

Innovation vs. improvement in eco-evolutionary dynamics

Luca Peliti September 6, 2017

SMRI(Italy) luca@peliti.org

- 1. Introduction
- 2. Evolution and ecology: A solvable model
- 3. Summary

Evolution as improvement

- * In the classical evolution scenarios, natural selection acts towards the optimization of the species fitness
- * This is often represented as a tendency of a life form to develop towards "more and more perfect forms"

Images of evolution

DAILY MAIL

Images of evolution

HOMERSAPIEN

BITREBELS

Fitness landscapes

This is often represented by describing life forms as climbing uphill in a *fitness landscape* (WRIGHT, KAUFFMAN, GAVRILETS)

Scala Naturæ

This is not so different from the medieval concept of Scala Naturæ

So, why doesn't evolution stop?

- * The "fitness landscape" is a seascape: it changes with time
- * Most of its changes are due to the evolution of other, coexisting, life forms
- * We need to understand the coevolution of a large number of coexisting life forms
- * Novel aspects emerge when the number of coexisting life forms is large
- * In this context, evolution is dominated by innovation ("creation" of new niches) rather than improvement (higher efficiency or lower cost)

MACARTHUR AND LEVINS, 1967

Resource flux: R_i , i = 1, ..., NPopulation dynamics: $dn_{\mu}/dt = b_{\mu}n_{\mu} \Delta_{\mu}(\boldsymbol{h})$, $\boldsymbol{h} = (h_i)$ Resource surplus: $\Delta_{\mu}(\boldsymbol{h}) = \sum_i \sigma_{\mu i} h_i - \chi_{\mu}$, $\mu = 1, ..., S$ Metabolic Strategies: $\sigma_{\mu} = (\sigma_{\mu 1}, ..., \sigma_{\mu N})$ Total demand: $T_i(\boldsymbol{n}) = \sum_{\mu} \sigma_{\mu i} n_{\mu}$ Resource availability: $h_i = R_i/T_i = H_i(T_i)$

Feedback loop:

- * Growth of exploiting population leads to decrease in availability
- * Decrease in availability leads to decrease in population growth

Lyapunov function (MACARTHUR, 1969):

$$F(\boldsymbol{n}) = \sum_{i} R_{i} \log T_{i}(\boldsymbol{n}) - \sum_{\mu} n_{\mu} \chi_{\mu}$$
$$\frac{\mathrm{d}F}{\mathrm{d}t} = \sum_{\mu} b_{\mu} n_{\mu} \Delta_{\mu}^{2} \ge 0$$

Global optimization of F for a given set of strategies and cost

Steady state:

* If
$$n_{\mu} > 0$$
, $\Delta_{\mu} = 0$, i.e., $\boldsymbol{h} \cdot \boldsymbol{\sigma}_{\mu} = \chi_{\mu}$
* If $n_{\mu} = 0$, $\boldsymbol{h} \cdot \boldsymbol{\sigma}_{\mu} < \chi_{\mu}$ ("forbidden region")

Geometric interpretation (TILMAN, 1982):

Steady state:

- * σ_1, σ_2 are "specialists" with cost χ_0
- * σ_{12} is a "generalist" with cost $\chi_{12} < \chi_0$

The steady state contains σ_{12} and possibly one of σ_1 or σ_2 :

Locating the steady state

- * At the steady state h^* , n^* , the vector of total demand $T(n^*)$ must point strictly outward from the unsustainable (gray) region, since $T^* = \sum_{\mu} n_{\mu} \sigma_{\mu}$
- * Define a vector field $T_0(h)$ such that $T_{0i}(h) = R_i/h_i$, then $T_0(h^*) = T^*$
- * Thus follow the vector field T_{0} along the boundary of the unsustainable region, till locating where it points strictly outwards

MacArthur's model in large dimensionality

What happens when $N \gg 1$?

- * M. ТІКНОNOV (2015) introduced MacArthur's model with quenched disorder to the statphys community
- * Several researchers analyzed the model in large dimensions by statphys methods (replica, cavity method): Тікномоv himself, and ADVANI, BUNIN, МЕНТА, MONASSON, ...
- * ТІКНОNOV and MONASSON find a phase transition in large ecosystems:
 - **V phase:** "vulnerable": The number of surviving species is much smaller than *N*, the system is vulnerable to a change of external conditions
 - **S phase:** "stable": There are exactly *N* species which can adapt to change in external conditions without going extinct
- * More recently, they analyzed the evolutionary implications of the model

The transition

- * $\sigma_{\mu i}=1$ with probability p (else 0), $\chi_{\mu}=\sum_{i}\sigma_{\mu i}+\epsilon x_{\mu}$
- * Control parameters: N, $\alpha = S/N$, p, ϵ , $\overline{\delta R^2}$
- * Order parameters: $m = \overline{h}, \psi = \overline{(h_i \overline{h})^2}$

TIKHONOV AND MONASSON, 2016

Evolution of communities

- * # of possible species: $2^N \gg N$
- * Keep introducing new species ($\alpha=S(t)/N$ measures time)
- * Let the system reach steady state each time
- * Allow "extinct" species to resurrect
- Is "resurrection" moot?

Cost optimization?

The "best species" model:

TIKHONOV AND MONASSON, 2017

Cost optimization?

The actual simulation (N = 15, $\overline{\delta R^2} = 1.5$):

TIKHONOV AND MONASSON, 2017

Is cost relevant?

For $\alpha = S/N < \alpha_{\rm C}$, the correlation between x_{μ} (cost) and Δ_{μ} (viability) vanishes:

TIKHONOV AND MONASSON, 2017 13

Is cost relevant?

Tolerated cost in the presence of random strategies of cost 1:

TIKHONOV AND MONASSON, 2017 ¹⁴

Tolerated cost difference for large N

TIKHONOV AND MONASSON, 2017

Invasion strategies at large N

TIKHONOV AND MONASSON, 2017

Summary

- * Complex ecosystems may work in a "shielded" regime, which is not vulnerable to fluctuations in the outside environment
- * This obtains by the introduction of species which operate a workable compromise in resource consumption, while cost is of lesser importance
- * In large dimensionality, the room for innovation is exponentially larger than that of improvement (innovation as "environmental engineering")
- * Is a "one-dimensional" fitness concept a good cue in this situation?

Caveats:

- * The model is very simple (no RSP)
- * As soon as "producers" appear, there's no Lyapunov function
- * Good starting point (cf. HOPFIELD's model)?

Thank you!