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Symmetry & equations

• The modern theory of Symmetry was laid down by
Sophus Lie (1842-1899).

• The motivation behind the work of Lie was not in pure
algebra, but instead in the effort to solve differential
equations.

• This was successful !

• Can we do something similar for stochastic differential
equations ?
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This talk

• I first illustrate how the theory of symmetry helps in
determining solutions of (deterministic) differential
equations, both ODEs and PDEs

• I will be staying within the classical theory (Lie-point
symmetries), work in coordinates, and only consider
continuous symmetries.

• I will then discuss the extension of this theory to
stochastic (ordinary) differential equations.
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This talk

An important topic will be absent from my discussion:
symmetry of variational problems (Noether theory)

Two good reasons for this (beside the shortage of time):

♦ everybody here is familiar with this theory in the
deterministic framework;

♦ I am not familiar with this theory in the stochastic
framework.
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Symmetry of deterministic
equations
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The Jet space

Key idea (Cartan, Ehresmann): introduce the jet bundle
(here jet space).

Phase space (bundle): space of dependent (u1, ..., up) and
independent (x1, ..., xq) variables; (M,π0, B).
Jet space (bundle): space of dependent (u1, ..., up) and
independent (x1, ..., xq) variables, together with the partial
derivatives (up to order n) of the u with respect to the x;
(JnM,πn, B).
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Geometry of differential equations

A differential equation ∆ determines a manifold in JnM ,
the solution manifold S∆ ⊂ JnM for ∆.

This is a geometrical object, the differential equation can
be identified with it, and we can apply geometrical tools to
study it.

How to keep into account that ua
J represents derivatives of

the ua w.r.t. the xi ?

The jet space should be equipped with an additional
structure, the contact structure.
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Contact structure

This can be expressed by introducing the one-forms

ωa
J := dua

J −

q∑

i=1

ua
J,i dx

i

(contact forms) and looking at their kernel.
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Prolongation

An infinitesimal transformation of the x and u variables is
described by a vector field in M ; once this is defined the
transformations of the derivatives are also implicitly
defined.

The procedure of extending a VF in M to a VF in JnM by
requiring the preservation of the contact structure is also
called prolongation.
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Symmetry. 1

A VF X defined in M is then a symmetry of ∆ if its
prolongation X(n), satisfies

X(n) : S∆ → TS∆ .

An equivalent characterization of symmetries is to map
solutions into (generally, different) solutions.

In the case a solution is mapped into itself, we speak of an
invariant solution.
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Symmetry. 2

A first use of symmetry can be that of generating new
solutions from known ones.

Example: the solution u = 0 to the heat equation get transformed by
symmetries into the fundamental (Gauss) solution.

This is not the only way in which knowing the symmetry of
a differential equation can help in determining (all or some
of) its solutions.
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Determining the symmetry of a
differential equation

Determining the symmetry of a given differential equation
goes through solution of a system of coupled linear PDEs.

The procedure is algorithmic and can be implemented via
computer algebra...
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Determining the symmetry of a
differential equation

Determining the symmetry of a given differential equation
goes through solution of a system of coupled linear PDEs.

The procedure is algorithmic and can be implemented via
computer algebra...

(Except for first order ODEs !)
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Using the symmetry

The key idea is the same for ODEs and PDEs, and
amounts to the use of symmetry adapted coordinates
(XIX century math!)

But the scope of the application of symmetry methods is
rather different in the two cases.

We will consider scalar equations for ease of discussion
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Symmetry and ODEs. 1

If an ODE ∆ of order n admits a Lie-point symmetry, the
equation can be reduced to an equation of order n− 1.

The solutions to the original and to the reduced equations
are in correspondence through a quadrature (which of
course introduces an integration constant).
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Symmetry and ODEs. 2

The main idea is to change variables

(x, u) → (y, v) ,

so that in the new variables

X =
∂

∂v
.

As X is still a symmetry, this means that the equation will
not depend on v, only on its derivatives.

With a new change of coordinates

w := vy

we reduce the equation to one of lower order.
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Symmetry and ODEs. 3

A solution w = h(y) to the reduced equation identifies
solutions v = g(y) to the original equation (in “intermediate”
coordinates) simply by integrating,

v(y) =

∫
w(y) dy ;

a constant of integration will appear here.

Finally go back to the original coordinates inverting the first
change of coordinates.
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Symmetry and ODEs. 4

The reduced equation could still be too hard to solve;

The method can only guarantee that we are reduced to a
problem of lower order, i.e. hopefully simpler than the
original one.

Solutions to the original and the reduced problem are in
correspondence
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Symmetry and PDEs. 1

The approach in the case of PDEs is in a way at the
opposite as the one for ODEs!

If X is a symmetry for ∆, change coordinates

(x, t; u) → (y, s; v)

so that in the new coordinates

X =
∂

∂y
.

Now our goal will not be to obtain a general reduction of
the equation, but instead to obtain a (reduced) equation
which determines the invariant solutions to the original
equation.
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Symmetry and PDEs. 2

In the new coordinates, this is just obtained by imposing
vy = 0, i.e. v = v(s).

The reduced equation will have (one) less independent
variables than the original one.

This reduced equation will not have solutions in
correspondence with general solutions to the original
equation: only the invariant solutions will be common to the
two equations

Contrary to the ODE case, we do not need to solve any
“reconstruction problem”.
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Symmetry and linearization

It was shown by Bluman and Kumei that the (algorithmic)
symmetry analysis is also able to detect if a nonlinear
equation can be linearized by a change of coordinates.

The reason is that underlying linearity will show up through
a Lie algebra reflecting the superposition principle.
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Generalized symmetries

The concept of symmetry was generalized in many ways.

This extends the range of applicability of the theory

We have no time to discuss these.
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Symmetry of stochastic vs.
diffusion equations
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Symmetry and SDEs. 1

Consider SDEs in Ito form,

dxi = f i(x, t) dt + σi
k(x, t) dw

k ;

I will only consider ordinary SDEs.

• Here again I will not consider variational problems.
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Symmetry and SDEs. 2

The first attempts to use symmetry in the context of SDEs
involved quite strong requirements for a map to be
considered a symmetry of the SDE.

They were based on the idea of a symmetry as a map
taking solutions into solutions.

The first approach required that for any given realization of
the Wiener process any sample path satisfying the
equation would be mapped to another such sample path.

It is not surprising that the presence of symmetries was
then basically related to situations where, in suitable
coordinates, the evolution of some of the coordinates was
deterministic and not stochastic.
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Symmetry and SDEs. 3

A step forward in considering symmetry for SDEs
independently from a variational origin was done when an
Ito equation was associated to the corresponding diffusion
equation.

The idea behind this is that a sample path should be
mapped into an equivalent one.
(Here equivalence is meant in statistical sense.)
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Symmetry and SDEs. 4

We thus have two types of symmetries for the one-particle
process described by a SDE: the equation can be invariant
under the map, or it may be mapped into a different
equation which has the same associated diffusion
equation.

In this way one is to a large extent considering the
symmetries of the associated FP equation, and this had
been studied in detail in the literature.

Symmetries of the Ito equation are also symmetries for the
FP, while the converse is not necessarily true.
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Symmetry and SDEs. 5

The theory can be extended to consider also
transformations acting on the Wiener processes
(W-symmetries)

And to consider random dynamical systems (RDS) defined
by an Ito equation beside the one particle process (OPP)
defined by the same Ito equation.

Not surprisingly, it turns out that – for a given Ito equation –
any symmetry of the associated RDS is also a symmetry of
the OPP, while the converse is not true.

More recently the “diffusive” approach to symmetries of
SDEs has been reconsidered by F. De Vecchi in his
(M.Sc.) thesis, making contact with so called “second
order geometry” developed by Meyer and Schwartz.
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Symmetry and SDEs. 6

The works mentioned so far focused on determining what
is the “right definition” for symmetries of a SDE.

If we have a symmetry, we should use (as in the
deterministic case, and is done in stochastic Noether
theory) symmetry-adapted coordinates.

This was undertaken by Meleshko and coworkers, and
they promptly showed that using these coordinates leads
to many advantages in concretely dealing with SDEs.
(Work in this direction is also being pursued by De Vecchi
and Ugolini in Milano.)
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Symmetry and SDEs. 6

They determined e.g. conditions for the linearization of
SDEs in terms of symmetry.

Moreover, using this linearization approach, they studied
how symmetries can be used to integrate a SDE.

These are concerned with the most favorable case; in the
deterministic case one is in general not that ambitious.

One would expect that such a less optimistic approach
would be of use also in the case of SDEs.
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Symmetry of SDEs
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Types of symmetries for SDEs. 1

(work with Francesco Spadaro, Roma, now in EPFL)

dxi = f i(x, t) dt + σi
j(x, t) dw

j

X = τ ∂t + ξi ∂i

• Simple symmetries (act only on the x)
• General symmetries (act on both the x and t)
• W-symmetries (act also on the wj)
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Types of symmetries for SDEs. 2

(work with Francesco Spadaro, Roma, now in EPFL)

dxi = f i(x, t) dt + σi
j(x, t) dw

j

X = τ ∂t + ξi ∂i

• Deterministic symmetries: ξ = ξ(x, t), τ = τ(x, t)
• Random symmetries: ξ = ξ(x, t, w), τ = τ(x, t, w)

• W symmetries: X = τ∂t + ξi∂i + hk∂̂k with ξ = ξ(x, t, w),
τ = τ(x, t, w), hk = Bk

ℓw
ℓ.
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Symmetry of SDEs. 1

When we look at symmetry of a SDEs per se a substantial
problem is present:

• The symmetry approach is based on passing to
symmetry-adapted coordinates;
• Vector fields transform “geometrically” (chain rule) upon
changes of coordinates
• Deterministic DEs are (identified with) geometrical
objects, hence also transform geometrically
• It is then obvious that symmetry are preserved under
changes of coordinates
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Symmetry of SDEs. 2

• On the other hand, an Ito equation is NOT a geometrical
object
• In fact, it transforms under the Ito rule, not the chain rule
• Thus it is not granted that X will still be a symmetry when
we change coordinates so that X = ∂x !
• This is also true for deterministic symmetries of
stochastic equations
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Symmetry of SDEs. 3

The easy way out would be using Stratonovich equations
• These do transform according to the chain rule, i.e.
geometrically
• But the relation between an Ito and the corresponding
Stratonovich process is not that obvious – especially in this
respect
• In fact, it is known that in general the two do not share
the same symmetries [Unal]...
• albeit they have the same simple symmetries
• which is interesting, as Kozlov theory relating symmetry
to integrability of SDEs only makes use of simple
symmetries
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Unal type theorems

Proposition 1 (Unal). The simple deterministic symmetries of an Ito
equation and those of the equivalent Stratonovich equation do coincide.

Proposition 2 (GG+Lunini). The simple deterministic or random
symmetries of an Ito equation and those of the equivalent Stratonovich
equation do coincide.
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Unal type theorems

Unal also showed that – even in the deterministic
framework – the result does not extend to more general
symmetries; if one considers symmetries with generator

X = τ(∂/∂t) + ϕi(∂/∂xi)

the determining equations for the Ito and the associated
Stratonovich equation are equivalent if and only if τ
satisfies the additional condition

σk
p σ

ip

[
∂k

(
∂tτ + f j (∂jτ) +

1

2
σm

q σ
j
q (∂m∂jτ)

)]
= 0 ;

This is identically satisfied for τ = τ(t) (i.e. for “acceptable”
cases according to the discussion in GG+Spadaro).
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Kozlov theory

• In the deterministic case symmetry guarantees an ODE
can be reduced (or solved)

• The same holds in the SDE case, but only simple
symmetries X = f i(x, t)∂i matter [note now x and t are
really different!]
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Kozlov first theorem

Theorem 1. The SDE

dy = f̃(y, t) dt + σ̃(y, t) dw (1)

can be transformed by a deterministic map y = y(x, t) into

dx = f(t) dt + σ(t) dw , (2)

and hence explicitly integrated, if and only if it admits a simple
deterministic symmetry.
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Kozlov first theorem

If the generator of the latter is

X = ϕ(y, t) ∂y ,

then the change of variables y = F (x, t) transforming (1) into (2) is

the inverse to the map x = Φ(y, t) identified by

Φ(y, t) =

∫
1

ϕ(y, t)
dy .

[The “if” part is due to Kozlov, the “only if” one to C.Lunini]
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Kozlov other theorems

The same approach can be pursued to study partial
integrability, i.e.reduction of an n-dimensional SDE to an
SDE in dimension n− r plus r (stochastic) integrations.

This is possible if and only if there are r simple symmetry
generators spanning a solvable Lie algebra.

[Again the “if” part is due to Kozlov, the “only if” one to C.Lunini]
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Conclusions
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Conclusions

• The symmetry approach is a general way to attack DEs;
in the deterministic framework it proved invaluable both for
the theoretical study of differential equations and for
obtaining their concrete solutions.

• The theory is comparatively much less advanced in the
case of stochastic differential equations.

• There is now some general agreement on what the
“right” (that is, useful) definition of symmetry for SDE is.

• but only few applications have been considered, most of
these concerning “integrable” equations.
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Conclusions

• The symmetry approach is a general way to attack DEs;
in the deterministic framework it proved invaluable both for
the theoretical study of differential equations and for
obtaining their concrete solutions.

• The theory is comparatively much less advanced in the
case of stochastic differential equations.

• There is now some general agreement on what the
“right” (that is, useful) definition of symmetry for SDE is.

• but only few applications have been considered, most of
these concerning “integrable” equations or symmetry
reduction.
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Conclusions

• Theorems equivalent to the standard ones for ODEs
have been obtained for (ordinary) SDEs
• both for what concerns solving equations and for
reducing them
• except that now we cannot use general symmetries, but
only simple ones.
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Perspectives

• There is ample space for considering new applications,
first and foremost considering “non integrable” equations.

• Correspondingly, there is ample space for concrete
applications, i.e. applying the approaches already existing
or to be developed to new concrete stochastic systems.

• Symmetry theory flourished and expanded its role by
considering generalization of the “standard” (i.e. Lie-point)
symmetries in several directions. As far as I know, there is
no attempt in this direction for stochastic systems yet; any
work in this direction is very likely to collect success and
relevant results.
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Perspectives

• So far only first order systems have been considered
(Einstein-Smoluchowsky vs. Ornstein-Uhlenbeck)

• Can we do anything with stochastic formulation of QM ?

• Or at least can we deal directly with symmetries in the
Kac-like approach to Wiener (and Ito) processesa ?

aThis was done some decades ago, but it is not clear how that theory fits

with the modern theory of symmetry of DEs
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Final word
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Final word

Time is now ripe for extending fully fledged symmetry
theory to stochastic systems.
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Final word

Time is now ripe for extending fully fledged symmetry
theory to stochastic systems.

Thank you !
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Really Final word
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Really Final word

Happy Birthday

Gianfausto !!!
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Happy Birthday

Gianfausto !!!
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