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Population growth rate

Starting from N(0) cells at time 0:

N(t) ∼ N(0) eΛt

Population growth rate:

Λt =
1
t ln

N(t)
N(0) Λ = lim

t→∞
Λt

Can we measure Λ?

• Infinite time limit
• Infinite population
• Dependence on phenotype distribution and environment
• Intrinsic stochasticity
• …
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Fitness

Fitness fx of a phenotypic trait X
Measured by the growth rate of a subpopulation:

dNx(t)
dt ≃ fx N(x, t), x ∈ X

Fisher’s fundamental theorem:
∂

∂t fx = var f

Neglecting mutations, drift, phenotype change, …
• Infinite population
• Dependence on phenotype distribution and environment
• Intrinsic stochasticity
• Epistasis, pleiotropy, …
• …

Fitness is central in model-building but elusive in experiment
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Monitoring single-cell dynamics

Experiments on single-cell dynamics:

Petri dish Flow cytometer Mother machine

Phenotype (e.g., expression of some proteins) can be monitored by
coupling to expression of fluorescent proteins
Can we harness genealogical information to evaluate fitness and
population growth rate?
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Forward and Backward sampling

ωback =
1

N(t) ωfor =
2−K

N(0)
ωback(ℓ) = eK(ℓ) ln 2−t Λtωfor(ℓ)

Leibler and Kussell, 2010
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Division and doubling times

Evaluate

DKL(ωback∥ωfor) :=
∑
ℓ

ωback(ℓ) ln
ωback(ℓ)

ωfor(ℓ)

= ⟨K⟩back ln 2− tΛt ≥ 0
DKL(ωfor∥ωback) = tΛt − ⟨K⟩for ln 2 ≥ 0

Thus
t

⟨K⟩back
≤ ln 2

Λt
≤ t

⟨K⟩for

Define the inter-division time τ = limt→∞ t/ ⟨K⟩. Then

⟨τ⟩back ≤ Td ≤ ⟨τ⟩for

where Td = ln 2/Λ is the population doubling time
García-García et al., 2019
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Estimating the fitness landscape

Let X be a trait (phenotype): we then have, for each value x,

pback(K, x) = eK ln 2−t Λtpfor(K, x)

and we can define the marginals

pback(x) =
∑

K
pback(K, x) pfor(x) =

∑
K

pfor(K, x)

Defining the fitness landscape

ht(x) :=
1
t ln

N(t)pback(x)
N(0)pfor(x)

= Λt +
1
t ln

pback(x)
pfor(x)

we have
pback(x) = et(h(x)−Λt)pfor(x)

Defining the conditional distribution pfor(K|x) := pfor(K, x)/pfor(x) we
obtain the estimator

ht(x) =
1
t ln

∑
K

2Kpfor(K|x)

Nozoe et al. 2017 7



Estimating the fitness landscape
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Estimated fitness landscape ht(x) for a Moran model of N = 10 000
individuals, with division rate r(x) = e−x/2, x ∈ {0, . . . , 5}, and t = 5.
The total weight of the forward sampling yields the number N(0) of
ancestors. The effective population growth rate is given by
Λt = ln(N(t)/N(0))/t. Only lineages surviving at t are sampled.
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Estimating the fitness landscape 8
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Figure 3. Experimental fitness landscapes for size and their forward distributions, computed with data from [27]. Each row of
the figure corresponds to a different experiment and the first column shows fitness landscapes ht(x) as functions of size x. (a,c):
the grey horizontal dashed lines correspond to theoretical plateaus, equal to K ln 2/t, predicted when K is fully determined
by the value s of the trait. The integers K corresponding to the plateaus are indicated on the right y-axis. (e): plateaus are
blurred and replaced by a smoother scatter plot in good agreement with the general shape of the theoretical prediction, made
in the case where there is no variability in individual growth rate nor volume partition at division [10]. ⇤ is the population
growth rate and hx0i the average size of initial cells. (a,c,e): each dot is made of all the cells having the same size, and the
mean number of divisions amongst those cells is represented by the color of the dot. This shows that dots aligning on a plateau
corresponding to a number K of divisions truly come from cells that underwent K divisions. (b,d,f): the second column
represents the distribution pfor(h) of the corresponding size fitness landscapes (i.e. on the same row) with the forward size
distribution. For (b,d), the fitness landscapes are highly non-Gaussian, and the peaks in these distributions correspond to the
value of one of the plateaus.

Trait: Cell size x
If h(x) were fully determined by x we would have h(x) = K ln 2/t

Genthon and Lacoste, 2021
Data by Kiviet et al., 2014 on E. coli
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Fitness landscape vs. biological fitness

Estimating the biological fitness from the growth rate of a subpopulation:

fx ≃ Λt(x) =
1
t ln

N(x, t)
N(x, 0) = Λt +

1
t ln

pback(x, t)
pback(x, 0)

Thus we obtain

ht(x)− Λt(x) =
1
t

[
ln

pback(x, t)
pfor(x, t)

− ln
bback(x, t)
pback(x, 0)

]
=

1
t ln

pback(x, 0)
pfor(x, t)

=
1
t ln

pfor(x, 0)
pfor(x, t)
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Strength of selection

Measure of the strength of selection for trait X :

ΠX = ⟨ht(x)⟩back − ⟨ht(x)⟩for

=
1
t
∑

x
(pback(x)− pfor(x)) ln

pback(x)
pfor(x)

≥ 0 (*)

=
1
t [DKL(pback∥pfor) +DKL(pfor∥pback)]

Nozoe et al. 2017
Define

qt(x) =
pback(x)
pfor(x)

rt(x) =
pfor(x)

pback(x)
=

1
qt(x)

then, for an arbitrary function gt(x),

covback(gt, qt) = ⟨gtqt⟩back − ⟨gt⟩back ⟨qt⟩back = ⟨gt⟩back − ⟨gt⟩for

covfor(gt, rt) = ⟨gt⟩for − ⟨gt⟩back

and, by the Cauchy-Schwartz inequality,∣∣⟨gt⟩for − ⟨gt⟩back
∣∣ ≤ min (σback(gt)σfor(qt), σfor(gt)σback(rt)) 9



Strength of selection

Since
qt(x) = et(ht(x)−Λt)

we obtain

ΠX = covfor(ht, etht) e−tΛt = covback(ht, e−tht) etΛt

and
0 ≤ ΠX ≤ min

(
σfor(ht)σfor(qt), σback(ht)σback(rt)

)
A tighter lower bound can also be obtained from Jensen’s inequality
applied on (∗):

ΠX ≥ 1
t

[
σ2

for(ht)

exp(tΛt)
ψ(φfor, hmin, ⟨ht⟩for) +

σ2
back(ht)

exp(−tΛt)
ψ(φback, hmax, ⟨ht⟩back)

]
ψ(φ, x, ν) := φ(x)− φ(ν)

(x − ν)2 φfor(x) := etx φback(x) := e−tx

Genthon and Lacoste, 2021
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Strength of selection

Genthon and Lacoste, 2021
Data by Kiviet et al., 2014 on E. coli
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Role of cell death

Forward Backward

p(K, σ, t) =
∑

ℓ∈L(t)
δK,K(ℓ)δσ,σ(ℓ) ω(ℓ)

N(K, σ, t) =
∑

ℓ∈L(t)
δK,K(ℓ)δσ,σ(ℓ)

L(t): set of all lineages present at time t (DEAD or ALIVE!)
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Role of cell death

pfor(K, σ, t) =
2−KN(K, σ, t)

N(0) σ = 0, 1

pback(K, σ=0, t) = 0 pback(K, σ=1, t) = N(K, σ=1, t)
N(t) =: pback(K, t)

psurv(t) := pfor(σ=1, t) =
∑

K
pfor(K, σ=1, t) = 1

N(0)
∑

K
2−KN(K, σ=1, t)

Γt =
1
t ln psurv(t)

N.B. psurv(t) ̸= N(σ=1, t)/ |L(t)| and Γt ≤ 0, ∀t

pback(K, t) = eK ln 2−t(Λt−Γt) pfor(K, σ=1, t)

Λt =
1
t ln

〈
2K〉

for|σ=1 + Γt〈
etΛt−K ln 2〉

back = 1− pfor(σ=0, t) = psurv(t)

Genthon et al., 2022 10



Role of cell death

For the distribution f(τ |σ) of division times τ we have

fback(τ) = 2ffor(τ |σ=1) e−τ(Λ−Γ)

and thus

DKL (fback(τ)∥ffor(τ |σ=1)) = −⟨τ⟩back (Λ− Γ) + ln 2 ≥ 0
DKL (ffor(τ |σ=1)∥fback(τ)) = ⟨τ⟩for (Λ− Γ)− ln 2 ≥ 0

We thus have
1

⟨τ⟩for
≤ 1

Td
− Γ

ln 2 ≤ 1
⟨τ⟩back

and a generalized Euler-Lotka relation:

1 = 2
∫ ∞

0
dτ ffor(τ |σ=1) e−τ(Λ−Γ)

Genthon et al., 2022
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Inferring population growth and selection

• Quantifying selection for a fixed trait x:

h(x) = Λt +
1
t ln

pback(x, t)
pfor(x, t|σ=1) =

1
t ln

[∑
k

2K pfor(K, x, t|σ=1)
]
+ Γt

• Fitness of trait x:

Λt(x) = Λt +
1
t ln

pback(x, t)
pback(x, 0)

Thus
ht(x)− Λt(x) =

1
t ln

pfor(x, t|σ = 1)
pfor(x, 0)

• Can be extended to the case of dilution (cytometer)
• In mother machines, only forward sampling is performed (but dead

lineages contribute to averages)

Genthon et al., 2022
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Inferring population growth and selection

Cytometer measurements:

• Dilution rate ρ(x) (depending on trait x)
• Population size without dilution: N◦(t), with dilution: N(t)
• Trait history x = (x(t))

N◦(t) = N(t)
∫

Dx pback(x, σ=1) exp
[∫ t

0
dt′ ρ(x(t′))

]
= N(t)

〈
exp

[∫ t

0
dt′ ρ(x(t′))

]〉
back

Thus

Λ◦
t = Λt +

1
t ln

N(0)
N◦(0)︸ ︷︷ ︸

→0 for t→∞

+
1
t ln

〈
exp

[∫ t

0
dt′ ρ(x(t′))

]〉
back

• Sampling errors: requires sampling rare lineages
• Bias if dilution and trait are correlated
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Inferring population growth and selection

• Empirical average:

Λ◦ = lim
t→∞

ln

 1
n(σ=1)

n(σ=1)∑
ℓ=1

exp

[∫ t

0
dt′ ρ(xℓ(t′))

]
Requires sampling rare lineages (with high dilution rate)

• Survivor bias: Probability of a trait history x:

p◦
for(x) = pfor(x, σ=1) exp

[∫ t

0
dt′ ρ(x(t′))

]

p◦
back(x) = pback(x)

exp
[∫ t

0 dt′ ρ(x(t′))
]

〈
exp

[∫ t
0 dt′ ρ(x(t′))

]〉
back
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Inferring population growth and selection

Mother machines: A single lineage is followed in each channel
Only the forward sampling is available

L
og

 s
iz

e

...L
ch

an
ne

ls

psurv(t) =
nlin(σ=1, t)

L

Λlin =
1
t ln

1
L

L∑
j=1

2Kjδσj,1


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Pitfalls

• Finite time: Average over many independent lineages to obtain
pfor(K, t):

Λt =
1
t lnN(t) = 1

t ln
∑

K
2Kpfor(K, t) =

1
t ln

〈
2K〉

pfor

= Λ + O
(
1
t

)
• Finite lineages number:

• Averages are dominated by “exceptional” lineages, that are likely to
be lost as time goes by

• The mean of Λt approaches the most likely value of 2K and
eventually behaves as

lim
t→∞

Λt = ln 2 r∗

where r∗ is the most likely division rate (in the forward ensemble)

For any number L of lineages there is a time window for the best results
Levien et al., 2020
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Pitfalls

Levien et al., 2020
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Summary

Conclusions

• Lineage statistics provide a useful tool to explore selection in
microbial populations

• Comparison of forward and backward statistics provides bounds on
the selection strength and other observables

• The method can encompass time-dependent phenotypes (historical
fitness)

• One can take into account effects of dilution and cell death
• There is an error tradeoff between population size and runtime
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Thank you!
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