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Population growth rate

Starting from N(0) cells at time O:
N(t) ~ N(0) ™t

Population growth rate:

Can we measure A?

= [nfinite time limit

Infinite population

Dependence on phenotype distribution and environment

= Intrinsic stochasticity



Fitness

Fitness f, of a phenotypic trait X’
Measured by the growth rate of a subpopulation:
dN,(2)
dt

Fisher's fundamental theorem:

~ f, N(x, t), xeX

fo=varf

ot
Neglecting mutations, drift, phenotype change, ..
= Infinite population
= Dependence on phenotype distribution and environment
= Intrinsic stochasticity

= Epistasis, pleiotropy, ..

Fitness is central in model-building but elusive in experiment



Monitoring single-cell dynamics

Experiments on single-cell dynamics:
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Phenotype (e.g., expression of some proteins) can be monitored by
coupling to expression of fluorescent proteins

Can we harness genealogical information to evaluate fitness and
population growth rate?



Forward and Backward sampling
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Leibler and Kussell, 2010



Division and doubling times

Evaluate
Whack(¢
Dkr(whack ||wior) = zg:wback(@ In . (2))
= (K)paex N2 —tA: >0
DKL(Wfoerback) - t/\t - <K>for In2 Z 0
Thus

t In2 t

R = e = (Ko

Define the inter-division time 7 = lim;_, oo t/ (K). Then

<T>back <Ta< (1)

for

where T3 = In2/A is the population doubling time
Garcia-Garcia et al., 2019



Estimating the fitness landscape

Let X be a trait (phenotype): we then have, for each value x,

pback(Kv X) = eKln 27tAtpfor(Kv X)

and we can define the marginals

pback Zpback K X pfor pror K X

Defining the fitness Iandscape

ht(X) — lln N(t)pback(x) o /\t + 1 In ,Dback(X)

t NO)pror(x) t Pror(x)

we have
pback(X) = et(h(x)_/\t)pfor(x)
Defining the conditional distribution pgo;(K|x) = ptor (K, X)/ptor(X) we

obtain the estimator
1
=] 2K pror (K
x) tn; pror(Kx)

Nozoe et al. 2017 7



Estimating the fitness landscape
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Estimated fitness landscape h;(x) for a Moran model of N = 10000
individuals, with division rate r(x) = e /2, x€ {0,...,5}, and t = 5.
The total weight of the forward sampling yields the number N(0) of
ancestors. The effective population growth rate is given by

A: = In(N(t)/N(0))/t. Only lineages surviving at t are sampled.



Estimating the fitness landscape
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If h(x) were fully determined by x we would have h(x) = KIn2/t
Genthon and Lacoste, 2021
Data by Kiviet et al., 2014 on E. coli



Estimating the fitness landscape
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Genthon and Lacoste, 2021
Data by Kiviet et al., 2014 on E. coli



Estimating the fitness landscape
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Genthon and Lacoste, 2021
Data by Kiviet et al., 2014 on E. coli



Estimating the fitness landscape
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Fitness landscape vs. biological fitness

Estimating the biological fitness from the growth rate of a subpopulation:

pback(Xv t)
pback(X7 O)

1, N(xt) 1
fome Ae(x) = - | = At -
)= Vo) ~ Mt

Thus we obtain

1 pback(Xa t) bback(X7 t)

h —A = — |l —1
t(X) t(X) t " pfor(Xv t) ! pback(X7 O)
1 In pback(X7 0) _ 1 In pfOr(X7 O)
t pfor(X7 t) t pfor(X> t)



Strength of selection

Measure of the strength of selection for trait X

Mx = (he(X))pack — (he(X)) for
1

_ pback(X) *
- XX: (Pback(X) — pror(X)) In pr(X) >0 (*)

1
=7 [Dkr(poack || Pror) + Dxr(Pror || Poack)]

Nozoe et al. 2017
Define ) ) .
Pback(X Pror( X
X) = Hix) = ——— =
HI= 0 T el @D
then, for an arbitrary function gi(x),

COVbaCk(gﬁ qt) = <gtqt>back - <gt>back <qt>back = <gt>back - <gt>for
coVior(8t: 1t) = (8t)tor — (8t back
and, by the Cauchy-Schwartz inequality,

|<gt>for - <gf>back| < min (O'back(gt)gfor(qt)a Ufor(gt)o'back(rt))



Strength of selection

Since
q:(x) = ot(he()=Ae)
we obtain
M = covier(hr, ™) e ™™ = covpacr (hy, e~ ) e
and

0 <Ny <min (Ufor(ht)o'for(qt)aO'back(ht)o'back(rt))

A tighter lower bound can also be obtained from Jensen's inequality
applied on (*):

My > 1 |:Uf20r(ht)

py U%ack(hf)
t | exp(tAs)

or»hmim h
11[}(<)0f < t>for) + exp(—t/\t)

7/1(<Pback7 hmaxa <ht> back):|

¢(907X7 V) = 50((XX)__;’;(2V) Sofor(X) = e (pback(X) —=e &

Genthon and Lacoste, 2021



Strength of selection
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Role of cell death
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Role of cell death

2-KN(K, o, t)

=0,1
N(0) 7o

pfor(Ka g, t) =

N(K,o0=1,1t)

N(t) = pback(K7 t)

pback(K7 0:05 t) =10 pback(Ka 0217 t) =

_ 1 1. L —K _
Peury(t) = pfor(afl,t)fzK:pfor(K,Uth)f o) ;2 N(K,o=1, t)

1
rt = E In psurv(t)

N.B. psurv(t) # N(o=1,1t)/|L(t)] and T, <0, Vt

pbaCk(K7 t) = eKIn A=) pfor(Ka O'I]., t)

1
A = ? In <2K>for\a':1 +Te

<et/\z*K|n2>baCk =1 — pror(0=0, t) = psurv(t)

Genthon et al., 2022
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Role of cell death

For the distribution f{7|o) of division times 7 we have
foack (T) = 2fior(T]o=1) e A=)
and thus
Dxr (foack(T)|| fror (T]lo=1)) = = (T)pacc A—=T) +In2>0
DKL (fror (T]o=1) [ foack (7)) = (T)goy (A =T) =In2>0

We thus have
1 1 r 1
< - - __ <

<T>for B 7:1 In2 — <T>back

and a generalized Euler-Lotka relation:

il = 2/ dr f;‘or(7_|0':1)ei7-(/\7r)
0

Genthon et al., 2022
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Inferring population growth and selection

= Quantifying selection for a fixed trait x:

1 pback(X7 t) 1 K
h(x) = Ao+~ In 22200500 — 240 |7 2K py (Ko x, tlo=1) | +T
(X) et t npfor(X> t‘O’:l) t n P = ( . |J ) Tl
= Fitness of trait x:
pback(X7 t)

1
A =N+ -
t(X) ‘ * t " pback(Xa O)

Thus
()~ ) = § n P70
t Pror(x; 0)
= Can be extended to the case of dilution (cytometer)
= In mother machines, only forward sampling is performed (but dead

lineages contribute to averages)

Genthon et al., 2022



Inferring population growth and selection

Cytometer measurements:

Dilution rate p(x) (depending on trait x)
Population size without dilution: N°(t), with dilution: N(t)
Trait history x = (x(t))

(0 = MO [ Dx (. r=1) o0 | [ ar p(E))

= N(t) <eXP Uotdﬂ p(X(H))] >back

. % w2 (oo [a0 soton])

—0 for t—o0

Sampling errors: requires sampling rare lineages
Bias if dilution and trait are correlated

11



Inferring population growth and selection

= Empirical average:
1 n(o=1) ¢
A® = lim In oo=D) ; exp [/0 d¢ p(Xg(lJ)):|

Requires sampling rare lineages (with high dilution rate)

= Survivor bias: Probability of a trait history x:

(%) = pron(%, 0=1) exp [ / at p(x(ﬂ»]
o de )]
pback( ) Pback( ) <exp |:f0tdt, p(X(t/)):| >baCk

11



Inferring population growth and selection

Mother machines: A single lineage is followed in each channel

Only the forward sampling is available

L channels

t
nlin(gzlv t)
survll) = —————
Psurv(t) 1
1 L
/\hn — In Z Z 2 Jéaj 1
j=1

11



Pitfalls

= Finite time: Average over many independent lineages to obtain
pfor(K7 t):

/\t:fInN 7|n22 Proc (K, t) = 7|n<2’<>

r+o(3)

= Finite lineages number:
= Averages are dominated by “exceptional” lineages, that are likely to

Pfor

be lost as time goes by
= The mean of A; approaches the most likely value of 2X and
eventually behaves as
lim Ay =1In2r"

t— 00

where r* is the most likely division rate (in the forward ensemble)

For any number L of lineages there is a time window for the best results
Levien et al., 2020
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Pitfalls
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Levien et al., 2020

12



Summary

Conclusions

= Lineage statistics provide a useful tool to explore selection in
microbial populations

= Comparison of forward and backward statistics provides bounds on
the selection strength and other observables

= The method can encompass time-dependent phenotypes (historical
fitness)

= One can take into account effects of dilution and cell death

= There is an error tradeoff between population size and runtime

13



Thank youl!
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