rules

To characterize the impact of learning rules on our
results, we perform the same optimization procedure as for
the standard Hebbian learning in the main text. It should be
noted that these alternative learning protocols are substan-
tially more complex than the standard Hebbian learning,
which limits our simulations to networks of maximum size
L ¼ 100 and N ¼ 8 (in contrast to L ¼ 800 and N ¼ 32 in
the main text). As we increase the ratio of N=L, we observe
stronger finite-size effects. Still, we stay far below the
capacity of the network and have no reason to expect any
qualitative changes in the outcomes for networks of
larger size.
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In Fig. S3(a) of the Supplemental Material [38],
we compare the performance of the networks trained
with the standard Hebbian learning to that of the alter-
native models, i.e., the Storkey, the gradient descent, and
sparse Hebbian learning rules, in recognizing patterns
evolving with a range of effective mutation rates μeff . For
small sparsity (10%), the networks trained with sparse
Hebbian learning perform similar to those with the
standard Hebbian learning. However, when sparsity is
large (50%), the sparse networks appear to lose the exact
position of the minima. As a result, the system’s perfor-
mance systematically decays even for very slowly evolv-
ing patterns (small μeff ). The Storkey and the gradient-
descent learning rules perform slightly better than the
Hebbian learning for evolving patterns. This slight
increase in performance is most likely a consequence
of the increased capacity. A similar effect is seen in Fig. 2,
as emptier (larger) networks perform better at a fixed
effective mutation rate. However, the gain due to capacity
is negligible compared to the reduction in performance of
all networks with increasing mutation rate.
Aside from their similar performances, the distortion of

the energy landscape for networks following the alternative
learning rules are also comparable to that of the standard
Hebbian learning. Specifically, we see that with all the
alternative learning rules, the misclassified patterns fall into
attractors associated with one of the other pattern classes
[see Supplemental Material Fig. S3(b) [38]], consistent
with the results for the standard Hebbian learning in Fig. S1
(a) of the Supplemental Material [38]. Moreover, alter-
native learning rules also give rise to network structures in
which the average number of open paths (i.e., number of
beneficial spin flips during equilibration) is smaller for
stable (correctly classified) patterns compared to the
unstable (misclassified) patterns, and both are smaller than
for random patterns [Supplemental Material Fig. S3(c)
[38]]. This result is also similar to that of the standard
Hebbian learning in Fig. S1(b) of the Supplemental
Material [38]. It should be noted that the larger fluctuations
seen in Supplemental Material Figs. S3(b) and S3(c)
compared to Figs. S1(a) and S1(b) [38] are due to the
smaller system size used for simulations with the alter-
native learning rules.
In conclusion, the fraction of the correctly reconstructed

patterns decay with increasing evolutionary rates due to the
emergence of narrow passes in a network’s energy land-
scape, irrespective of the choice of the learning rule. While
we cannot exclude that other learning rules might achieve
better performance, the results suggest that local (in time)
learning rules which act on all network weights cannot
learn multiple evolving patterns with maximal perfor-
mance. Therefore, it is likely that the specialized 1-to-1
memory remains the only strategy that effectively learns
and recovers evolving patterns.
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