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Motivation

The RNA World hypothesis
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How could self-replicating molecules maintain their activity, in

spite of inevitable replication errors?
How could functional molecules overcome their disadvantages

wrt non-functional (but faster-replicating) mutants?
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The Questions

- Can transient compartmentalization be sufficient to maintain
active ribozymes in the presence of fast-replicating parasites?

- Which quantities determine success or failure of the process?
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Experiment Results
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The process

i) Inoculation

ii) Maturation

i)
i)
iii) Selection
iv) Pooling



Inoculation

- Droplets are initialized with a large number (N,) of Q3 enzymes,
and activated nucleotides

- Droplets are seeded with n RNA templates: n is
Poisson-distributed with average A

- RNA templates come in two kinds: ribozymes and parasites

- In a given droplet there are initially m ribozymes and
y = (n —m) parasites (m is random, of average A\x)

- z: fraction #ribozymes/#RNAs in the solution (at the end of the
previous round)

- We neglect mutations producing new parasites (mutation rate is
very small)



Maturation

- RNAs initially replicate autocatalytically: n(t) ~ exp(t)
(exponential phase)

- Parasites replicate faster than ribozymes: m(t) ~ me“?,
y(t) =ye’t, v > a

- When n(t) ~ N, QB is the growth-limiting factor: further growth
is linear with time (linear phase)

- In the linear phase, the ratio y(¢)/m(t) = #parasites/#ribozymes
remains constant

- At the end of the maturation phase, we have m(t) = m, y(t) = 7,

with _ _
YA A1
Yy m
- Thus given (z,m,n), one has
N -m
e nA—(A—1)m =Ne
j=N—m



Selection

- Droplets are selected according to the number m of ribozymes
contained

- N: number of RNAs at the end of the maturation phase

- & =m/N: fraction of ribozymes

- Selection function:
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Pooling

- Each round k yields x — 2’

2omn B(m, n) f(Z(m,n)) P(a|m,n; A, A)

/

=]

Yomn f(@(m,n)) P(z[m,n; A, A)

- Does x reach a fixed point as k — oo?
- Evaluate Az = o’ — x vs. (A, z) for fixed A



Dynamics

Az vs. (A, x)
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Phase diagram
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Asymptotes

A>1: R-Bline at A\g: Ao f(1) =
B-P line at A1: A1 f(0)
A> 1: R-Clineat A =1+ (f
C-Plineat A =1+ (f

(X —1) £(0) (Ao =~ 6.95)
M —1) f(1) (A1 = 1.49 - 10?)

/(f(1)A) + O(A~?)
/(f(0)A)) + O(A~2)

The exact shape of f(z) is not important
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Population dynamics
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Population dynamics
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Linear Selection Function
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Summary

- Transient compartmentalization with selection may succeed in
purging parasites, provided X is small enough (and selection is
strong enough)

- Here selection is extrinsic but the same scenario applies to
intrinsic selection (due, e.g., to cooperativity)

- Transient compartments may bridge the gap between
metabolism-based (OPARIN, DYSoN) and information-based
(EIGEN, SCHUSTER) scenarios for the origin of life
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