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spite of inevitable replication errors?
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wrt non-functional (but faster-replicating) mutants?
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The Questions

• Can transient compartmentalization be sufficient to maintain
active ribozymes in the presence of fast-replicating parasites?

• Which quantities determine success or failure of the process?
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Experiment Scheme

ORIGIN OF LIFE

Transient compartmentalization of
RNA replicators prevents extinction
due to parasites
Shigeyoshi Matsumura,1,2,3* Ádám Kun,4,5* Michael Ryckelynck,2,6 Faith Coldren,2

András Szilágyi,4,7 Fabrice Jossinet,6 Christian Rick,2,6 Philippe Nghe,1

Eörs Szathmáry,4,5,8,9† Andrew D. Griffiths1,2†

The appearance of molecular replicators (molecules that can be copied) was probably a
critical step in the origin of life. However, parasitic replicators would take over and would
have prevented life from taking off unless the replicators were compartmentalized in
reproducing protocells. Paradoxically, control of protocell reproduction would seem to require
evolved replicators.We show here that a simpler population structure, based on cycles of
transient compartmentalization (TC) and mixing of RNA replicators, is sufficient to prevent
takeover by parasitic mutants.TC tends to select for ensembles of replicators that replicate
at a similar rate, including a diversity of parasites that could serve as a source of
opportunistic functionality.Thus,TC in natural, abiological compartments could have
allowed life to take hold.

T
he earliest molecular replicators (1, 2) must
have been plagued by freeloading parasitic
replicators (3–6). For example, when the
RNA genome of the Qb virus was replicated
in vitro using the viral replicase, 83% of the

genome was deleted due to selection for RNAs
with the fastest replication rate (7). Eventually,
reproducing compartments (protocells) must have
arisen, taming parasites by spatially limiting their
propagation and allowing group selection at the
compartment level, preventing functional collapse
(5, 8–10). Indeed, serial fusion-division cycles of
water-in-oil emulsion droplets, which function as
artificial cell-like compartments (11), allows prop-

agation of a compartmentalized replicative cycle
catalyzed by Qb replicase (12, 13).
However, a more rudimentary type of popula-

tion structure (14), in which replicators under-
went repeated cycles of mixing and interaction
in local groups, similar to Wilson’s trait group
model (15), may have existed before the evolution
of reproducing protocells (9, 16, 17).
Here, we demonstrate that repeated cycles of

mixing and transient compartmentalization (TC)
in abiological compartments—for example, atmos-
pheric aerosol droplets (18), microcompartments
in hydrothermal vents (19), ice eutectic phases
(20), clusters onmineral surfaces (21, 22), or lipid

vesicles (23)—is sufficient to maintain functional
replicators andprovides a simple solution to allow
the evolution of molecular complexity before the
appearance of the first protocells.
We used a droplet-based microfluidic system

(24) to investigate TC (Fig. 1 and fig. S1). The
functional replicator (MDV-VSRNA) comprises the
trans Varkud satellite (trans VS) ribozyme (25),
inserted into themidivariant (MDV-1) ofQb genomic
RNA (26), which is replicated by Qb replicase
(fig. S2). Replication was studied under three con-
ditions, induplicate: (i) uncompartmentalized (bulk),
(ii) with TC in ~1 million 12-pL (28-mmdiameter)
droplets (unselected, compartmentalized), and (iii)
with TC in ~1 million 12-pL droplets and selec-
tion of the droplets based on ribozyme activity
(selected, compartmentalized). In each case, 50 mL
of aqueous phase, containing 1.5 × 106 molecules
(290 fg) of MDV-VS RNA (corresponding to a
Poisson distribution with amean, l, of ~0.4 RNA
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Fig. 1. Primordial TC and its experimental embodiment. (A) Primordial
RNA molecules are compartmentalized (i), replicate in the compartments
and ribozyme activity contributes to the “metabolism” (M) of the compart-
ments (ii), and compartments containing ribozymes that contribute to the
“metabolism” pass on more RNAs to the pool (iii) than compartments con-
taining parasites (iv). (B) In the microfluidic system, RNA molecules are com-
partmentalized in aqueous droplets in an inert carrier oil, replicate in the

droplets, and catalyze a fluorogenic reaction. Fluorescence-activated droplet
sorting (FADS) (30) is used to sort droplets containing active ribozymes, and
the RNA from the sorted droplets is pooled before the next round of selection.
(C) The trans VS ribozyme (25), inserted into the minus strand of the midi-
variant (MDV-1) RNA (26), is replicated in droplets using Qb RNA replicase
(7). The ribozyme cleaves a nonfluorescent RNA substrate to generate a
fluorescent product.
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Experiment Results

molecules per droplet), was used to start the ex-
periment. Replication was followed using a green
fluorescent RNA intercalating dye, and hydrolysis
of the substrate RNA by the ribozyme was mea-
sured simultaneously by the increase in orange
fluorescence (fig. S2, C and E). After a 3-hour
replication, for bulk and unselected compart-
mentalized experiments, RNAwas simply pooled.

However, for the selected compartmentalized ex-
periments, all droplets with orange fluorescence
>150 relative fluorescence units (containing func-
tional ribozymes) were sorted, and RNA from the
sorted droplets was pooled. To initiate the next
round, 290 fg of purified RNA was inoculated
into 50 mL of fresh reagents. This process was
repeated for a total of 4 to 9 rounds.

In bulk,MDV-VS RNAdisappeared by round 4
(Fig. 2A), as did the corresponding catalytic
activity, due to the appearance of parasitic RNAs
that are shorter than MDV-VS RNA (figs. S3 to
S5), replicate faster (fig. S2, C and G), and are
limited in diversity (fig. S6A).
Without selection for ribozyme activity, com-

partmentalization slowed down, but did not
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Fig. 2. Survival of functional ribozymes in bulk and with TC in the pres-
ence and absence of selection. (A to D) Fraction of MDV-VS ribozymes
versus round of selection. Experimental results (black squares) are shown for
two independent experiments (experiments 1 and 2) for each condition together
with SFAmodeling results using experimental l values (red circles) andmutation
rate, m, used to fit the data. Error bars, mean ±1 SD. (A) Bulk. (B) Unselected,
compartmentalized. (C) Selected, compartmentalized. Round 9 of experiment
1wasperformed at both l of 6.9 (black squares, experimental results; red circles,

SFAmodeling) and 0.6 (in duplicate) (white squares, experimental results; green
circles, SFA modeling). (D) Purge (ability to purge parasites and reach equi-
librium). (E toG), Droplet fluorescence (in relative fluorescence units) for exper-
iment 1. Boxes define droplet populations that contain no RNA replicators
(empty), parasitic RNA replicators (inactive), and catalytically active RNA rep-
licators (active).The percentage of droplets in each population and l is indicated.
(E)Unselected,compartmentalized. (F)Selected,compartmentalized. (G)Purge.
Green and orange fluorescence values are relative fluorescence units.
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molecules per droplet), was used to start the ex-
periment. Replication was followed using a green
fluorescent RNA intercalating dye, and hydrolysis
of the substrate RNA by the ribozyme was mea-
sured simultaneously by the increase in orange
fluorescence (fig. S2, C and E). After a 3-hour
replication, for bulk and unselected compart-
mentalized experiments, RNAwas simply pooled.

However, for the selected compartmentalized ex-
periments, all droplets with orange fluorescence
>150 relative fluorescence units (containing func-
tional ribozymes) were sorted, and RNA from the
sorted droplets was pooled. To initiate the next
round, 290 fg of purified RNA was inoculated
into 50 mL of fresh reagents. This process was
repeated for a total of 4 to 9 rounds.

In bulk,MDV-VS RNAdisappeared by round 4
(Fig. 2A), as did the corresponding catalytic
activity, due to the appearance of parasitic RNAs
that are shorter than MDV-VS RNA (figs. S3 to
S5), replicate faster (fig. S2, C and G), and are
limited in diversity (fig. S6A).
Without selection for ribozyme activity, com-

partmentalization slowed down, but did not
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ence and absence of selection. (A to D) Fraction of MDV-VS ribozymes
versus round of selection. Experimental results (black squares) are shown for
two independent experiments (experiments 1 and 2) for each condition together
with SFAmodeling results using experimental l values (red circles) andmutation
rate, m, used to fit the data. Error bars, mean ±1 SD. (A) Bulk. (B) Unselected,
compartmentalized. (C) Selected, compartmentalized. Round 9 of experiment
1wasperformed at both l of 6.9 (black squares, experimental results; red circles,

SFAmodeling) and 0.6 (in duplicate) (white squares, experimental results; green
circles, SFA modeling). (D) Purge (ability to purge parasites and reach equi-
librium). (E toG), Droplet fluorescence (in relative fluorescence units) for exper-
iment 1. Boxes define droplet populations that contain no RNA replicators
(empty), parasitic RNA replicators (inactive), and catalytically active RNA rep-
licators (active).The percentage of droplets in each population and l is indicated.
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The process

i) Inoculation
ii) Maturation
iii) Selection
iv) Pooling
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Inoculation

• Droplets are initialized with a large number (Ne) of Qβ enzymes,
and activated nucleotides

• Droplets are seeded with n RNA templates: n is
Poisson-distributed with average λ

• RNA templates come in two kinds: ribozymes and parasites
• In a given droplet there are initially m ribozymes and
y = (n−m) parasites (m is random, of average λx)

• x: fraction #ribozymes/#RNAs in the solution (at the end of the
previous round)

• We neglect mutations producing new parasites (mutation rate is
very small)

7



Maturation

• RNAs initially replicate autocatalytically: n(t) ∼ exp(t)

(exponential phase)
• Parasites replicate faster than ribozymes: m(t) ≃ m eαt,
y(t) ≃ y eγt, γ > α

• When n(t) ≃ Ne, Qβ is the growth-limiting factor: further growth
is linear with time (linear phase)

• In the linear phase, the ratio y(t)/m(t) = #parasites/#ribozymes
remains constant

• At the end of the maturation phase, we have m(t) = m̄, y(t) = ȳ,
with

ȳ

y
= Λ

m̄

m
Λ > 1

• Thus given (x,m, n), one has

m̄ =
N ·m

nΛ− (Λ− 1)m
= Nx̄

ȳ = N − m̄

8



Selection

• Droplets are selected according to the number m̄ of ribozymes
contained

• N : number of RNAs at the end of the maturation phase
• x̄ = m̄/N : fraction of ribozymes
• Selection function:

f(x̄) =
1

2

(
1 + tanh

(
x̄− xth

xw

))

0.0 0.2 0.4 0.6 0.8 1.0

x̄

0.0

0.2

0.4

0.6

0.8

1.0

f
(x̄
)
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Pooling

• Each round k yields x −→ x′:

x′ =

∑
m,n x̄(m,n) f(x̄(m,n))P (x|m,n;λ,Λ)∑

m,n f(x̄(m,n))P (x|m,n;λ,Λ)

• Does x reach a fixed point as k → ∞?
• Evaluate ∆x = x′ − x vs. (λ, x) for fixed Λ

10



Dynamics

∆x vs. (λ, x)
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Dynamics

∆x vs. (λ, x) Λ = 4
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Phase diagram
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Asymptotes

Λ ≫ 1: R-B line at λ0: λ0f(1) =
(
eλ0 − 1

)
f(0) (λ0 ≃ 6.95)

B-P line at λ1: λ1f(0) =
(
eλ1 − 1

)
f(1) (λ1 ≃ 1.49 · 102)

λ ≫ 1: R-C line at Λ = 1 + (f ′(1)/(f(1)λ)) +O(λ−2)

C-P line at Λ = 1 + (f ′(0)/(f(0)λ)) +O(λ−2)

The exact shape of f(x) is not important

13



Population dynamics

λ = 5, Λ = 10 (C)
(i) No compartments
(ii) Compartments, no

selection
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Population dynamics

λ = 10, Λ = 5 (P)
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Linear Selection Function
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Summary

• Transient compartmentalization with selection may succeed in
purging parasites, provided λ is small enough (and selection is
strong enough)

• Here selection is extrinsic but the same scenario applies to
intrinsic selection (due, e.g., to cooperativity)

• Transient compartments may bridge the gap between
metabolism-based (Oparin, Dyson) and information-based
(Eigen, Schuster) scenarios for the origin of life
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