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Transient compartments have been recently shown to be able to maintain functional replicators
in the context of prebiotic studies. Here, we show that a broad class of selection dynamics is able to
achieve this goal. We identify two key parameters, the relative amplification of non-active replicators
(parasites) and the size of compartments. These parameters account for competition and diversity,
and the results are relevant to similar multilevel selection problems, such as those found in virus-host
ecology and trait group selection.
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A central issue in origin of life studies is to ex-
plain how replicating functional molecules could
have appeared and evolved towards higher com-
plexity [1]. In 1965, Spiegelman showed experi-
mentally that RNA could be replicated by an en-
zyme called Qβ RNA replicase, in the presence
of free nucleotides and salt. Interestingly, he no-
ticed that as the process is repeated, shorter and
shorter RNA polymers appear, which he called
parasites. Typically, these parasites are non-
functional molecules which replicate faster than
the RNA polymers introduced at the beginning
of the experiment and which for this reason tend
to dominate. Eventually, a polymer of only 218
bases remained out of the original chain of 4500
bases, which became known as Spiegelman’s mon-
ster. In 1971, Eigen conceptualized this observa-
tion by showing that for a given accuracy of repli-
cation and relative fitness of parasites, there is a
maximal genome length that can be maintained
without errors [2]. This result led to the following
paradox: to be a functional replicator, a molecule
must be long enough. However, if it is long, it can
not be maintained since it will quickly be over-
taken by parasites. Many works attempted to ad-
dress the puzzle as reviewed in Ref. [3]. In some
recent studies, spatial clustering was found to pro-
mote the survival of cooperating replicators [4–6].
This kind of observation is compatible with early
theoretical views [7, 8], that compartmentalization
could allow parasites to be controlled.

Small compartments are ideal for prebiotic sce-
narios, because they function as micro-reactors
where chemical reactions are facilitated. Oparin
imagined liquid-like compartments called coacer-
vates, which could play a central role in the ori-
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gin of life [9]. Although experimental verification
of the prebiotic relevance of coacervates or other
sorts of protocells remained scarce for many years,
the idea has resurfaced recently in various sys-
tems of biological interest [10, 11]. An important
aspect of the original Oparin scenario which has
not been addressed in these studies is the possibil-
ity of a transient nature of the compartmentaliza-
tion. In the present paper, we introduce a general
class of multilevel selection with transient compar-
timentalization. This class includes several scenar-
ios [12–16] for the origin of life and a recent ex-
periment, in which small droplets containing RNA
in a microfluidic device [17] were used as compart-
ments. In this experiment, cycles of transient com-
partmentalization prevent the takeover by para-
sitic mutants. Cycles consist of the following steps:
(i) inoculation, in which droplets are inoculated
with a mixture of RNA molecules containing ac-
tive ribozymes and inactive parasites, (ii) matu-
ration, in which RNA is replicated by Qβ repli-
case, (iii) selection, in which compartments with
a preferred value of the catalytic activity are se-
lected, (iv) pooling, in which the content of the se-
lected compartments is pooled. This protocol does
not correspond to that of the Stochastic Correc-
tor model [7] because of step (iv), which removes
the separation between individual compartments.
Instead, it corresponds to group selection with a
pooling phase [18].

The absence of parasite takeover was success-
fully explained in ref. [17] by a theoretical model
which described the appearance of parasites within
a given lineage as a result of mutations during
the replication process. In this work we wish to
account for these observations in a more general
sense. We show that the value of the mutation
rate does not play an essential role as long as it is
small [19], and that the entire shape of the selec-
tion function is not needed to describe the fate of
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the system.
Let us consider an infinite population of com-

partments. Each compartment is initially seeded
with n replicating molecules, where n is a random
variable, Poisson distributed with average equal to
λ. In addition, each compartment also contains a
large and constant numbers of enzymes, nQβ and
of activated nucleotides nu. Among the n replicat-
ing molecules, m are ribozymes, and the remaining
n−m are parasites. Let x be the initial fraction of
ribozymes and 1 − x that of parasites. After this
inoculation phase, compartments evolve by letting
the total number of molecules grow by consuming
activated nucleotides.

In practice, the time of incubation of the com-
partments is fixed and longer than the time af-
ter which activated nucleotides become exhausted.
The kinetics is initially exponential because the
synthesis of RNA is autocatalytic at low concentra-
tion of templates. Therefore, the average number
m̄ of ribozymes and ȳ of parasites grow according
to

m̄ = m exp(αT ),

ȳ = (n−m) exp(γT ),
(1)

where T denotes the time and α (resp. γ) de-
note the average growth rate of the ribozymes
(resp. parasites) during this exponential growth
phase. The relevant quantity for this dynamics is
the ratio of the number of daughters of one para-
site molecule and that of the daughters of one ri-
bozyme molecule: Λ = exp((γ − α)T )). Note that
Λ > 1 since γ > α. This exponential growth phase
(maturation phase) ends, when the total number
of templates N = m̄+ ȳ reaches the constant value
nQβ which is the same for all compartments. Af-
ter this point, the kinetics switches to a linear one,
because enzymes rather than templates are limit-
ing [20]. Importantly, during this linear regime the
ratio of ribozymes and parasites

x̄(n,m) =
m̄

N
=

m

nΛ− (Λ− 1)m
(2)

does not change. Apart from neglecting very small
fluctuations in nQβ and nu, our assumption that N
is constant means that the effects of fluctuations
of growth rates of both species and the effect of
a possible dependence of Λ on m and n are not
considered. These two stochastic effects have been
modeled in detail in the Supplemental Materials
[19]. In the end, we find that they do not alter sig-
nificantly the predictions of the present determin-
istic model for the conditions of the experiment.

Two types of parasites can appear: hard para-
sites are formed when the replicase overlooks or
skips a large part of the sequence of the ribozyme
during replication. The resulting polymers are sig-
nificantly shorter than that of the ribozyme and

will therefore replicate much faster. Based on the
experiments of [17], we estimated Λ to be in a range
from 10 to about 470, as explained in the Supple-
mental Materials [19]. In contrast, if the replicase
makes errors but keeps overall the length of the
polymers unchanged, then the replication time is
essentially unaffected. In that case, one speaks of
soft parasites, and the corresponding Λ is close to
unity. It is important to appreciate that the dis-
tinction between hard or soft parasites is not only
a matter of replication rates, because Λ also con-
tains the time T , so depending on both parameters,
parasites could be classified as either hard or soft.

The compartments are then selected according
to a selection function f(x̄) ≥ 0. A specific form
which is compatible with [17] is the sigmoid func-
tion

f(x̄) = 0.5

(
1 + tanh

(
x̄− xth
xw

))
, (3)

with xth = 0.25 and xw = 0.1. Note that this
function takes a small but non-zero value for x̄ = 0,
namely 0.5(1−tanh(xth/xw)) = 0.0067, which rep-
resents the fitness of a pure parasite compartment.
This is in contrast with the linear selection function
chosen in a recent study of a similar system [21].

After the selection phase, the resulting prod-
ucts are pooled and the process is restarted with
newly formed compartments. We wish to evaluate
the steady-state ratio x of ribozymes when many
rounds of the process have taken place. The prob-
ability distribution of the initial condition (n,m)
is given by

Pλ(n, x,m) = Poisson(λ, n)Bm(n, x), (4)

where Bm(n, x) is the Binomial distribution for
m ∈ {0, . . . , n} of parameter x ∈ [0, 1]. The av-
erage of x̄ after the selection step is given by

x′(λ, x) =

∑
n,m x̄(n,m)f(x̄(n,m))Pλ(n, x,m)∑

n,m f(x̄(n,m))Pλ(n, x,m)
.

(5)
The steady-state value of x is the stable solution

of

x = x′(λ, x). (6)

It is easier to evaluate ∆x = x′(λ, x)−x as a func-
tion of λ. The steady-state value corresponds to
the line ∆x = 0 separating negative values above
from positive values below as shown in Fig. 1.

We construct a phase diagram in the (λ,Λ)
plane, by numerically evaluating the bounds of sta-
bility of the fixed point x = 0 from the condition:

∂x′

∂x

∣∣∣∣
x=0

= 1, (7)
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FIG. 1. Contour plots of ∆x for four values of Λ =
1, 2.5, 4 and 1000 in the plane (x, λ), with red (resp.
blue) regions corresponding to ∆x > 0 (resp. ∆x < 0).

and similarly for the other fixed point x = 1. The
resulting phase diagram, as shown in Fig. 2, shows
four distinct phases. In the orange (resp. light blue
P region) region R, the only stable fixed point is
x = 1 (resp. x = 0). In the green region, x = 0
and x = 1 are both stable fixed points. The system
converges towards one fixed point or the other de-
pending on the initial condition: for this reason we
call this region B for bistable. In the violet region,
x = 0 and x = 1 are both unstable fixed points,
but there exists a third stable fixed point x∗ with
0 < x∗ < 1. We call this a coexistence region (C).
All of these phases can be seen in Fig. 1. In the
Supplemental Materials [19], we discuss other as-
pects of the phase behavior which are not captured
by this treatment. We also show there that many
features of this phase diagram remain if a linear
selection function is used instead of Eq. (3)

It is interesting to analyze separately some spe-
cific limits for which the asymptotes of the phase
diagram can be computed exactly. Let us consider

• λ� 1: bulk behavior

• Λ� 1: hard parasites

• Λ close to 1: soft parasites

For large λ, we can neglect the fluctuations of
n, i.e. the total number of replicating molecules
(ribozymes plus parasites) in the seeded compart-
ment. Indeed, n is Poisson distributed with pa-
rameter λ, therefore Var(n)/λ2 = 1/λ � 1. For
large λ, Λ close to 1 and x close to 1 (resp. 0),
the most abundant compartments verify m = n or
m = n−1 (resp. m = 0 or m = 1). By considering
only these compartments in the recursion relation
[19], one finds that the condition of stability of the
fixed point x = 0 leads to

Λ = 1 +
f ′(0)

f(0)λ
+O

( 1

λ2

)
, (8)
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FIG. 2. Phase diagram of the transient compart-
mentalization dynamics with the selection function of
Eq. (3) in the (λ,Λ) plane. The phases are: R: pure
Ribozyme, B: Bistable, C: Coexistence, P: pure Para-
site.

for an arbitrary selection function and Λ ' 1 +
19.86/λ for the selection function of Eq. (3). This
equation indeed characterizes the separation be-
tween the parasite and coexistence regime at large
λ in Fig. 2. A similar equation is found for the
fixed point at x = 1

Λ = 1 +
f ′(1)

f(1)λ
+O

( 1

λ2

)
, (9)

yielding Λ ' 1+6.12 10−6/λ for this selection func-
tion for the separation between ribozyme and coex-
istence regions. For Λ close enough to 1, we have
a ribozyme phase. The asymptotes given by (8)
and (9) border the coexistence region in Fig. 2.
This supports the observation that soft parasites
can coexist with ribozymes.

Let us now study the hard parasite limit, namely
Λ � 1, and finite λ. In this regime, we only need
to consider three types of compartments: compart-
ments made of pure ribozymes, such that m = n 6=
0, compartments containing parasites, and empty
compartments, i.e. such that n = 0. One can intro-
duce three inoculation probabilities for these cases
pribo, ppara, and pzero. Using Eq. (4), one finds

pribo =

∞∑
n=1

xnλn

n!
e−λ = (eλx − 1)e−λ,

pzero = e−λ,

ppara = 1− pribo − pzero = 1− eλ(x−1).

(10)

Assuming that in compartments containing par-
asites they will overwhelm the ribozymes, and in-
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serting these values in (5), we find

x′ =
pribof(1)

pribof(1) + pparaf(0)
. (11)

Evaluating the fixed-point stability of x = 1 using
(7), we find that the boundary value of λ satisfies

λf(0)eλ = (eλ − 1)f(1), (12)

for an arbitrary selection function. A similar cal-
culation at the fixed point x = 0 leads to the other
vertical separation line given by

λf(1) = (eλ − 1)f(0). (13)

The solution of Eq. (12) (resp. Eq. (13)) is λ '
149.41 (resp. λ ' 6.95) which compare well with
the vertical separation lines in Fig. 2.

In ref. [17] a comparison was made of the sys-
tem behavior as a function of the number of se-
lection rounds in three possible protocols: (i) No
compartments (bulk behavior), (ii) compartments
with no selection, (iii) compartments with selec-
tion. Such a comparison based on our theoretical
model is shown in Fig. 3 for parameter values cor-
responding to the coexistence region of Fig. 2. As
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FIG. 3. Evolution of the average ribozyme fraction
x as function of the number of rounds for the three
protocols, namely (i) No compartments (bulk behav-
ior), (ii) compartments with no selection, (iii) compart-
ments with selection. We choose λ = 5 and Λ = 10,
corresponding to the coexistence region of Fig. 2.

expected, the fraction of ribozymes decreases to-
wards zero rapidly in case (i), and somewhat less
quickly in case (ii). Only in case (iii) is it possible
to maintain a non-zero ribozyme fraction on long
times. It is indeed observed that the ribozyme frac-
tion eventually vanishes for protocols (i) and (ii) in
the experiment of Ref. [17]. In case (iii), a decrease
of the ribozyme fraction is observed. The last two
points of figure 2C (top panel) in this reference are
an indication that the system may eventually reach
ribozyme-parasite coexistence in this regime.

In figure 4 we show the behavior of the distri-
bution of the ribozyme fraction after the growth
phase, i.e. x̄(n,m) (defined in Eq. (2)) as a func-
tion of round number. The parameters are Λ = 5
and λ = 10, corresponding to the parasite region,
where the final state of the system is x = 0, and
the initial condition is x = 0.999. Note that the
distribution of x̄(n,m) is discrete, since many val-
ues are not accessible in the allowed range of n and
m. At t = 0, it exhibits a sharp peak near x̄ = 1
coexisting with a broad peak at small values of x̄.
As time proceeds, the weight of the distribution
shifts to the peak at small values of x̄, since in this
case selection is not sufficiently strong to favor the
peak near x̄ = 1 and parasites eventually take over.

FIG. 4. Evolution of the distributions of ribozyme
fraction x̄(n,m) before and after selection at different
times. The chosen times are shown as red circles in
the lower right panel, which represents the evolution
of the average fraction x as a function of the number
of selection rounds.

In conclusion, we captured the behavior of tran-
sient compartmentalization with a model contain-
ing only two parameters, which remarkably suffices
to capture the main features of the transient com-
partimentalization experiment [17]. The model
predictions are summarized in a phase diagram,
which has been derived for an arbitrary selection
function.

Given its basic ingredients, the competition be-
tween a host and its parasite, and the diversity
generated by small size compartments, which is re-
quired for selection to be efficient [22], the model
has broad applicability. It is relevant for phage-
bacteria ecology problems, since phages experience
a similar life cycle of transient replication in cellu-
lar compartments during infection [23]. More gen-
erally it is relevant for the issue of cooperation be-
tween producers and non-producers [24].

Our work also shows that selection is able to
purge the parasites even when compartments are
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transient. Examples of transient compartments
are protocells with [13] or without membranes [9]
and rock pores [25], which have all been consid-
ered in scenarios for the origins of life. The fact
that selection here occurs at the group level while
heredity is carried out by replicating molecules at a
different molecular level underlines the importance
of multilevel selection in order to explain major

evolutionary transitions [26].
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E. Szathmáry, and A. D. Griffiths, Science 354,
1293 (2016).

[18] D. S. Wilson, Proc. Natl. Acad. Sci. USA 72, 143
(1975).

[19] See Supplemental Material for the determination
of the parameter Λ from the data of ref. [14], a
discussion of a stochastic version of the present
model and of other details concerning the phase
diagram.

[20] S. Spiegelman, I. Haruna, I. B. Holland, G. Beau-
dreau, and D. Mills, Proc. Natl. Acad. Sci. USA
54, 919 (1965).

[21] A. S. Zadorin and Y. Rondelez, ArXiv e-prints
(2017), arXiv:1707.07461 [q-bio.PE] .

[22] R. Fisher, The Genetical Theory of Natural Selec-
tion (Clarendon Press, Oxford, 1930).

[23] K. Sneppen, Models of life (Cambridge University
Press, 2014).

[24] J. S. Chuang, O. Rivoire, and S. Leibler, Science
323, 272 (2009).

[25] M. Kreysing, L. Keil, S. Lanzmich, and D. Braun,
Nature chemistry 7, 203 (2015).

[26] N. Takeuchi, P. Hogeweg, and K. Kaneko, Nature
Communications 8, 250 (2017).

http://dx.doi.org/10.3390/life5010872
http://dx.doi.org/ 10.1073/pnas.0609592104
http://dx.doi.org/ 10.1073/pnas.0609592104
http://arxiv.org/abs/1707.07461

	Selection dynamics in transient compartmentalization
	Abstract
	References


