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Abstract Octupolar tensors are third order, completely symmetric and traceless tensors.
Whereas in 2D an octupolar tensor has the same symmetries as an equilateral triangle and
can ultimately be identified with a vector in the plane, the symmetries that it enjoys in 3D are
quite different, and only exceptionally reduce to those of a regular tetrahedron. By use of the
octupolar potential, that is, the cubic form associated on the unit sphere with an octupolar
tensor, we shall classify all inequivalent octupolar symmetries. This is a mathematical study
which also reviews and incorporates some previous, less systematic attempts.

Keywords Order tensors · Phase transitions · Octupolar tensors · Generalized (nonlinear)
eigenvalues and eigenvectors

Mathematics Subject Classification 76A15 · 15A69

1 Introduction

It is well known that the Landau theory of phase transitions [21–23, 31, 43] describes the
states of matter in the vicinity of a critical point in terms of an order parameter; in the
simplest cases this is a scalar quantity, but it can be a vector, or more generally a tensor of
any order.

In fact, in the case of liquid crystals it is rather common to describe their state in terms
of a second order tensor [15, 16, 47]. More recently, it became apparent that certain mate-
rials displaying tetrahedral nematic phases [11, 12] are better described in terms of a third
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order tensor A—more precisely, a fully symmetric and completely traceless one (see below
for definitions). We stress that it is conceivable, even probable, that order parameters de-
scribed by still higher order tensors will be needed in considering generalized liquid crystals
[25–27].

This is precisely what is meant in this paper by an octupolar tensor: a third order, fully
symmetric and completely traceless tensor. Although, as also shown below, octupolar ten-
sors feature in many branches of physics, we shall systematically use the paradigm of the
Landau theory of phase transitions to illustrate the physical significance of our study. The
reader is advised from the start that this is but one of many incarnations of our mathematical
theory, which is concerned with the symmetries of the most general octupolar tensor in three
space dimensions.

One of us provided a complete description of the physics of a material represented by
an octupolar tensor in the two dimensional case [48]. In this case, one obtains a remarkably
simple description, and the physical state is basically identified by the orientation of an
equilateral triangle in the order parameter space.

Unfortunately, such a simple description is peculiar to the 2D case, and as soon as we
pass to consider a three-dimensional situation things become much more involved. In a
recent contribution [14], we have studied this situation, providing a representation of the
physics described by an octupolar tensor in three dimensions; this study also showed an
unexpected feature awaiting experimental confirmation, i.e., the existence—together with
higher symmetric special phases—of two different generic phases; the interface between
these has been investigated in detail in a subsequent work [6].

In our efforts to classify all symmetries of an octupolar tensor A a prominent role is
played by the appropriate notion of eigenvalues and eigenvectors applicable for A. In mul-
tilinear algebra, such a notion is not as univocally defined as one might naively think. For
real-valued tensors that bear a physical meaning, as the ones we are interested in, the is-
sue arises as to whether complex eigenvalues, which would perfectly be allowed accord-
ing to certain definitions, should be admitted or not. The definition of eigenvalues (and
associated eigenvectors) that we adopt in this paper is essentially the one put forward in
[32–34] (see also the recent book [35], especially Chap. 7, which is specifically concerned
with octupolar tensors and their mechanical applications). However, we give an equiva-
lent characterization of this notion in terms of the critical points of a cubic polynomial
defined over the unit sphere S2. This is indeed the natural extension of what one learns
from the lucid (and now rare) book of Noll [30]. In Sect. 84, the maximum and minimum
of the spectrum of a symmetric, second order tensor S in a n-dimensional space are char-
acterized as the corresponding extrema of the quadratic form associated with S on the unit
sphere Sn−1. Noll’s book was published in 1987, but its contents were available many years
back.1

In our previous work [14] we focused on the physics of the problem, and in particular
of its generic phases—discovering an unexpected phenomenon, i.e., the existence of two
generic (octupolar) phases, hence the possibility of an intra-octupolar phase transition (see
also [6] for details on this)—providing little mathematical detail; the purpose of the present
paper is twofold:

1In the Introduction to [30] (p. IX), we read:

About 25 years ago I started to write notes for a course for seniors and beginning graduate students at
Carnegie Institute of Technology (renamed Carnegie-Mellon University in 1968). At first, the course
was entitled “Tensor Analysis”. [. . . ] The notes were rewritten several times. They were widely dis-
tributed and they served as the basis for appendices to the books [9] and [44].
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(a) On the one hand, we want to give a full account of the mathematical details needed for
the study of such a problem. We trust that—beside the interest per se—this will also be
relevant to systems described by higher order tensors [25–27].

(b) On the other hand, also thanks to this higher mathematical detail provided here, we want
to discuss in more detail the non-generic phases (and the transitions between these), thus
completing the physical description provided in previous work [6, 14].

The plan of the paper is as follows. In Sect. 2 we present the physical motivation of our
work; in Sect. 3 we discuss the general features of a prototypical Landau potential, which
will be referred to as the octupolar potential, for short. As this potential is based on oc-
tupolar tensors in three spatial dimensions, the subsequent Sect. 4 is devoted to study these
objects and their eigenvectors. We can then pass, in Sect. 5, to study the general octupolar
potential; this depends a priori on seven parameters, but by a suitable choice of reference
frame and of the potential scale—as discussed in Sect. 5—we can reduce to study a problem
depending only on three parameters; the allowed parameters are described by a cylinder in
parameter space. It turns out that this potential and its critical points bear some relation to
the tetrahedral group; Sect. 6 is thus devoted to recalling some basic facts about this. We
can then pass to study the extremals of the Landau potential; these depend of course on
the parameters and different regions in the allowed cylinder in parameter space correspond
actually to different symmetries (phases) for the potential and its critical set, as discussed in
detail in Sect. 7 and its subsections, each devoted to one of these phases. Finally in Sect. 8
we review and summarize our findings, with special emphasis on the distribution in param-
eter space of the critical points of the octupolar potential. In the final Sect. 9 we draw our
conclusions. The paper is completed by an appendix with details on the tetrahedral group
beyond the brief discussion of Sect. 6.

Whenever indices are needed, summation over repeated pairs will be routinely under-
stood, unless explicitly stated otherwise.

2 Physical Motivation

Octupolar tensors have many manifestations in physics. In this section, we shall review a
few of them, ranging from the most classical to the most innovative ones.

Among the former is Buckingham’s formula [4] for the probability density � of the dis-
tribution of a molecular director � over the unit sphere S2, which can be written as

�(�) = 1

4π

(
1 +

∞∑
k=1

(2k + 1)!!
k! 〈 �⊗k 〉� · �⊗k

)
, (2.1)

where, for a generic vector x, x⊗k is the kth order tensor defined as in [45] by

x⊗k = x ⊗ · · · ⊗ x (2.2)

(with k factors, of course), · denotes tensor contraction, and 〈 P 〉� is the multipole average,

〈 P 〉� := 1

4π

∫
S2

〈 P 〉�(�)d�, (2.3)

of the symmetric, traceless part P of a tensor P.
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With this notation, our octupolar order tensor A is identified with

A = 〈 � ⊗ � ⊗ � 〉�. (2.4)

Passing to spherical coordinates, and writing � as

� = sinϑ cosϕe1 + sinϑ sinϕe2 + cosϑe3, (2.5)

we easily express the scalar parameters that represent A in the Cartesian frame (e1, e2, e3)

in terms of multipole averages, which also reveal the bounds they are subject to [14].
In nonlinear optics (see, for example Sect. 1.5 of [3], and also [54] and [18]), higher order

susceptibilities tensors, often called hypersusceptibilities (and also hyperpolarizabilities),
are introduced to decompose the electromagnetic energy density in multipoles. In particular,
the cubic term has the general form

U(2) = χ
(2)
ijkFiFjFk, (2.6)

where Fi are the components of an external field and χ
(2)
ijk are the components of the first

hypersusceptibility tensor χ (2), which is a third order tensor.2

When the frequencies of the applied fields are much smaller than the resonance fre-
quency, χ (2) can safely be assumed to be independent of frequencies and fully symmetric
in all its indices. Though this symmetry, which is often called Kleinman’s symmetry after
the name of the author who first introduced it [20], has been widely criticized [10] and also
found in disagreement with some computational schemes [53], it is still often accepted as an
approximation for its simplicity. Assuming Kleinman’s symmetry to be valid, we can extract

an octupolar tensor A = χ (2) out of χ (2) and rewrite the latter in the equivalent form

χ
(2)
ijk = Aijk + 1

5

(
χ

(2)
i δjk + χ

(2)
j δki + χ

(2)
k δij

)
, (2.7)

where χ
(2)
k := χ

(2)
iik = χ

(2)
iki = χ

(2)
kii . Using (2.7) in (2.6), we also write

U(2) = AijkFiFjFk + 3

5
F 2χ

(2)
i Fi, (2.8)

where F is the strength of the applied field. Normalizing F to unity, U(2) becomes the sum
of an octupolar and a dipolar potential, the latter of which contributes to a lower multipole.

A third order tensor very similar to χ (2) was introduced in [28] to describe the ordering of
bent-core molecules that possess liquid crystal phases. As also recalled in [6], the theory of

bent-core liquid crystal phases features a mesoscopic third order tensor derived from α(3) ;
here α(3) is the molecular structural tensor defined by

α(3) :=
N∑

μ=1

mμrμ ⊗ rμ ⊗ rμ, (2.9)

2The superscript (2) reminds us that this tensor expresses the field induced by polarization as a quadratic
function of the external field, whereas the ordinary susceptibility establishes a linear relationship between the
two fields.



The Symmetries of Octupolar Tensors

where the sum is extended to all the atoms in a constituent molecule, mμ is the mass of
each individual atom and rμ is its position vector relative to the molecule’s center of mass.

The ensemble average A = 〈 α(3) 〉 is an octupolar tensor that plays an important role in
classifying all possible new phases that bent-core liquid crystals are allowed to exhibit.
They have been collectedly called tetrahedral by a symmetry that A can indeed enjoy, but
our study has shown to be only too special, rather than generic.

Lately, octupolar tensors have also become popular with the classical elastic theory of
nematic liquid crystals (both passive and active). The nematic director field n represents
at the macroscopic scale the average orientation of the elongated molecules that constitute
the medium. Elastic distortions of n are measured locally by its spatial gradient ∇n, which
may become singular at certain points in space in response to external distorting stimuli.
These are the defects of n, where molecular order is degraded; they can be classified into
distinct topological classes, associated in 2D with the winding number m of n around a
point defect (m, which is often referred to as the topological charge, is half an integer; more
information about defects in liquid crystals and their topological charges can be obtained
from the monographs [40] and [47]).

It has recently been proposed [49] that a vector be associated with a point defect in 2D
to represent the average direction along which the field n is fluted away from the defect. It
is believed that such a vector could play a role in describing the interaction of defects, as if
they were oriented particles interacting like vessels in a viscous sea. If this image is indeed
suggestive for the charge m = 1

2 , when the integral lines of n around the defect resemble
a flame, associating a single direction with a defect with charge m = − 1

2 seems somehow
troublesome at first sight, as in that case the integral lines of n escape along three directions,
ideally separating the plane in three equal sectors. To overcome this difficulty, it has been
proposed in [42] to describe the orientation of a − 1

2 defect through the octupolar tensor

A = 〈 ∇n ⊗ n 〉, (2.10)

where the average 〈· · ·〉 is now meant to be computed on a sufficiently small neighborhood
surrounding the defect. As shown in [48], any octupolar tensor A in 2D possesses the sym-
metries of an equilateral triangle, and its most general representation is given by

A = α e ⊗ e ⊗ e , (2.11)

where α is a scalar and e is a unit vector in the plane. Thus, in 2D, A effectively reduces
to a vector and both approaches in [49] and [42] are equivalent. However, as shown in [14],
in 3D A cannot in general be represented in terms of a single vector as in (2.11) and (2.10)
becomes a more versatile tool to describe the directions along which the integral lines of
n are fluted around a point defect. In particular, it might be interesting to compute A in
(2.10) for the combed defects described in [38] and their distortions possibly due to the
interaction with other point defects nearby (see also [39]). The complete classification of
the symmetries enjoyed by A, which we give in this paper, may supplement the topological
classification of defects by providing extra synthetic information on the qualitative features
of the director field surrounding the defect.

3 Octupolar Potential

We will work in three-dimensional space, with standard coordinates (x1, x2, x3) for x in a
Cartesian frame (e1, e2, e3). In the theory we are interested in, the octupolar potential Φ(x)
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is described by a three-dimensional third order tensor3 A via

Φ = Aijkxixj xk; (3.1)

the physical states will be described by minima of this function. In view of the homogeneity
of Φ , it is not restrictive to look for extrema of Φ constrained to the unit sphere S2 ⊂ R3.

The third order tensor A has some additional properties:

1. A is completely symmetric; in terms of the components of A, this means Aijk = Aπ(ijk),
with π any permutation;

2. A is completely traceless, i.e., Aiik = Aiki = Akii = 0 for any k.

Since Φ is homogeneous of odd degree, we always have

Φ(−x) = −Φ(x). (3.2)

This also implies that if x0 is a minimum of Φ , then −x0 is a maximum, and conversely; on
the other hand, if x0 is saddle point with p unstable directions, then −x0 is again a saddle
point, albeit with p stable directions (and hence p̃ = 3 − p unstable ones).

This means that we can equivalently describe the system in terms of maxima of Φ (this
amounts to changing a global sign); this is more convenient in graphical terms, and we will
thus adhere to this convention.

3.1 Extrema, Eigenvectors, Ray Solutions

We thus have to maximize (or minimize) Φ(x) given by (3.1) subject to the constraint
|x| = 1. This can be obtained in two ways:

(a) by augmenting Φ to a function

Φλ(x) := Φ(x) − 1

2
λ
(|x|2 − 1

)
, (3.3)

where λ is a Lagrange multiplier;
(b) or passing to spherical coordinates (r, ϕ,ϑ) and setting r = 1, thus obtaining a reduced

potential4 Ψ (ϕ,ϑ) : S2 → R.

We will mainly use the latter approach, but where convenient we also employ the former.5

The condition of constrained extremum results in requiring that (∇Φ)(x) is collinear
to x, i.e.,

(∇Φ)(x) = kλx. (3.4)

3More generally, we might consider potentials with contributions up to third order; thus we would have
the sum of a scalar part, a vector one, another part described by a second order tensor, and finally the one
described by the third order one. Here we focus on this last contribution, as the study of theories with scalar,
vector, or second order tensor order parameters is standard (in principle; obviously concrete applications can
present endless complications).
4As a general convention, we will denote the potentials in Cartesian coordinates by Φ (with several suffixes)
and those in spherical coordinates—which we always consider only for r = 1—by Ψ (again with correspond-
ing suffixes).
5It may be worth mentioning that (in particular, if we are satisfied with studying Φ on one hemisphere, which

is justified by (3.2)) a third option is present, i.e., setting z = ±
√

1 − x2 − y2 and considering Φ as a function
of x and y; these take value in the unit disk. This will be used in Sect. 5.3.
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We will look at this problem in terms of eigenvectors (and eigenvalues) of a higher order
tensor [5, 29, 32–34], see Sect. 3.3 below.

It should be noted that the same problem can be seen in a slightly different way. That is,
we can consider the associated dynamical system

dx
dt

= (∇Φ)(x), (3.5)

and search for ray solutions, i.e., solutions of the form

x(t) = α(t)x(0). (3.6)

This problem has been considered in the literature, and a number of results (in particular,
concerning the number of such solutions) are available [36, 37, 50]. These coincide with the
results obtained in terms of eigenvectors of higher order tensors [5, 29, 32–34].

In the following Sects. 3.2 and 3.3 we recall both kind of results. We stress that we
just want to report results present in the literature, but these should not be seen in terms of
priority.6

Unfortunately, as we will see, both approaches provide a complete answer in terms of
complex numbers, while we need results in the field of real numbers. The theorems to be
reported below do not specify how many of these ray solutions or equivalently eigenvectors,
and the associated eigenvalues, will be real (more or less in the same way as the fundamental
theorem of algebra does not say how many of the roots of a polynomial are real).

3.2 Ray Solutions of Homogeneous Dynamical Systems

We start by reporting the results obtained by Röhrl [37] for ray solutions of dynamical
systems in CN .

Proposition 1 Consider the dynamical system

ẋi = Bi(x), i = 1, . . . , q, (3.7)

with Bi homogeneous polynomials of degree p in x. If the coefficients of the polynomials
Bi are algebraically independent over the field of the rationals, then (3.7) fails to have a
critical point in the origin and has precisely

NR = pq − 1 (3.8)

ray solutions.

In the case of interest here we deal with three-dimensional systems, thus q = 3, and
homogeneous polynomials of degree two, as these result from considering the gradient of
Φ(x), thus p = 2. This yields 23 − 1 = 7 ray solutions. Each of these intersects the unit
sphere in two (antipodal) points, hence we get 14 critical points for our constrained varia-
tional problem.

It should also be stressed that, strictly speaking, Röhrl’s theorem holds under the con-
dition of algebraic independence of the coefficients Bi

jk in Bi = Bi
jkx

jxk ; this is a generic

6In fact, as pointed out by Walcher [51], this kind of results follow ultimately from the work of Bezout on
intersection theory dating back to the 18th century. See his paper [52] for details.
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property for general polynomials, but fails for symmetric ones. However one should note
that only the symmetrized sums Bi

jk +Bi
kj will play a role, hence one should understand that

the condition of algebraic independence refers to these;7 moreover, one should note that al-
gebraic independence is only a sufficient—but not necessary—condition in Röhrl’s theorem.

The reader is referred to the original contribution by Röhrl [37], or to [36, 50], for more
detail.

Remark 1 Note also that the Equivariant Branching Lemma [7, 8, 13, 46] gives information
about the existence and stability of solutions along such critical rays when we consider
theories depending on external parameters.

3.3 Eigenvalues and Eigenvectors for Higher Order Tensors

Determining eigenvalues and eigenvectors for a second order, symmetric tensor S in an n-
dimensional vector space V is a very classical problem in linear algebra and amounts to
solving the linear problem

Sv = λv; (3.9)

one can without loss of generality restrict to unit vectors,8 i.e., complement the problem
with the side condition

(v,v) = |v|2 = 1. (3.10)

The same problem is obtained if one looks for minimizers of a function Φ : Rn → R
which is a quadratic form defined by S, i.e., Φ = Sij xixj , with Sij = Sji , restricted to the
unit sphere Sn−1. In fact, in this case one introduces the Lagrange multiplier λ and considers
the extended (constrained) potential

Φλ = Φ − 1

2
λxixi, (3.11)

obtaining the same equation (3.9) as the critical point equation for the potential Φλ : Rn ×
R → R. It is well known (see, for example, Sect. 84 of [30]) that all eigenvalues of S are
real and bear a physical meaning.

It seems in many ways natural to consider the same problem in multilinear algebra, i.e.,
for higher order tensors. Quite surprisingly, not only very little is known in this respect,
but moreover the available results are rather recent [5, 29, 32–34]—albeit, as mentioned
above, older results dealing with algebraic analysis of differential equations and which can
be interpreted in this direction are available in the literature [36, 37, 50].

In this respect, it turns out that the problem we are interested in (that is, third order
symmetric traceless tensors in three dimensions) is precisely the simplest nontrivial and
non-degenerate class of tensors (the same problem in dimension two turns out to display
a rather special and in many ways degenerate behavior [48]), so we believe our results are
also of general interest, as they show the kind of—rather counterintuitive—behavior one can
meet in studying the eigenvalues problem in multilinear algebra.

7It should be noted that the “disappearance” of real critical points—w.r.t. the generic situation described by
Röhrl’s theorem—is related, at least in our model, to the appearance of a “monkey saddle” [14], i.e., of a
critical point with a non-generic index; see below for detail.
8In fact, if v is an eigenvector of M with eigenvalue λ, then for any number α 	= 0 also w = αv is an
eigenvector with the same eigenvalue λ.
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As well known, a tensor T of order k on V is a k-linear map,

T : V × · · · × V = V k → R; (3.12)

it is also well known that the algebra of completely symmetric tensors on Rn is isomorphic
to the algebra of polynomials in Rn.

By duality (3.12) also defines a (k − 1)-linear map, which we denote by T̂ (by a standard
abuse of notation, in the following we will also denote this by T ),

T̂ : V k−1 → V ; (3.13)

for second order tensors this is just the standard description of a matrix as a linear operator
in V . For third order tensors, this associates to T a quadratic map T̂ : V × V → V .

We say that v ∈ V is an eigenvector of T (with eigenvalue λ ∈ C) if

T̂ (v, . . . ,v) = λv. (3.14)

For second order tensors, this coincides with the standard definition of eigenvectors and
eigenvalues.

Remark 2 It should be stressed that for tensors of order k 	= 2, eigenvectors come in linear
spaces, but these do not share a common eigenvalue—that is, eigenvectors are well defined
but eigenvalues are not. In fact, if we consider multiples of the eigenvector v, i.e., w = αv
(with α 	= 0), we have

T̂ (w, . . .w) = T̂ (αv, . . . , αv) = αk−1T̂ (v, . . . ,v) = αk−1λv

= αk−2λ(αv) = αk−2λw. (3.15)

The situation is of course different if we require the eigenvectors to be of unit length, as this
requirement also uniquely determines the eigenvalue (up to a sign in case k is odd).

We (obviously) reach the same equation (3.14) if we consider the minimization of the
homogeneous function ΦT of degree k associated to the tensor T , i.e., of

ΦT := Ti1,...,ik x
i1 · · ·xik , (3.16)

constrained to the unit sphere |x| = 1. In fact, in this case one introduces the Lagrange
multiplier λ and the constraint term

−k

2
λxixi,

and minimization of

ΨT = ΦT − k

2
λxixi (3.17)

leads precisely to (3.14). It should be noted that, again, in this context one is only interested
in real solutions.

As well known, when one is properly taking into account multiplicities, a square matrix
in Rn always admits n algebraic eigenvalues. This is generalized by Proposition 2 below [5,
34] for arbitrary tensors of rank m over Cn. Note that for an eigenpair (λ,v) we have an
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(equivalent) eigenpair (tm−2λ, tv) for any t with |t | = 1 (if we are in Rn, only t = ±1 are
admissible); thus we should speak of equivalence classes of eigenpairs. The following result
is given in Cartwright & Sturmfels [5]; see also Qi [29, 32–34].

Proposition 2 If a tensor A of rank m ≥ 3 over Cn admits a finite number of equivalence
classes of eigenpairs, their number counted with multiplicity is

E(m,n) = (m − 1)n − 1

m − 2
=

n−1∑
j=0

(m − 1)j . (3.18)

For the case of interest here, i.e., m = 3, formula (3.18) provides

E(3, n) = 2n − 1, (3.19)

in agreement with Röhrl formula (3.8); in particular, we get

E(3,2) = 3, E(3,3) = 7. (3.20)

Note also that if we work in Rn, the number of eigenpairs is obtained simply by multi-
plying the number of equivalence classes by two; on the other hand, some of the eigenpairs
could be complex rather than real, so Proposition 2 only provides an upper bound on the
number of real critical points. Thus the maximal number of critical points for the con-
strained potential associated to a tensor of order three in two dimensions is six, i.e., three
pairs (as in [48]), in dimension three this number is fourteen (as in [14]), and in dimension
four it is thirty.

More detail about eigenvectors of higher order tensors is given in a paper by Walcher
[52] (whom we thank for discussing a preliminary version of this with us).

4 Octupolar Tensors in Dimension 3 and Their Eigenvalues

In the following we will be especially interested in completely symmetric tensors. In this
case, it is convenient to extract the trace terms. More precisely, one considers tensors all of
whose partial traces are zero.

We thus want to consider a fully symmetric and completely traceless tensor A with com-
ponents Aijk (all partial traces being zero). Taking into account the full symmetry and the
condition of zero partial traces, the only independent components are

A123 = α0;
A111 = α1, A222 = α2, A333 = α3; (4.1)

A122 = β1, A233 = β2, A311 = β3.

The partial trace condition gives

A133 = −(α1 + β1), A211 = −(α2 + β2), A322 = −(α3 + β3). (4.2)

The other components are immediately recovered by the tensor symmetry. The equations
A(x,x) = λx for eigenvectors and eigenvalues are then written as

2α0x2x3 + α1
(
x2

1 − x2
3

)− 2α2x1x2 + β1
(
x2

2 − x2
3

)− 2β2x1x2 + 2β3x1x3 = λx1;
2α0x3x1 + α2

(
x2

2 − x2
1

)− 2α3x2x3 + β2

(
x2

3 − x2
1

)− 2β3x2x3 + 2β1x1x2 = λx2;
2α0x1x2 + α3

(
x2

3 − x2
2

)− 2α1x3x1 + β3

(
x2

1 − x2
2

)− 2β1x3x1 + 2β2x3x2 = λx3.

(4.3)
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Remark 3 A general completely symmetric tensor would depend on ten parameters. Corre-
spondingly, the potential we will consider in Sect. 5 will depend on seven parameters (these
will then be reduced, see Sect. 5.2), while a generic potential homogeneous of order three
in three spatial dimension would depend on ten parameters.

Remark 4 By introducing the vectors

a =
⎛
⎝α1

α2

α3

⎞
⎠ , b =

⎛
⎝β1

β2

β3

⎞
⎠ , u =

⎛
⎝x1

x2

x3

⎞
⎠ , v

⎛
⎝x2x3

x1x3

x1x2

⎞
⎠ (4.4)

and the matrices

L =
⎛
⎜⎝

(x2
3 − x2

1 ) 2x1x2 0

0 (x2
1 − x2

2 ) 2x2x3

2x1x3 0 (x2
2 − x2

3 )

⎞
⎟⎠ ,

M =
⎛
⎜⎝

(x2
2 − x2

3 ) −2x1x2 2x1x3

2x1x2 (x2
3 − x2

1 ) −2x2x3

−2x1x3 2x2x3 (x2
1 − x2

2 )

⎞
⎟⎠ ,

(4.5)

Eqs. (4.3) are compactly rewritten as

Mb = La + λu − 2α0v. (4.6)

Provided det(L) 	= 0 and/or det(M) 	= 0 we can solve for a and/or for b; e.g., assuming
det(M) 	= 0 we have

b = M−1[La + λu − 2α0v]. (4.7)

It may be noted that there are special points on the unit sphere where both L and
M have zero determinant; these are the two poles (0,0,±1) together with (±1,0,0) and
(0,±1,0); and the four points (0,±1/

√
2,±1/

√
2) together with (±1/

√
2,0,±1/

√
2) and

(±1/
√

2,±1/
√

2,0).
This approach provides an expression for the value of the parameters (belonging to one

subset) which make a certain point x ∈ S2 a critical one for given values of the other parame-
ters; unfortunately, we are interested in the inverse—and natural—problem, i.e., determining
the critical points for a given (full) set of parameters. These relations can however be used
to check the correctness of computations and results.

5 Critical Points

5.1 General Potential and the Critical Point Equations

It follows from our discussion on the tensor A that the general (unconstrained) potential
(3.1) is thus written, using coordinates (x, y, z) rather than (x1, x2, x3) as we are from now
on working in three dimensions, as

Φ = 6α0xyz + α1x
(
x2 − 3z2

)+ α2y
(
y2 − 3x2

)+ α3z
(
z2 − 3y2

)
+ 3
[
β1x
(
y2 − z2

)+ β2y
(
z2 − x2

)+ β3z
(
x2 − y2

)]
. (5.1)
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Remark 5 This is obviously covariant under inversion (this implies that the potential can be
constant only if it is identically zero), i.e.,

Φ(−x,−y,−z) = −Φ(x,y, z). (5.2)

Actually this is just the consequence of having a homogeneous (of odd degree) potential.
This potential is also covariant under inversion of the parameters (which is a consequence
of its being homogeneous of degree one in these); including the dependence on parameters
in our notation we have

Φ(−x;p) = Φ(x;−p) = −Φ(x;p), (5.3)

where x = (x, y, z) and p = (α0;α1, α2, α3;β1, β2, β3) is the vector of parameters.

Remark 6 It follows from (5.2) that the average of Φ over the unit sphere is zero. This also
implies that (unless the potential is identically zero) the absolute maximum—or maxima in
case of degenerate ones—is necessarily positive.

Remark 7 The potential Φ is invariant under simultaneous identical permutations in the
triples (x, y, z), (α1, α2, α3) and (β1, β2, β3). This invariance does not extend to simultane-
ous general rotations in the same three-dimensional spaces.

We are actually interested in critical points for the potential constrained to the unit
sphere S2 (this constraint does not interfere with the symmetries mentioned in Remark 5
above). The constrained potential

Φλ := Φ + Φc (5.4)

is obtained by adding to Φ the constraint term

Φc := −3

2
λ
(
x2 + y2 + z2 − 1

); (5.5)

this breaks the covariance under spatial inversion, i.e., in general

Φλ(−x,−y,−z;λ) 	= −Φλ(x, y, z;λ). (5.6)

On the other hand, it is clear that if we also take into account the possibility of reversing λ,
we get

Φλ(−x,−y,−z;−λ) = −Φλ(x, y, z;λ). (5.7)

Since we shall only consider critical points of the potential, any constant term can be omit-
ted, and the constraint term can be written simply as

Φc = −3

2
λ
(
x2 + y2 + z2

)
. (5.8)

It is then immediate to obtain the equation for critical points of the constrained potential
Φλ, which are

2α0yz + α1
(
x2 − z2

)− 2α2xy + β1
(
y2 − z2

)− 2β2xy + 2β3xz = λx,

2α0zx + α2

(
y2 − x2

)− 2α3yz + β2

(
z2 − x2

)− 2β3yz + 2β1yx = λy, (5.9)

2α0xy + α3
(
z2 − y2

)− 2α1zx + β3
(
x2 − y2

)− 2β1zx + 2β2zy = λz.
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Remark 8 These equations are invariant—as it should be in view of (5.7)—under the trans-
formation

(x, y, z;λ) → (−x,−y,−z;−λ). (5.10)

If we also consider inversion in the parameters, denoting the critical point equations (5.9) as
E(x, λ,p) = 0 (with the same notation used in Remark 5 above), we have

E(−x;−λ;p) = E(x;λ;p),

E(x;−λ;−p) = E(x;λ;p), (5.11)

E(−x;−λ;−p) = −E(x;λ;p).

(Obviously the map E → −E leaves the equations E = 0 invariant as well.) Moreover they
are still covariant under the three simultaneous permutations mentioned in Remark 7 above.

The property (5.10) together with (5.2) guarantee that to each critical point x (with k

stable directions) is associated another critical point −x (with k unstable directions, and
hence k̃ = n − k stable ones, with n the space dimensionality; in our case n = 3). This also
means that it would suffice to consider one of the hemispheres.

Remark 9 As remarked above, the constrained potential reads

Φλ = Φ − 3

2
λ|x|2; (5.12)

the equations for critical points are

∇Φλ := ∇Φ − 3λx = 0. (5.13)

If we perform scalar product of (both members of) this equality with x, we get

(x · ∇Φ) = 3λ(x · x). (5.14)

Recalling now that Φ is homogeneous of degree three and that critical points of Φλ are
located, by construction, on the unit sphere |x|2 = 1, we obtain in the end that at critical
points we always have

λ = Φ. (5.15)

That is, there is a simple relation—actually, an identity—between eigenvalues and the value
of the potential at the critical point identified by the corresponding eigenvector.

5.2 Oriented Potential

The potential Φ in (5.1) depends on seven parameters; however, it is possible to simplify it
by choosing an adapted reference frame in R3, as we are now going to discuss.

If the potential Φ is not constant on the sphere (the potential is constant on S2 only if
all parameters are zero; we are obviously not interested in this case), it will have at least a
critical point and actually at least a maximum—and by symmetry, a minimum.

We will then choose the z axis so that one of the critical points is in (0,0,1); by trivial
computations, this requires to have

β1 = −α1, β2 = 0. (5.16)
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Remark 10 We can actually choose (0,0,1) to be a maximum; this will set further con-
straints, as discussed in a moment (in Sect. 5.3).

Moreover, we can still choose an orientation in the (x, y) plane; in fact (5.2) implies
that there is at least a point on the circle S1 ⊂ S2 identified by z = 0 in which Φ vanishes.
Thus we choose an orientation in the (x, y) plane by requiring that Φ(1,0,0) = 0. Again by
trivial computations this implies, recalling also the expression for β1 in (5.16),

α1 = 0, β1 = 0. (5.17)

In this way we obtain an “oriented” potential which depends only on the four parameters
α0, α2, α3, β3; this reads

Φor = 6α0xyz + α2

(
y2 − 3x2

)
y + α3

(
z2 − 3y2

)
z + 3β3

(
x2 − y2

)
z. (5.18)

From now on we will only deal with this oriented potential.

Remark 11 By orienting the potential we have disposed of the invariance under simultane-
ous permutations discussed in Remark 7 (see also below). On the other hand, the inversion
symmetries discussed in Remark 8 are obviously inherited by the oriented potential.

Remark 12 When we have several critical points, each of them can be chosen as the main
orienting one; this trivial remark may be used to simplify the discussion avoiding redun-
dance in some classification. In particular, in [14] (see in particular Sect. 5) an alternative
parametrization based on this remark is used and allows one to reduce the parameter space
from the cylinder to a part of it.

As we are working in the unit sphere, it is often convenient to use angular coordinates
(with r = 1); we will set

x = cosϑ1 cosϑ2,

y = cosϑ1 sinϑ2, (5.19)

z = sinϑ1;
with this choice of angular coordinates,

ϑ1 ∈ [−π/2,π/2], ϑ2 ∈ [−π,π], (5.20)

and the volume element becomes

dx ∧ dy ∧ dz = r2 cosϑ1dr ∧ dϑ2 ∧ dϑ1. (5.21)

Remark 13 It should be noted that this potential has generically (i.e., for generic9 values
of the parameters appearing in it) no invariance under subgroups of O(3); it retains the
covariance under inversion, which is described by

ϑ1 → −ϑ1, ϑ2 → −ϑ2

9In this paper, the adjective “generic” is given the meaning common in algebraic geometry, that is, it desig-
nates a property valid away from the roots of a polynomial in parameter space [5].
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in polar coordinates. Special invariance properties are possible, and will be studied, for
special values of the parameters

The critical point equations (5.9) (CPE) read now

2(α0yz − α2xy + β3xz) = λx,

2α0xz − α2

(
x2 − y2

)− 2(α3 + β3)yz = λy, (5.22)

2α0xy − α3

(
y2 − z2

)+ β3

(
x2 − y2

) = λz.

In (0,0,1) the first two are identically satisfied, while the third one yields

λN = α3, (5.23)

where λN is the eigenvalue corresponding to the eigenvector (0,0,1) identifying the North
Pole.10 Thus normalizing the potential by setting

α3 = 1, (5.24)

as we do in the following, is equivalent to setting λN = 1, i.e., to normalizing the “orienting”
eigenvalue. This will also correspond to normalizing the potential in the maximum located
at the North Pole. The oriented potential is then written as

Ψor = sin3 ϑ1 − α2 sin 3ϑ2 cos3 ϑ1 + 3

2
sinϑ1

[
(2β3 + 1) cos 2ϑ2 + 2α0 sin 2ϑ2 − 1

]
cos2 ϑ1.

(5.25)

Needless to say, the CPE are also obtained by considering the gradient of Ψor w.r.t. the
angular coordinates:11

3

2
cosϑ1

[(−1 + (1 + 2β3) cos 2ϑ2 + 2α0 sin 2ϑ2

)
cos2 ϑ1

− 2 sin2 ϑ1

(−2 + (1 + 2β3) cos 2ϑ2 + 2α0 sin 2ϑ2

)+ α2 sin 2ϑ1 sin 3ϑ2

]= 0,

3

2
cos2 ϑ1

[
sinϑ1

(
4α0 cos 2ϑ2 − 2(1 + 2β3) sin 2ϑ2

)− 2α2 cosϑ1 cos 3ϑ2
]= 0.

(5.26)

We obtain, in the end, a potential which depends on three parameters; this is still a substantial
problem, but much simpler than the initial one, depending on seven parameters.

5.3 The Maximum Condition

In the previous Sect. 5.2 we have implemented the requirement to have a critical point in the
North Pole (0,0,1), setting some conditions on the potential parameters. Our discussion,

10This means that we can rule out the possibility to have α3 = 0. In fact, even in the case this is a local
maximum at height zero, we can always—see Remark 6—choose the North Pole to be an absolute maximum,
and this is necessarily positive.
11In order to know the value for the corresponding λ, one needs to express the solution in Cartesian coordi-
nates and go back to (5.22); this is due to the fact that our change of coordinates was performed imposing
r = 1 and thus the constraint term, which represents the dynamical origin of λ, is absent in the angular
coordinates.
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however, did not enter into the nature of this critical point. This is what we will presently
do.

To distinguish between maxima, minima and saddles, we just have to compute the Hes-
sian of the constrained potential at its critical points. We need not consider the full potential
(5.1), but we can work directly on the oriented potential (5.18); moreover, we are mainly
interested in the critical point at the North Pole.

If we work in the northern hemisphere, the constraint condition can be implemented
simply by setting z =√1 − x2 − y2. In this way the oriented potential is rewritten as

ΦN = [6α0xy + 3β3

(
x2 − y2

)+ (1 − x2 − 4y2
)]√

1 − x2 − y2 + α2

(
y2 − 3x2

)
y. (5.27)

The Hessian at the North Pole is simply computed as12

HN =
(

∂2ΦN/∂x2 ∂2ΦN/∂x∂y

∂2ΦN/∂x∂y ∂2ΦN/∂y2

)
(0,0)

; (5.28)

with trivial computations we get

HN = 3

(
2β3 − 1 2α0

2α0 −(3 + 2β3)

)
. (5.29)

With the reparametrization13

α0 = ρ

2
cosχ, β3 = −1

2
+ ρ

2
sinχ, α2 = K, (5.30)

where

ρ ≥ 0, χ ∈ [−π,π ], K ∈ R, (5.31)

we have

HN = 3

(
ρ sinχ − 2 ρ cosχ

ρ cosχ −ρ sinχ − 2

)
, (5.32)

and its eigenvalues are

σ± = −3(2 ± ρ); (5.33)

thus we have a maximum in the North Pole if and only if

0 ≤ ρ ≤ 2. (5.34)

With (5.30), the oriented (and reparametrized) potential in (5.25) now reads as

Ψor = −K sin 3ϑ2 cos3 ϑ1 + 3

2
sinϑ1 cos2 ϑ1

[
ρ sin(χ + 2ϑ2) − 1

]+ sin3 ϑ1, (5.35)

12To compare the expressions worked out in this paper for the Hessian matrix of the octupolar potential with
those featuring in [14], the reader should heed that these differ by a scaling factor: the Hessian matrix here is
three times the Hessian matrix there.
13It should be noted that in our previous work [14] we have used a slightly different reparametrization, with
ρ instead of ρ/2. This accounts for the differences in many of the forthcoming formulas.
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Table 1 Combinations of extrema and saddle points allowed by the Hopf-Poincaré index constraints for
scalar potentials on a sphere S2 ⊂ R3, allowing only non-degenerate critical points. The last column indicates
if this is realized in our model; note that at bifurcations degenerate critical points can be present

M S 2N

(a) 1 0 2 no

(b) 2 1 6 no

(c) 3 2 10 yes

(d) 4 3 14 yes

and its analogue in Cartesian coordinates as

Φor = z3 − 3y2z + 3ρ cosχxyz + 3

2
(ρ sinχ − 1)

(
x2 − y2

)
z + Ky

(
y2 − 3x2

)
. (5.36)

The oriented octupolar potential, in either of its representations (5.35) or (5.36), will be the
founding stone of our future development.

Remark 14 It is immediately apparent from (5.35) that for K = 0 the oriented potential is
invariant under rotation by an angle π in ϑ2, i.e., for ϑ2 → ϑ2 ± π ; similarly, for ρ = 0
the oriented potential is invariant under rotation by an angle 2π/3 in ϑ2, i.e., for ϑ2 →
ϑ2 ± 2π/3. More generally, the potential is always invariant under a rotation by an angle
(2/3)nπ in ϑ2 accompanied by a rotation by an angle (2m + 4n/3)π in the parameter χ .

5.4 Critical Points and Index

The general results mentioned above (Propositions 1 and 2) show that generically we have
14 critical points (that is, 7 pairs of parity-conjugated ones); some of these could be complex,
thus not acceptable in the present context.

As we are mainly interested in maxima, it would be convenient to have further informa-
tion about the nature of these critical points. Such information can be obtained through the
use of Poincaré-Hopf index. To discuss this, we pass to consider the vector field

v = ∇Φ

|∇Φ| . (5.37)

Obviously critical points of Φ correspond to singularities for v, and to these singular points
we apply Poincaré-Hopf theory [41, pp. 239–247]. In fact, each (isolated) non-degenerate
singular point pk has an index ιk , which takes the value ιk = +1 if pk is a (local) maximum
or minimum, and ιk = −1 if pk is a saddle. The sum of the indices for all critical points must
equal the Euler characteristic of the two-sphere, i.e.,

∑
k

ιk = 2. (5.38)

In other words, if all critical points are non-degenerate and 2N is their number, 2M is the
number of maxima and minima (together) and 2S is the number of saddles, we must have
M + S = N and M − S = 1.

The different combinations allowed by these constraints are reported in Table 1.



G. Gaeta, E.G. Virga

Table 2 Combinations of extrema and saddle points allowed by the Hopf-Poincaré index constraints for
scalar potentials on a sphere S2 ⊂ R3, allowing regular critical points as well as finitely degenerate saddles
of index ι = −2,−3. The last column indicates if this is realized in our model; cases (c2) and (d3) will only
be realized at bifurcation points. We shall indeed encounter instances where the octupolar potential possesses
12 critical points, but these do not fall under case (d2) (see Remark 16)

M S1 S2 S3 2N

(a) 1 0 0 0 2 no
(b) 2 1 0 0 6 no

(c1) 3 2 0 0 10 yes
(c2) 3 0 1 0 8 yes

(d1) 4 3 0 0 14 yes
(d2) 4 1 1 0 12 no
(d3) 4 0 0 1 10 yes

Thus, if all eigenvalues are real (hence 2N = 14) and all critical points are isolated and
non-degenerate (which is not always the case, as we will see in our discussion), we will
have 4 maxima, 4 minima, and 6 saddles; parity conjugation relates maxima to minima, and
saddles to saddles.

In the following, we will meet this “expected” situation; but we will also meet the case
where there are only ten real eigenvalues (thus 2N = 10); in this case we will have 3 max-
ima, 3 minima and 4 saddles. Both these situations will be shown to be generic, but cases
(a) and (b) will never be met.

Remark 15 It should be mentioned that the transition between the generic cases (d) and
(c) is made possible by the occurrence of degenerate critical points (see also below); more
precisely, of “monkey saddles”, see [14]; these have index ι = −2, to be compared with the
index ι = −1 for ordinary saddles. Thus it appears possible that the non-appearance of the
“more degenerate” situations (a) and (b) is related to the fact that, due to the small degree
of the potential and to its symmetries (which, e.g., forbid Φ(x,y, z) = z3, leading to case
(a) above), there is no possibility for the appearance of “more degenerate” critical points,
with greater (in absolute value) index, which would be needed for the associate bifurcation
to take place.

In the above discussion, we have supposed that only non-degenerate critical points are
present. The index approach cannot give results in the case of infinitely-degenerate critical
points (e.g., if we have a line of critical points, as we will find in Sect. 7.3), but critical points
with a finite degeneration can also be present and can be taken into account. In our present
context, this concerns in particular the “monkey saddles” we will meet in Sect. 7.4, which
have index ι = −2. In principle, degenerate saddles with index ι = −3 could also be relevant
to our classification. If we denote the number of ordinary saddles by 2S1, that of monkey
saddles by 2S2, and the number of saddles with index −3 by 2S3, while still denoting by
2N = 2(M + S1 + S2 + S3) the number of critical points, the different possible situations—
all having total index ι = 2—are summarized in Table 2. It is perhaps worth noting that if we
classify the different cases just by the number of maxima, this gives the same classification
as before, albeit the same number of maxima can correspond to different numbers of saddles
and hence of critical points.

Remark 16 Both Tables 1 and 2 describe possible scenarios with increasing, but moderate
degrees of complexity. We have abstained from considering a type of critical points that
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may be added freely, as they do not affect the global constraint (5.38). These are critical
points with index ι = 0. The vector field v in (5.37) is still singular at these points, but it
can be continuously altered all around each of them so as to be made locally equivalent to
a uniform field. All such singularities of v then turn out to be removable. As will be shown
below (see Sect. 7.6), the octupolar potential can indeed exhibit critical points of this type,
albeit in rather special circumstances, which are not included in either of the above tables.

5.5 Symmetry of the Reduced Potential

As already mentioned, orienting the potential destroys the invariance under rotations (in the
x space and in the parameter space). However, the high degree of symmetry of the tensor
A makes that even the oriented potential has some remnant of this in the form of discrete
symmetries. These are better described by passing to the representation of Φor in polar
coordinates and with the reparametrization (5.30), i.e., in terms of Ψor , see (5.35).

It is easily checked that this is invariant under several discrete maps; as expected these
do not involve the ϑ1 angle, which is fixed by the requirement to have the North Pole as a
maximum. They do act on the other coordinate ϑ2 and on the parameters14 K,χ (the action
given below on the angles ϑ2 and χ are of course to be meant modulo 2π ):

γ1 : (ϑ2;K,ρ,χ) �→ (ϑ2 + π,−K,ρ,χ),

γ2 : (ϑ2;K,ρ,χ) �→ (−ϑ2,−K,ρ,−χ − π), (5.39)

γ3 : (ϑ2;K,ρ,χ) �→ (ϑ2 + 2π/3,K,ρ,χ + 2π/3).

The invariance under γ1 means that we can limit our study to the region with K ≥ 0,
which we will do. When taking into account the invariance under the three maps, we can
limit our study to the parameter region

K ≥ 0, χ0 ≤ χ ≤ χ0 + π

3
, (5.40)

for any given χ0. This can be handy in the study of the more complex situations.

6 The Tetrahedral Group

A special role in our discussion will be played by the tetrahedral group. Some notions about
it—and explicit features of its fundamental representation—are collected in the Appendix.
(The reader is referred to classical books [1, 17, 19, 24] for further detail.)

In this section we collect the main facts needed for our following discussion; in fact, the
potential—and in particular its maxima—are organized according to various subgroups of
the tetrahedral group, depending on the values assumed by the parameters.

We will denote by (gΦ)(x) = Φ(gx) the value of the potential computed at a transformed
point; here g is an element of the group, and this is identified with its representation (we
always use the defining representation discussed in detail in the Appendix; this agrees with
the orientation we have considered and singles out accordingly a reference tetrahedron).

14There are also maps acting on ρ by changing its sign and leaving the potential invariant; these are not
admitted as we have required ρ ∈ [0,2].
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The full tetrahedron group consists of ternary rotations around the main tetrahedral axes
(identified by vertices of the tetrahedron), of binary rotations around axes joining the middle
points of opposite tetrahedron edges, and by reflections through the planes identified by two
rotation axes.

Note also that we have considered an oriented potential. Thus we expect that in general,
only the subgroup of Td leaving the North Pole fixed (we will refer to these as oriented
subgroups) will be relevant. This is given by ternary rotations around the z axis, and by
reflections through the planes passing through the z axis; in the notations of the Appendix,
these are the elements {M1,M2,M3,M13,M14,M15}, where M1 is the identity I .

The nontrivial subgroups formed by these are the rotation group {M1,M2,M3} (no re-
flections); and the reflection groups {M1,M13}, {M1,M14}, {M1,M15}.

Actually, there are special values of the parameters such that gΦ = Φ for all elements of
the tetrahedron group. These are ρ = 0,K = ±√

2/2.
It will turn out that for each of the oriented subgroups mentioned above there are regions

in the parameter space where the potential admits these as symmetry groups; this will be
discussed in Sect. 7 below.

7 Classification of Symmetries

As mentioned above, we can always rescale the potential and adopt (5.24), thus setting
λ = 1 for the critical point at the North Pole. In such a way the potential scale is set by the
“principal eigenvalue”, the one which sets orientation, but is not necessarily the largest.

7.1 The Cylinder in Parameter Space

We have discussed above the limits to be set on the parameters in order to accommodate our
condition to have a maximum at the North Pole. These limits mean we have to investigate
a limited subset of the full parameter space. Having reduced the latter to (α0, α2, β3), by
(5.30), (5.31), and (5.34), we readily see that we can effectively confine our study to an
infinite cylinder C of unit radius and axis along the line α0 = 0, β3 = −1/2. In the equivalent
parameters (K,ρ,χ), which we shall hereafter turn to, C is identified by the combination
of (5.31) and (5.34), and its axis is the line ρ = 0. The discussion of Sect. 5.5 shows that we
do not actually have to study the full cylinder C; in particular, it would suffice to study the
half with K ≥ 0, which we denote as C+.

In Table 3 we distinguish several subsets in the unit cylinder C, i.e. its center C (K = 0,
ρ = 0), its axis A (ρ = 0), the disk D at K = 0, and the special points T on the axis at height
K = 1/

√
2, together with generic points in the bulk B of the cylinder. To each of these set

Table 3 Different subsets in the cylinder C

G parameters (α0, α2, β3) parameters (K,ρ) subset in C

(0) {e} bulk B
(1) D∞h α0 = α2 = 0;β3 = −1/2 K = ρ = 0 center C
(2) D2h α2 = 0 K = 0 disk D
(3) D3h α0 = 0, β3 = −1/2 ρ = 0 axis A
(4) Td α0 = 0, β3 = −1/2;α2 = ±1/

√
2 K = ±1/

√
2, ρ = 0 points T ∈ A
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Fig. 1 The potential Φ
(±)
T

on the unit sphere. Left: Φ
(+)
T

(i.e. K = 1/
√

2); right: Φ
(−)
T

(i.e. K = −1/
√

2).
The two cases are equivalent via a rotation by an angle (2n+ 1)π/3. The “spherical compass” on top of these
panels shows the orientation of the Cartesian frame shared by the polar plots of the octupolar potential in all
remaining panels below

will correspond a given invariance group for the potential. Further splitting of these regions
is also possible, as shown below. In particular, we will find that there are special planes P
in the bulk B with special symmetry properties, and that B has a richer structure than one
could think of at first.

We will now consider in detail the different cases, starting from the more symmetric
ones.

7.2 Tetrahedral Symmetry: Special Points T

For the points T , i.e., for ρ = 0 and K = ±1/
√

2, the potential in (5.36) reduces to

Φ
(±)
T = z3 − 3

2

(
x2 + y2

)
z ± 1√

2

(
y2 − 3x2

)
y. (7.1)

This is invariant under the full tetrahedron group (referred to the “standard” regular tetrahe-
dron; by this we mean the one complying with our orientation choices; see the Appendix);
note that for generic points on A (see the next subsection) we do not have tetrahedral invari-
ance, but only that under the D3h group.

Now the maxima (and hence the minima) are all non-degenerate, take the same value, and
their position are just at the vertices of the “standard” regular tetrahedron. This is depicted
in Fig. 1. All polar plots such as those in Fig. 1 are three-dimensional renderings of the
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Fig. 2 Contour plots of the potentials Ψ
(+)
T

(left) and Ψ
(−)
T

(right) on the plane (ϑ2, ϑ1); see (7.2). In these
plots, as in the others that follow, the brightest points represent the maxima of the potential, whereas the
darkest points represent the minima. One easily checks that there are indeed 14 critical points (two of them

at the poles). The symmetry properties of Ψ
(±)
T

are evident from this picture. The upper and lower border, at
ϑ1 = ±π/2, correspond to the North and South Poles, respectively. The two plots are coincident up to a shift
in ϑ2, in accord with the predicted invariance under γ1 in (5.39)

surface covered by the vector Φ(er )er as er = x/|x| spans the unit sphere S2. Since Φ(er ) =
−Φ(−er ), in all these plots the minima of Φ are invaginated underneath its maxima.

In angular coordinates, from (5.35) we have

Ψ
(±)
T = sin3 ϑ1 − 3

2
sinϑ1 cos2 ϑ1 ∓ 1√

2
sin 3ϑ1 cos3 ϑ1. (7.2)

See Fig. 2 for a contour plot of this function. All contour plots such as those in Fig. 2 are
on the plane (ϑ2, ϑ1), which develops the unit sphere S2 so that the upper side ϑ1 = π/2
corresponds to the North Pole and the lower side ϑ1 = −π/2 corresponds to the South Pole.

The potential is obviously invariant under shifts by (2/3)π in ϑ2, and the parameter
inversion K → −K is equivalent to an inversion or to a shift by π/3 in ϑ2; i.e.,

Ψ
(±)
T (ϑ1, ϑ2 + 2π/3) = Ψ

(±)
T (ϑ1, ϑ2), (7.3)

Ψ
(−)
T (ϑ1, ϑ2) = Ψ

(+)
T (ϑ1,−ϑ2) = Ψ

(−)
T (ϑ1, ϑ2 + π/3). (7.4)

These properties imply that it suffices to study one of the two cases, say Ψ
(+)
T ; from now on

we will just consider this, and refer to it simply as ΨT (and correspondingly for Φ
(+)
T and

ΦT ).
Eigenvalues and the corresponding critical points (i.e., normalized eigenvectors) for ΦT

are listed in Table 4 (recall that λ = Φ at critical points).

7.3 Symmetry D∞h: Center C

At the center C of the cylinder C, i.e. for K = ρ = 0, the potential in (5.36) is just

Φ∞ = z3 − 3

2

(
x2 + y2

)
z; (7.5)
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Table 4 Critical points for
tetrahedral symmetry; here
νm = arcsin(1/3),
νs = arcsin(1/

√
3)

n λ ϑ1 ϑ2 Ψ type

1 −1 −π/2 – −1 min

2 −1 −νm −π/2 −1 min

3 −1 −νm 5π/6 −1 min

4 −1 −νm π/6 −1 min

5 0 −νs −π/2 0 saddle

6 0 −νs 5π/6 0 saddle

7 0 −νs π/6 0 saddle

8 0 νs π/2 0 saddle

9 0 νs −5π/6 0 saddle

10 0 νs −π/6 0 saddle

11 1 νm π/2 1 max

12 1 νm 5π/6 1 max

13 1 νm −π/6 1 max

14 1 π/2 – 1 max

correspondingly, its variant in spherical coordinates (5.35) is

Ψ∞ = 1

8
(3 sinϑ1 − 5 sin 3ϑ1). (7.6)

The symmetry under rotations (about the z axis) is immediately apparent, as well as
the symmetry under reflection in any vertical plane. We thus have a D∞h symmetry. The
potential is also covariant under inversion in z,

Φ∞(x, y,−z) = −Φ∞(x, y, z). (7.7)

The critical point equations (5.9) are now

−3xz = λx,

−3yz = λy, (7.8)

3z2 − 3

2

(
x2 + y2

) = λz.

It follows immediately from the first two equations that the critical points not lying at the
poles of the sphere have λ = −3z. More precisely, inserting this into the third equation—and
recalling that x2 + y2 = 1 − z2—it turns out that for these we have

z = ±1/
√

5, λ = ∓3/
√

5. (7.9)

All points on this circle are (obviously, degenerate) critical points; the only non-degenerate
critical points are the maximum and the minimum in the North and South Poles.

We get of course the same result working in angular coordinates. From (7.6), we have
that the critical points are located in the North and South Poles (ϑ1 = ±π/2, value ±1);
and on the parallels with ϑ1 = ± arccos(2/

√
5)

.= ±0.46. In particular, we have a circle
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Fig. 3 The potential Ψ∞ depends only on ϑ1. (a) Plot of Ψ∞ as a function of ϑ1: we observe the (circle
of) maxima for ϑ1 = arcsin (−1/

√
5)

.= −0.46, and the (circle of) minima for ϑ1 = arcsin(1/
√

5). (b) The
potential Φ∞ as a “polar plot”: again we observe the (invaginated) circle of maxima at z = −1/

√
5, and the

circle of minima for z = 1/
√

5

of degenerate minima (value −1/
√

5) for ϑ1 = arccos(2/
√

5), and a circle of degenerate
maxima (value 1/

√
5) for ϑ1 = − arccos(2/

√
5).

The critical points are all non-degenerate modulo the degeneration enforced by the SO(2)
symmetry (this also requires one of the eigenvalues of the Hessian to be zero). Critical points
at the poles have an Hessian with nontrivial eigenvalue σ0 = ±6; those on the circles have
an Hessian with nontrivial eigenvalue σ1 = ±12/

√
5. This case is depicted in Fig. 3.

7.4 Symmetry D3h: The Axis A

On the axis A of the cylinder (i.e. for ρ = 0), the potential in (5.36) reads

Φ3 = Ky
(
y2 − 3x2

)+ z

(
z2 − 3

2

(
x2 + y2

))
, (7.10)

and the potential expressed in (5.35) in angular coordinates is

Ψ3 = sin3 ϑ1 − K cos3 ϑ1 sin 3ϑ2 − 3

2
cos2 ϑ1 sinϑ1. (7.11)

Of course, we need only consider points different from the special points C and T considered
before. Here K ≥ 0 is a free parameter. Graphical illustrations of both Φ3 and Ψ3 are shown
in Figs. 4 and 5.

The potential is invariant under the inversion x → −x and under rotations by 2π/3
around the z axis (i.e. shift by 2π/3 in ϑ2); thus it would suffice to study the potential
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Fig. 4 Polar plots of the potential Φ3 for different values of the parameter K . For low K the maximum in
the North Pole is the highest, while for higher K it becomes smaller than the three symmetric maxima in the
southern hemisphere

in the sector 0 ≤ ϑ2 ≤ 2π/3; that is, its symmetry group is fully described by the matrices

⎛
⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎠ ,

⎛
⎜⎜⎝

− 1
2 −

√
3

2 0
√

3
2 − 1

2 0

0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

− 1
2

√
3

2 0

−
√

3
2 − 1

2 0

0 0 1

⎞
⎟⎟⎠ ;

⎛
⎜⎝

−1 0 0

0 1 0

0 0 1

⎞
⎟⎠ ,

⎛
⎜⎜⎝

1
2 −

√
3

2 0

−
√

3
2 − 1

2 0

0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1
2

√
3

2 0
√

3
2 − 1

2 0

0 0 1

⎞
⎟⎟⎠ .

(7.12)

The potential is of course also covariant under inversion,

Φ3(−ϑ1,−ϑ2) = −Φ3(ϑ1, ϑ2), (7.13)
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Fig. 5 The same as in Fig. 4 but with contour plots. Note again that for low K the maximum in the North
Pole is the highest, while for higher K it becomes smaller than the three symmetric maxima in the southern
hemisphere

which corresponds to (x, y, z) → (−x,−y,−z); thus it suffices to consider ϑ1 > 0 (i.e., the
northern hemisphere, as we already know from general discussion).

The critical point equations are now

cosϑ1
(
cos2 ϑ1 − 4 sin2 ϑ1 − K sin 2ϑ1 sin 3ϑ2

)= 0,

K cos3 ϑ1 cos 3ϑ2 = 0.
(7.14)

The second of these implies that critical points are either at the poles, with ϑ1 = ±π/2 (there
is of course a maximum, value Φ3 = 1, at the North Pole; and a minimum, value Φ3 = −1,
at the South Pole), or on the meridians identified by

ϑ2 = ±π

6
,±π

2
,±5π

6
. (7.15)

As ϑ2 enters the equations only through terms 3ϑ2, it is obvious that cases with ϑ2 differing
by 2π/3 are equivalent (so the cases ϑ2 = −π/2,+π/6,+5π/6 are equivalent to each other,
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and so are the cases ϑ2 = −5π/6,−π/6,π/2); it thus suffices to consider ϑ2 = ±π/6,
which yields sin 3ϑ2 = ±1. With this choice for ϑ2, the first of (7.14) reads

cosϑ1(3 − 5 cos 2ϑ1 ± 2K sin 2ϑ1) = 0. (7.16)

Assuming ϑ1 	= ±π/2, this further reduces to

cos2 ϑ1 − 4 sin2 ϑ1 ∓ 2K sinϑ1 cosϑ1 = 0. (7.17)

Writing η = tanϑ1, and taking off an overall factor cos2 ϑ1 	= 0, this reads

1 − 4η2 ∓ 2Kη = 0. (7.18)

Thus for ϑ2 = −5π/6,−π/6,π/2 we get

η−
± = −K

4

(
1 ±

√
1 + 4/K2

)
, (7.19)

while for ϑ2 = −π/2,π/6,5π/6 we get

η+
± = K

4

(
1 ±

√
1 + 4/K2

)
. (7.20)

This means that we have in total twelve nontrivial critical points, i.e., fourteen counting also
those at the poles. We know (see Sect. 5.4) that four of these will be maxima, other four will
be minima, and the remaining six will be saddles.

Recalling that −π/2 < ϑ1 < π/2, one then easily shows that critical points can be repre-
sented as ϑ1 = ξ±

± , where

ξ+
± = arcsin

(
η+

±/

√
1 + (η+

±
)2)

, ξ−
± = arcsin

(
η−

±/

√
1 + (η−

±
)2)

. (7.21)

To characterize the nature of critical points, we can either consider the potential on the
meridians (7.15) and on the parallels identified by (7.21) (with the aid of (7.19) and (7.20));
or study the eigenvalues of the Hessian at these critical points. In fact, the eigenvalues of the
Hessian on ϑ2 = π/6 (and equivalent meridians) are

Λ+ =
{

9K cos3 ϑ1,
3

8
(2K cosϑ1 + 6K cos 3ϑ1 − sinϑ1 + 15 sin 3ϑ1)

}
, (7.22)

while those on ϑ2 = −π/6 (and equivalent meridians) are

Λ− =
{
−9K cos3 ϑ1,−3

8
(2K cosϑ1 + 6K cos 3ϑ1 + sinϑ1 − 15 sin 3ϑ1)

}
. (7.23)

Recalling that cosϑ1 > 0 and K > 0, which fixes the sign of the first eigenvalue in both
cases, we see that on ϑ2 = π/6 (and equivalent meridians) we can only have saddles or
minima, and on ϑ2 = −π/6 (and equivalent meridians) we can only have maxima or saddles.

The above formulas (7.22), (7.23) also allow us to compute explicitly the eigenvalues at
critical points, and hence the nature of these. The results are summarized in Table 5 (which
also includes the critical points at the poles, considered as trivial in the previous discussion);
we stress that there is no change of stability as K is varied, as follows from (7.22), (7.23).
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Table 5 Critical points for the
case D3h . The relation prescribed
by Eq. (5.15) are satisfied, hence
λ is not displayed. The shorthand
notation (7.24) is used

n ϑ1 ϑ2 Ψ type

1 −π/2 – −1 min

2 −τ− −π/2 −ζ− min

3 −τ− π/6 −ζ− min

4 −τ− 5π/6 −ζ− min

5 −τ+ −π/2 −ζ+ saddle

6 −τ+ π/6 −ζ+ saddle

7 −τ+ 5π/6 −ζ+ saddle

8 τ+ −5π/6 ζ+ saddle

9 τ+ −π/6 ζ+ saddle

10 τ+ π/2 ζ+ saddle

11 τ− −5π/6 ζ− max

12 τ− −π/6 ζ− max

13 τ− π/2 ζ− max

14 π/2 – 1 max

To improve readability of Table 5, we have used the shorthand notations

q± := [10 + K2 ± K
√

4 + K2
]−1

,

τ± := arcsin

(
κ±q±

2

)
, (7.24)

ζ± :=
√

2q3±
[
K3 ± K2

√
4 + K2 + 13K ∓ 5

√
4 + K2

]
.

Remark 17 We note that the value of the potential at the non-orienting maxima—i.e., at the
critical points 11, 12, and 13 in Table 5, is in explicit terms

ζ− =
√

2(K3 − √
K2 + 4K2 + 13K + 5

√
K2 + 4)

(K2 − √
K2 + 4K + 10)3/2

; (7.25)

it is a simple matter to check that this is always (positive and) increasing with K , and that
ζ− = 1 for K = K0 := √

2/2
.= 0.71. Thus, these are secondary maxima for K < K0, and

become absolute maxima for K > K0. We thus have a “global bifurcation” between the
phases D+

3h and D−
3h taking place at K = K0. For this value of K , the value taken by the

potential at the saddle points 5–10 in Table 5 is ζ+ = 0. It should also be noted that ζ+ is
always increasing with K .

Remark 18 Let us focus on the maxima. In those other than the North Pole, we have Φ =
ΦM and λ = λM . These are smaller than the corresponding quantities for the maximum in the
North Pole for K < K0, and greater than those for K > K0. In other words, albeit at K = K0

there is no local bifurcation, we have a rearrangement of the maxima and saddles in terms of
their ordering according to value of the potential. When choosing the orienting maximum,
we could also choose it in such a way that it should always be the largest; this means that
the case with K > K0 necessarily corresponds to a case present with other values of the
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parameters, in which the orienting maximum is the largest. Such a choice would break the
D3h symmetry around the orienting axis, and we would be left with a D2h symmetry around
the new orienting axis.

Remark 19 Inverting the relation between K and λ, we can express K in terms of λ; simi-
larly, we can invert the relation between K and ϑ1. Eliminating K from these two equations
according to the two variants in (7.21), they provide the corresponding (not too simple) re-
lations linking λS and λM with ϑ1, for saddles and maxima, respectively; more precisely, we
have

λS = 1

2

2 − 3 cos2 ϑ1

sinϑ1
, λM = 8 − 9 cos2 ϑ1

cosϑ1

√
16 − 15 cos2 ϑ1

. (7.26)

7.4.1 Symmetry Breaking: From D∞h to D3h

It is interesting to consider the situation in the D3h phase for values of K near zero; in other
words, to consider the symmetry breaking from D∞h (case K = 0, the center of the disk D)
to D3h.

We will write K = ε and work at first order in ε. With this, we obtain easily

cosϑ1 = 10 + ε

5
√

5
; (7.27)

in the same way we also get

λM = 15 + 24ε

5
√

5
. (7.28)

In particular, denoting by a “0” the limit for K → 0, we have

λM − λ0
M

cosϑ1 − cosϑ0
1

= 24 + O(ε). (7.29)

7.4.2 Symmetry Breaking: From Td to D3h

We can also consider the symmetry breaking from the tetrahedral phase to D3h. In this case
we will write K = K0 + ε and work again at first order in ε. Now we get

cosϑ1 = 2
√

2

3
+ 4

81
ε, λM = 3 + 16

√
2

9
ε. (7.30)

Thus in this case, denoting now by a superscript T the tetrahedral limit, we have

λM − λT

cosϑ1 − cosϑT
1

= 36
√

2 + O(ε). (7.31)

7.5 Symmetry D2h: The Disk D

On the disk D identified by K = 0 (with ρ 	= 0, or we would be at the center C and in case
D∞h considered above), we have a symmetry D2h. In fact, the potential in (5.36) reduces to

Φ2 = z3 − 3y2z + 3ρ cosχxyz + 3

2
(ρ sinχ − 1)

(
x2 − y2

)
z, (7.32)
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Fig. 6 The potential Φ2 for χ = 0 and different values of the parameter ρ

and similarly its counterpart in angular coordinates is readily obtained from (5.35) as

Ψ2 = sinϑ1

[
sin2 ϑ1 + 3

2
cos2 ϑ1

(
ρ sin(χ + 2ϑ2) − 1

)]
. (7.33)

Graphical illustrations for both Φ2 and Ψ2 in the styles introduced above are provided in
Figs. 6, 7, and 8.

Remark 20 It is clear from this expression that a shift in χ corresponds to a shift (of half the
amplitude) in ϑ2; see also Fig. 9 for a visual demonstration.
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Fig. 7 Contour plot of the potential Ψ2 for χ = 0 and for various values of ρ > 0. There always are three
maxima, three minima and four saddles; for ρ = 1.0, pairs of saddles originally one on top of the other collide
and re-emerge side to side. See Fig. 8 for more details

Remark 21 It is also apparent from (7.33) that Ψ2 is identically zero on the Equator ϑ1 = 0
(i.e., Φ2 is identically zero for z = 0); this implies that any critical point lying on the Equator
will necessarily be non-hyperbolic, hence degenerate.
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Fig. 8 Contour plot of the potential Ψ2 in the region where the saddle/saddle bifurcation takes place (here
ϑ1 ∈ [−π/5,π/5], ϑ2 ∈ [π/4 − π/5,π/4 + π/5]) for χ = 0 and for various values of ρ. We observe the
saddle/saddle bifurcation taking place; in this a pair of saddles originally one on top of the other collide (at
ρ = 1.0) and re-emerge side to side. At ρ = 1.0 there is a monkey saddle

Fig. 9 Three-dimensional polar plot of the potential Φ2, see (7.33), for ρ = 0.4. Here we have chosen χ = 0
(left) and χ = π/2 (right). It is clear that the rotations by π/2 in χ corresponds to a rotation by π/4 in ϑ2

Remark 22 The invariance under rotations by π in ϑ2 is evident. We also have invariance
under rotations by any δ in ϑ2 accompanied by a rotation by 2(π − δ) in χ . In particular, we
have invariance under a rotation by π/2 in ϑ2 accompanied by a rotation by π in χ ; thus,
we can just consider −π/2 ≤ χ ≤ π/2.
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We could also restrict the domain in which we study the potential by noting that Ψ2 →
−Ψ2 under ϑ1 → −ϑ1; this also follows by the usual skew-symmetry of the potential under
the antipodal map combined with invariance under ϑ2 → ϑ2 + π .

7.5.1 Symmetry of the Potential

The potential is invariant under a subgroup O(2) ⊂ Td ; this is explicitly given by the matri-
ces

M0 =
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ , Mπ =

⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠ ; (7.34)

R1 =
⎛
⎝− sinχ − cosχ 0

− cosχ sinχ 0
0 0 1

⎞
⎠ , R2 =

⎛
⎝ sinχ cosχ 0

cosχ − sinχ 0
0 0 1

⎞
⎠ . (7.35)

Both M0 and Mπ have determinant +1, while both R1 and R2 have determinant −1.
The matrices Ri describe a reflection in a vertical plane. More precisely, recalling that

the matrix describing a reflection in the vertical plane y = mx is given by

Rm =
⎛
⎝a b 0

b −a 0
0 0 1

⎞
⎠ , a = 1 − m2

m2 + 1
, b = 2m

m2 + 1
, (7.36)

and that conversely a matrix Rm as in (7.36) with a2 +b2 = 1 represents a reflection through
the plane y = mx with

m = 1 − a

b
, (7.37)

the planes of reflection for the matrices Ri (orthogonal to one another) have equations y =
mix, where

m1 = −1 + sinχ

cosχ
, m2 = 1 − sinχ

cosχ
, (7.38)

which clearly satisfy m1m2 = −1.
We have special cases for χ = ±π/2 or χ = 0,π (note that when both these conditions

are met, we are back to the case ρ = 0 considered above; in fact, we have characterized D2h

by also requiring ρ 	= 0).

Remark 23 To appreciate better our previous Remark 20, consider the case χ = 0. Now Ri

read as

R1 =
⎛
⎝ 0 −1 0

−1 0 0
0 0 1

⎞
⎠ , R2 =

⎛
⎝0 1 0

1 0 0
0 0 1

⎞
⎠ . (7.39)

These represent reflections in the vertical planes y = x and y = −x, as illustrated in the left
panel of Fig. 9.
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7.5.2 Critical Points

The critical points are identified as solutions to the equations

3

4
cosϑ1

[−5 cos 2ϑ1 + ρ(3 cos 2ϑ1 − 1) sin(χ + 2ϑ2) + 3
]= 0,

3ρ cos2 ϑ1 cos(χ + 2ϑ2) sinϑ1 = 0.

(7.40)

Remark 24 It is immediately apparent that any change in χ can be compensated by a change
in ϑ2, and conversely; in other words, the relevant angle is Θ = (ϑ2 + χ/2). Thus it suffices
to study the problem with a given value of χ , e.g., χ = π/2 (hence α0 = ρ, γ = 0) or χ = 0
(hence α0 = 0, γ = ρ); the general case (i.e., the case of general χ ) will be obtained via a
suitable rotation in ϑ2.

Solving Eqs. (7.40) in general is a matter of standard algebra and trigonometry (and some
patience). The results are reported in Table 6; it should be stressed that some of the solutions
exist only for certain ranges of ρ.

Let us first focus on the second of (7.40); discarding as usual the “trivial” (in this context)
solutions for ϑ1 = ±π/2, which corresponds to the poles, we need either cos(χ + 2ϑ2) =
±π/2; or ϑ1 = 0. But inserting ϑ1 = 0 in the first of (7.40), we obtain

−3

2

[
1 − ρ sin(χ + 2ϑ2)

]= 0. (7.41)

This admits solutions only for ρ ≥ 1; in view of our general restriction on ρ, see (5.34), this
means ρ ∈ [1,2].

On the other hand, if cos(χ +2ϑ2) = 0, i.e., χ +2ϑ2 = ±π/2, and hence sin(χ +2ϑ2) =
±1, the first of (7.40) reads (after taking away the inessential factor (3/4) cosϑ1)

3 − 5 cos 2ϑ1 ∓ ρ(1 − 3 cos 2ϑ1) = 0; (7.42)

this means

cos 2ϑ1 = 3 ∓ ρ

5 ∓ 3ρ
. (7.43)

While the solution with the plus sign does exist for all values of ρ, the solution with the
minus sign exists only for ρ = 2 and ρ ≤ 1.

In other words, we have some family of solutions existing through the whole range
ρ ∈ [0,2], while for other families we will have to consider separately the subranges
ρ ∈ [0,1] and ρ ∈ [1,2]. It has to be expected (and it will indeed result) that a multiple
bifurcation takes place at ρ = 1. It should be noted that at the bifurcation point the saddles
are degenerate, so carrying a different index.

The situation is rather clear if we think of a fixed value of χ , say χ = π/2, and focus only
on families of solutions not existing for the whole range of ρ (it turns out that all of these are
saddles). For ρ ∈ [0,1) there are solutions on the meridians identified by χ + 2ϑ2 = (k +
1/2)π and approaching the Equator as ρ → 1, but none on the equator; on the other hand, for
ρ ∈ (1,2] there are no solutions on those meridians, but we have instead families of solutions
on the Equator, drifting away from the meridians identified by χ + 2ϑ2 = (k + 1/2)π as ρ

grows away from ρ = 1. This is clearly illustrated in Fig. 10.
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Fig. 10 The saddle-saddle bifurcation in the D2h case taking place at ρ = 1. We have chosen χ = π/2 and
plotted a neighborhood of the point (ϑ1, ϑ2) = (0,0)—more precisely the region |ϑ1| ≤ 1/2, |ϑ2| ≤ 1—as ρ

is varied. The two saddles located (symmetrically w.r.t. the Equator) on the meridian ϑ2 = 0 collide at ρ = 1,
giving raise to a new pair of saddles located on the Equator, symmetrically w.r.t. the meridian ϑ2 = 0

We now return to the solutions to the critical point equations (7.40). The nature of these
critical points is easily ascertained by considering the eigenvalues of the Hessian at them;
again the result of this analysis is reported in Table 6. Here again we resort to some shorthand
notation to make the table more readable; in that we have defined

ρ± := ρ ± 3

3ρ ± 5
, r± := arccos(ρ±), r0 := arccos(1/ρ),

μ± := χ

2
± π

4
, ν± := χ

2
± 3π

4
, ω± := χ ± r0

2
.

(7.44)

Remark 25 Looking at Table 6, we note that maxima and minima belong to families running
through the whole range of admitted values for ρ, while the saddles undergo bifurcations.
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Table 6 Critical points for the
case D2h . The shorthand notation
(7.44) is used here

n ϑ1 ϑ2 Ψ range type

1 −π/2 – −1 always min

2 r+ −μ+ −(ρ + 1) sin r+ always min

3 r+ −ν− −(ρ + 1) sin r+ always min

4 r− −μ− (ρ − 1) sin r− ρ ≤ 1 saddle

5 −r− −μ− −(ρ − 1) sin r− ρ ≤ 1 saddle

6 −r− −ν+ −(ρ − 1) sin r− ρ ≤ 1 saddle

7 r− −ν+ (ρ − 1) sin r− ρ ≤ 1 saddle

8 0 −ω− 0 ρ ≥ 1 saddle

9 0 π/2 − ω+ 0 ρ ≥ 1 saddle

10 0 π − ω− 0 ρ ≥ 1 saddle

11 0 −ω+ − π/2 0 ρ ≥ 1 saddle

12 −r+ −μ+ (ρ + 1) sin r+ always max

13 −r+ −ν− (ρ + 1) sin r+ always max

14 π/2 – 1 always max

For ρ ≤ 1 the four saddles are at symmetric points on two opposite meridians (for χ = π/2
these are identified by y = 0) and drift towards the Equator as ρ approaches the critical
value ρ = 1, while for ρ > 1 the four saddles are at symmetric points on the Equator and
drift away from the previously mentioned meridians as ρ increases. This means that there is
a (saddle/saddle) local bifurcation.

Remark 26 Note also that a global change takes place at the same value ρ = 1. That is, for
ρ < 1 the orienting local maximum in the North Pole is also the absolute maximum, the
other two being (degenerate and) lower than this; for ρ > 1, on the other hand, the other two
maxima are (degenerate and) higher than the orienting one. Similarly to what we have done
for the D3h phase, we will distinguish these as D+

2h and D−
2h phases.

Remark 27 We could have defined the orientation requiring that the North Pole is not only a
local maximum, but actually the absolute maximum. In this case the parameter range would
be further restricted from the cylinder C to a subset C0; and Remark 26 shows that the
intersection of C0 with the disk D (of radius ρ = 2) would just be the disk of radius ρ = 1.
This would however introduce rather complex mappings involving both the physical and the
parameter space [6, 14], and we prefer not to discuss it here; the reader is referred to [6] for
a detailed discussion.

Remark 28 If we look at the potential for ρ = 1, say for the “reference case” χ = π/2, it
turns out this is invariant under a subgroup of the group O(2) acting in the (y, z) plane; this
is generated by the matrices

M1 =
(

1 0
0 1

)
, M2 =

(− 1
2 −

√
3

2√
3

2 − 1
2

)
, M3 =

( − 1
2

√
3

2

−
√

3
2 − 1

2

)
;

M4 =
(−1 0

0 1

)
, M5 =

(
1
2

√
3

2√
3

2 − 1
2

)
, M6 =

(
1
2 −

√
3

2

−
√

3
2 − 1

2

)
.

(7.45)
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These satisfy

M3
2 = M3

3 = M2
4 = M1 = I ;

M2
2 = M3, M5 = M4M2, M6 = M4M3; (7.46)

M2
5 = M2

6 = I.

The SO(2) matrices {M1,M2,M3} span the group S3 of rotations through multiples of
2π/3, while {M4,M5,M6} (having determinant −1) are reflections in y—that is, in three-
dimensional terms, through the plane (x, z)—and through planes obtained from this by
rotations of 2π/3 about the x axis. Thus the six matrices provide a representation of the
group D3. The potential is also obviously invariant under reflections in x, i.e., through the
(y, z) plane, hence at the bifurcation point we have a D3h symmetry (as on the axis A).

Remark 29 Note also that the group S3 acts mapping maxima to maxima and minima to
minima; the reflections map maxima into minima and minima into maxima. Saddle points
are obviously invariant, as the transformations we are considering do not act on the x coor-
dinate.

Remark 30 Our discussion in the last two Remarks has been conducted in the “reference
case” χ = π/2. For different values of χ , we have the same situation but with an overall
rotation of the whole picture (see Remark 20).

7.5.3 Bifurcations

We are again interested in relations between the eigenvalues and the direction of eigenvec-
tors, in particular near the bifurcation points. In this case, Φ+ = (1 + ρ) sin ξ+, where Φ+ is
the height of the “secondary” maxima (which for ρ > 1 are actually higher than the orienting
one) and (ξ+ + π/2) is the angle between these maxima and the orienting one (“secondary
maxima” can be recognized by the fact they are always degenerate). We express ρ in terms
of ξ+ through the equation

ρ = −3 − 5 cos 2ξ+
1 − 3 cos 2ξ+

. (7.47)

At the bifurcation point ρ = 1, we have ξ+ = π/6 and Φ+ = 1. Thus, using (7.47) and
with some trivial algebra, we see that

Φ+ = 4
sin3 ξ+

3 cos 2ξ+ − 1
. (7.48)

By series expansion at the bifurcation point, i.e., for ξ+ = π/6 + ε, we get

Φ+(ε) − Φ+(0) = 9
√

3ε + O
(
ε2
)
. (7.49)

Let us also consider the bifurcation from the D∞h to the D2h phase, taking place at ρ = 0.
Using again (7.47), and writing ξ+ = ξ

(0)
+ + ε where

ξ
(0)
+ = 1

2
arccos

(
3

5

)
.= 0.46 (7.50)
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is the value taken by ξ+ for ρ = 0, we get

Φ+(ε) − Φ+(0) = (15 cos ξ
(0)
+ sin2 ξ

(0)
+ + 30 sin3 ξ

(0)
+
)
ε + O

(
ε2
) .= 5.37ε + O

(
ε2
)
. (7.51)

7.6 Reflection Symmetry: Special Planes in the Bulk B

As suggested by the classification of Td subgroups, see the Appendix, we expect that there
are specific values of the parameters such that the potential is invariant under a reflection in
a vertical plane, i.e. under a Z2 = Dh group.

This is indeed the case for χ = ±π/2, χ = ±π/6, χ = ±5π/6. Let us just consider the
first case (the others are obtained from this by a 2π/3 rotation, see below).

For χ = ±π/2, the potential (5.36) reduces to

Φor = z3 + Ky
(
y2 − 3x2

)− 3

2

(
x2 + y2

)
z ± 3

2
ρ
(
x2 − y2

)
z; (7.52)

this is manifestly invariant under the reflection in the (y, z) plane, i.e., under x → −x.
Equivalently, we have invariance under the subgroup of Td generated by M13 (see the
Appendix for the matrices Mi ).

Similar considerations apply for the subgroups generated by M14, with invariance subject
to the condition χ = −π/6 or χ = 5π/6; in this case the reflection is through the plane
x = −√

3y. In complete analogy with this is the subgroup generated by M15, where now
one has to require χ = −5π/6 or χ = π/6; the reflection plane is then x = √

3y.
We will refer to these planes (collectively) as P ; when we want to be more specific (see

Table 7 at the end of this section) we will call them, respectively, P0, P−, P+. These reflec-
tion symmetries had evaded our previous studies [6, 14] and have proved quite significant in
the present one.

For the special Dh phases considered here, as for all others, the transition from the oc-
tupolar potential having four maxima to that having only three takes place for parameters
chosen on the separatrix identified in our previous work [6, 14] and also recalled in the
following Sect. 7.7. This is illustrated in Figs. 11 and 12. The separatrix is a surface in pa-
rameter space that marks the border between the subregions B3 and B4 of B, where Φor has
three or four maxima, respectively.

To discuss in more detail the critical points in these phases, we find it more convenient
to express the octupolar potential in angular coordinates as in (5.35).

Remark 31 Since, by γ3 in (5.39), the potential in (5.35) is invariant under the simultaneous
shifts

χ → χ + 2m

3
π, ϑ2 → ϑ + 2m

3
π,

by studying the case χ = π/2 we also obtain information about the cases χ = −5π/6 and
χ = −π/6; and by studying the case χ = −π/2 we also obtain information about the cases
χ = π/6 and χ = 5π/6.

We will only consider the cases χ = ±π/2.

7.6.1 The Case χ = π/2

By setting χ = π/2, the potential (5.35) reduces to

Ψor = sin3 ϑ1 − K cos3 ϑ1 sin 3ϑ2 − 3

2
sinϑ1 cos2 ϑ1(1 − ρ cos 2ϑ2). (7.53)
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Fig. 11 The potential for χ = π/2 and ρ = 1/2, for different values of K > 0. We observe the transition
from a phase with three maxima at low K to a phase with four maxima at higher K . The octupolar potential
is always reflection invariant through a vertical plane spanned by the axes y and z

The conditions for a critical point are then

∂Ψor

∂ϑ1
= 0,

∂Ψor

∂ϑ2
= 0; (7.54)

both equations have a power of cosϑ1 as an overall factor, which of course vanishes only at
the poles; quotienting this factor (and constants) out, we remain with

K sin 2ϑ1 sin 3ϑ2 − cos2 ϑ1(1 − ρ cos 2ϑ2) + 2 sin2 ϑ1(2 − ρ cos 2ϑ2) = 0,

K cosϑ1 cos 3ϑ2 + ρ sinϑ1 sin 2ϑ2 = 0.
(7.55)

The second equation (7.55) is solved for ϑ2 = ±π/2 and moreover (assuming ϑ2 	=
±π/2) by

tanϑ1 = −K

ρ

cos 3ϑ2

sin 2ϑ2
, (7.56)
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Fig. 12 Same as Fig. 11 but with contour plots

which determines uniquely ϑ1 ∈ (−π/2,π/2) once ϑ2 is given. In the following it will be
useful to express this, and more specifically X = sinϑ1, in terms of Y = sinϑ2. With some
trigonometry, it turns out that

X = −K
1 − 4Y 2

2ρY

√
1 + K2(1−4Y 2)2

4ρ2Y 2

. (7.57)

The right hand of (7.57) is an odd function of Y ; this equation delivers the same result for X,
and hence for ϑ1 = arcsinX ∈ [−π/2,π/2], for the two determinations of ϑ2 = arcsinY ∈
[−π,π].

The Solutions ϑ2 = ±π/2 Let us consider first the solutions ϑ2 = ±π/2. Inserting this
into the first equation (7.55), we obtain

3 + ρ(5 + 3ρ) cos 2ϑ1 ∓ 2K sin 2ϑ1 = 0. (7.58)

This is better written in terms of X as

10X2 − 2 + ρ
(
6X2 − 2

)= ±4KX
√

1 − X2. (7.59)

The solutions to (7.59) for the case ϑ2 = π/2 are

X1 =
√

α + β

γ
, X2 = −

√
α − β

γ
; (7.60)
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Fig. 13 The graph of the
function g defined by (7.70) is
superimposed to the graph of the
function f defined by (7.63)

in the case ϑ2 = −π/2 we have instead

X3 = −X2, X4 = −X1. (7.61)

In the formulas (7.60) and (7.61) we have set

α = 5 + 2K2 + 8ρ + 3ρ2,

β = 2K
√

4 + K2 + 6ρ + 2ρ2, (7.62)

γ = 4K2 + (5 + 3ρ)2.

It is obvious that the argument of the square root is always positive (hence β is always real),
and the same applies for α and γ ; moreover α ≥ β in our range 0 ≤ ρ ≤ 2. Thus the four
solutions are all real. It is easy to check, even numerically, that the solutions (7.60) and
(7.61) also satisfy (for 0 ≤ ρ ≤ 2) the condition |X| ≤ 1, necessary to be in accord with the
definition of X as sinϑ1.

By looking at the Hessian of the potential computed in these critical points, we can
ascertain their nature.

For ϑ2 = π/2, it turns out that X2 is a maximum for all values of K and ρ in the con-
sidered range, while X1 undergoes a bifurcation along a certain curve K = f (ρ), and is
a minimum (for K < f (ρ)) or a saddle (for K > f (ρ)) depending on the values of the
parameters.

Similarly, for ϑ2 = −π/2, it turns out that X3 is a minimum for all allowed values of K

and ρ, while X4 undergoes a bifurcation along the same curve K = f (ρ), and is a maximum
(for K < f (ρ)) or a saddle (for K > f (ρ)) depending on the values of the parameters.

The function f (ρ) is given explicitly by

f (ρ) =
√

2ρ2(1 + ρ)

3(6 + ρ)
(7.63)

and plotted in Fig. 13.
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The Other Solutions (ϑ2 �= ±π/2) The other solutions, i.e., those with ϑ2 	= ±π/2, are
characterized by (7.56) as solution to the second equation (7.55). Plugging this into the first
equation (7.55), recalling again that ϑ1 ∈ [−π/2,π/2], applying some standard trigonome-
try and writing for ease of notation Y = sinϑ2, we obtain

K2(ρ − 2) + [4K2(4 − ρ) + 2ρ2(1 − ρ)
]
Y 2 + 4

(
ρ3 − 8

)
Y 4 = 0. (7.64)

The solutions to this equation are

Y = ±
√

A ± B

C
, (7.65)

where we have written

A = 2K2(4 − ρ) + ρ2(1 − ρ),

B = ρ
√

4K4ρ2 + 4K2ρ2(4 − 3ρ) + ρ4(1 − ρ)2 := √
b; (7.66)

C = 4
(
8K2 − ρ3

)
.

For these to be real we need that b ≥ 0; and moreover, if this condition is satisfied, that
(A ± B)/C ≥ 0. One easily checks, e.g., numerically, that (for 0 ≤ ρ ≤ 2) indeed b ≥ 0,
hence B is real (and non-negative, as we take the positive determination of the root).

Actually, we have

b = A2 + 4K2(2 − ρ)
(
ρ3 − 8K2

);
B = |A|

√
1 + 4K2(2 − ρ)(ρ3 − 8K2)

A2
.

(7.67)

Thus we can have A ± B = 0 only for K = 0, for ρ = 2, and on the curve K2 = (ρ/2)3.
Note that A ≥ 0 for

K2 ≥ ρ2(ρ − 1)

2(4 − ρ)
; (7.68)

this implies in particular that A is always positive for ρ < 1.
In order to study if the solutions

Ya = ±
√

A − B

C
, Yb = ±

√
A + B

C
(7.69)

are real, we consider the signs of A ± B and of C. It turns out that A + B ≥ 0 for all values
of K and for all 0 ≤ ρ ≤ 2. As for A − B , it follows from (7.67) that it has the same sign as
C = 8K2 − ρ3. Finally, it is obvious that C > 0 for K2 > (ρ/2)3.

This means that, by requiring Y to be real, for K2 < (ρ/2)3 we only have the solutions
Ya , while for K2 > (ρ/2)3 we have both Ya and Yb .

This is not enough: in fact, Y = sinϑ2 requires also |Y | ≤ 1. This condition is always
satisfied by Ya , while for Yb it requires K ≥ f (ρ). It follows from (7.63) that, in the relevant
range for ρ, f satisfies f (ρ) ≥ (ρ/2)3/2.

Finally we note that each solution for Y = sinϑ2 corresponds to two solutions for ϑ2 ∈
[−π,π]; and, as mentioned above, once ϑ2 is given, ϑ1 is uniquely determined.

Thus we conclude that:
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1. For K > f (ρ) we have four solutions for Y , two of type (a) and two of type (b) as
in (7.69), and hence eight critical points beside the two at the poles and the four with
ϑ2 = ±π/2, for a total of fourteen critical points;

2. For K < f (ρ) we have two solutions for Y , of type (a), and hence four critical points
beside those at the Poles and for ϑ2 = ±π/2, for a total of ten critical points;

3. On the curve K = f (ρ) there is a bifurcation, in which the two solutions of type (b)

disappear as K is reduced. On the curve K = f (ρ) the solutions Yb have ϑ2 = ±π/2,
hence merge with those studied before.

Remark 32 Clearly, the simple expression K = f (ρ) for the bifurcation curve was possible
only because we have fixed the value of χ . This curve is the section of the separatrix with the
plane χ = π/2. The separatrix in the full three-dimensional (K,ρ,χ) parameter space has
been studied in [14] and [6], but it has an awkward analytic expression, which duly reduces
to (7.63) for χ = π/2 (modulo the different scaling of ρ, as shown by (25) of [6]).

7.6.2 The Case χ = −π/2

The case χ = −π/2 is analyzed in the same way, though it entails a somewhat dissimilar
outcome, on which se shall particularly concentrate.

Paralleling f in (7.63), there is a continuous function g defined for 0 ≤ ρ ≤ 2 by

g(ρ) =
⎧⎨
⎩
√

2ρ2(1−ρ)

3(6−ρ)
for 0 ≤ ρ ≤ 1

√
2(2 − ρ)(ρ − 1) for 1 ≤ ρ ≤ 2,

(7.70)

whose graph is reproduced in Fig. 13 for the reader’s ease.

1. For K > g(ρ) we have eight generic critical points beside the two at the poles and four
on the special meridians with ϑ2 = ±π/2, for a total of fourteen critical points. Four are
maxima, four minima, and the remaining six are saddles.

2. For K < g(ρ), we have a total of ten critical points, of which three are maxima, three
minima, and the remaining four are saddles.

3. For K = g(ρ), two different scenarios present themselves, according to whether 0 <

ρ < 1 or 1 < ρ < 2. In the former case, the critical points are ten, whereas in the latter
case they are twelve. In both cases, the total number of maxima is three, as many as
the minima; only the number of saddles differs: there are four for 0 < ρ < 1 and six
for 1 < ρ < 2. In the former case, two saddles are degenerate, but all four have index
ι = −1. In the latter case, two out of the six saddles are degenerate and have index ι = 0
(see Remark 16), while the remaining four are not degenerate and have the usual index
ι = −1.

4. A special note is deserved by the limiting values ρ = 1 and ρ = 2. For the former value,
the total number of critical points is eight, whereas it is ten for the latter. For ρ = 1, three
maxima and three minima are accompanied by two degenerate saddles, each with index
ι = −2. For ρ = 2, the same number of maxima and minima is accompanied by four
degenerate saddles, each with index ι = −1, for a total of ten critical points. The total
number of critical points for both these limiting cases were predicted by our taxonomic
analysis in Sect. 5.4: the case ρ = 1 falls under row (c2) in Table 2, while the case ρ = 2
falls under row (c) in Table 1.

We now describe in more detail how the different components of this varied landscape of
critical points are combined together. The critical points for K < g(ρ) are related to those for
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K > g(ρ) in two different ways, corresponding to the two branches of g in (7.70), according
to whether 0 < ρ < 1 or 1 < ρ < 2.

For 0 < ρ < 1, the four critical points on the special meridians ϑ2 = ±π/2 survive as K

decreases below g(ρ); two saddles, one for each meridian, stay saddles, whereas a maximum
on one meridian (ϑ2 = π/2) becomes a saddle, as does a minimum on the other meridian
(ϑ2 = −π/2). On the other hand, always for 0 < ρ < 1, two generic critical points, which
are both saddles, approach each meridian ϑ2 = ±π/2 as K approaches g(ρ) from above;
they coalesce for K = g(ρ) on the extremal that on the targeted meridian will transform
into a saddle, and disappear as K < g(ρ). For K = g(ρ), on each meridian ϑ2 = ±π/2 the
coalesced critical point is a degenerate saddle with index ι = −1.

For 1 < ρ < 2, the evolution of critical points is somewhat different, though the final
outcome is identical. As K decreases below g(ρ), the four critical points on meridians ϑ2 =
±π/2 cease to exist, but they do not mingle with the generic critical points, which instead
survive. They rather annihilate in pairs on each meridian for K = g(ρ). The superposition
of a maximum with a saddle (for ϑ2 = π/2) and that of a minimum with a saddle (for
ϑ2 = −π/2) give rise to a critical point with index ι = 0, so that for K = g(ρ) and 1 < ρ < 2
the total number of critical points is twelve: three maxima, three minima, and six saddles.

To determine the nature of the latter critical points, we expanded Ψor in their vicinity. For
ϑ2 = −π/2 and K = g(ρ), we found a degenerate saddle located at

ϑ1 = ϑS = − arcsin

√
ρ − 1

3 − ρ
(7.71)

and we computed

Ψor(ϑ1, ϑ2) = −√(ρ − 1)(3 − ρ) + 12(2 − ρ)

√
ρ − 1

3 − ρ

(
ϑ2 + π

2

)2

+ 1

2

√
2(2 − ρ)(3 − ρ)(ϑ1 − ϑS)

3

+ 3
√

2(5ρ − 6)

√
2 − ρ

3 − ρ

(
ϑ2 + π

2

)2

(ϑ1 − ϑS)

+ O(4). (7.72)

A similar formula applies to the degenerate saddle on the meridian ϑ2 = π/2. It is then
easy to conclude that both critical points are degenerate saddles with index ι = 0 (see, for
example [2]). They migrate towards the poles as ρ approaches 2 along the line K = g(ρ)

and towards the Equator as ρ approaches 1. Correspondingly, the North Pole becomes a de-
generate maximum (while the South Pole becomes a degenerate minimum) and the Equator
hosts two symmetric “monkey saddles”.

7.7 Trivial Symmetry {e}: The Bulk B

We have so far discussed the critical strata that correspond to nontrivial symmetries in the
cylinder C representing the parameter space of our theory.

The situation in the bulk B of the cylinder, i.e., for the generic case, has been discussed
in detail in our previous work [14]; there we have shown that—quite surprisingly—there
are two generic octupolar phases, characterized by a different number (10 and 14) of critical
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Fig. 14 The potential for χ = π/3 and ρ = 1/2, for different values of K > 0. We observe the transition
from a phase with three maxima at low K to a phase with four maxima at higher K . Generically, the potential
is never reflection invariant through a vertical plane

points, and separated in parameter space by a separatrix. Moreover, one could also distin-
guish the cases where the maximum in the North Pole is the absolute one, and that where
it is a local maximum but not the absolute one; these two regions are separated by a dome,
having its vertex in one of the tetrahedral points T and meeting the disk D on the circle
of radius ρ = 1. This dome has been further investigated, providing more detailed informa-
tion, in [6]. The generic incarnations of the octupolar potential below the dome in parameter
space are illustrated in Figs. 14 and 15.

One easily distinguishes two different regions where the potential can be seen as topolog-
ically equivalent to the highly symmetric incarnations met on the disk D and at the tetrahe-
dral points T . In fact, the study of the generic configurations in the bulk, and of the separatrix
between the two octupolar phases, was based on continuation techniques starting from these
singular strata. Much of this study has already been presented in our previous work [6, 14].

Here, the more detailed insight gained through the analysis of the highly symmetric cases
χ = ±π/2 allows us to refine our understanding of the separatrix by establishing the exis-
tence of an extension where the total number of critical points for the octupolar potential is
either 8 or 12, instead of the 10 that had already been found in [6, 14].

Figure 16 shows the outcome a standard numerical continuation technique applied to the
sector −π/2 ≤ χ ≤ −π/6 in parameter space (K,ρ,χ), which in view of the symmetries
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Fig. 15 Same as Fig. 14 but with contour plots

described above is the only one bearing essential information. The educated eye will discern
the graphs of functions g and f , plotted against ρ upon the sections χ = −π/2 and χ =
−π/6, respectively. The remaining curves outline the whole extended separatrix.

A line of cusps connects the point K = 0, ρ = 1, χ = −π/2 with the point K = 1, ρ = 2,
χ = −π/6: it bears 8 critical points for the octupolar potential. The line that connects the
point K = 0, ρ = 2, χ = −π/2 with the point K = 1, ρ = 2, χ = −π/6 consists of an arc of
circle of radius 2 in the plane K = 0 and a straight segment orthogonal to that plane: it bears
instead 10 critical points. The bump delimited by these degenerate lines bears 12 critical
points. Always, above the separatrix the critical points are 14, whereas they are 10 below it.
Our previous studies were confined to the cylinder 0 ≤ ρ ≤ 1, and so they were blind to the
outer component of the separatrix with 12 critical points for the octupolar potential.

7.8 Special Transformations and Potential Invariance

Our choice of orientation and scaling allowed to simplify the potential, passing from seven
to three parameters. This also reduced the allowed transformations. In fact, except at the
special tetrahedral point ρ = 0,K = K0 (see above) we can only consider transformations
which preserve the unit sphere and leave invariant the z axis; we refer to these as oriented
orthogonal transformations. They are just maps in O(2) acting on the (x, y) variables, and
hence correspond to matrices of the form

M =
(

cosγ −s sinγ

sinγ s cosγ

)
, (7.73)

where s is just a sign, s = ±1 and corresponds to the determinant of M .
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Fig. 16 Two views of the whole
separatrix, which is outlined by
curves at equally spaced values of
χ in the interval [−π/2,−π/6].
A line of cusps, which bears 8
critical points for the octupolar
potential, separates the inner
component of the separatrix with
10 critical points from the outer
component with 12 critical points

When we require invariance of Φ under such transformations, we obtain—by standard
algebra—five classes of nontrivial solutions; each of these can exist only for certain values of
the parameters, i.e., for certain regions R in the parameter space. The results are summarized
in Table 7. This table confirms that our classification of different phases is complete. In fact,
the first class gives G = O(2) in C; the second one provides G = D2h in D; the third one
provides G = D3h in A, while the fourth points out at the fact that a symmetry C3 is also
present in A; finally the fifth class shows that on the special planes P there is a reflection
symmetry.
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Table 7 Different oriented
transformations as symmetries of
the oriented potential in different
regions R of the parameter space.
The symbol – means that any
value of the corresponding
parameter is allowed

K ρ χ R s γ

0 0 – C ±1 –

0 – – D −1 ± arccos(± sinχ)

0 – – D +1 ±π

– 0 – A −1 −5π/3
– 0 – A −1 −π/2
– 0 – A −1 −π/3
– 0 – A −1 +π/3
– 0 – A −1 +π/2
– 0 – A −1 +5π/3

– 0 – A +1 −π

– 0 – A +1 −4π/3
– 0 – A +1 −2π/3
– 0 – A +1 +2π/3
– 0 – A +1 +4π/3
– 0 – A +1 +π

– – −5π/6 P+ ±1 π/3
– – −π/2 P0 ±1 π

– – −π/6 P− ±1 −π/3
– – +π/6 P+ ±1 π/3
– – +π/2 P0 ±1 π

– – +5π/6 P− ±1 −π/3

Table 8 Summary of the totality
of critical points in parameter
space with index ι 	= 0,
irrespective of all their possible
additional features and
characterization

G set crit. pts.

{e} B 10 or 14

D∞h C 2 + ∞
D2h D 10

D3h A 14

Td T 14

8 Summary of Critical Points

In Table 8, we summarize our findings concerning critical points of the octupolar potential
Φ in different regions of the admissible semi-definite cylinder C+ in parameter space. We
preliminary leave out the critical points with index ι = 0, which we found on some special
bifurcation loci. A more refined description of the landscape of critical points is outlined at
the end of the section.

The relations between geometric (and symmetry) strata of the cylinder are summarized
in this diagram

B
↙ ↘

A D
↙ ↘ ↙

T C
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It should be noted that C and T can be reached from the bulk B also directly, i.e., without
passing through A or D.

Similarly, the relation between isotropy subgroups are summarized in the next diagram

D∞h Td D∞h

↓ ↙ ↘ ↓
D3h D2h

↘ ↙
{e}

Here we do not distinguish in B between the region B4 with four maxima of Φ from the
region B3 with three maxima, as these correspond to different phases which do not differ
in terms of symmetry. However, if we wish to classify the regions in C+ according to the
cardinality of the real spectrum of the octupolar tensor A corresponding to Φ (which is the
number of critical points of Φ on the unit sphere S2), we need to be more refined. Then even
the distinction between B3 and B4 is too gross.

We have shown that B3 and B4 are separated by a separatrix S , a surface in parameter
space which consists of two folds, S1 and S2, where Φ has 10 and 12 critical points, respec-
tively. These subsurfaces are divided by a line of cusps L1 where Φ has 8 critical points.
Moreover, S2 is bordered by another line, L2, where Φ has 10 critical points.

9 Conclusions

An octupolar tensor A is any third order, completely symmetric and completely traceless
tensor. In 2D, A has the symmetries of an equilateral triangle and it can be effectively rep-
resented by a vector in the plane. In 3D, the symmetries enjoyed by A outline a much richer
landscape. This paper has classified all of them by introducing the octupolar potential Φ

associated with A, that is, the cubic form of A restricted to the unit sphere S2. The max-
ima (and antipodal minima) of Φ and their locations on the unit sphere describe the whole
variety of octupolar tensors and allow for a visual representation of their symmetries.

We showed that a semi-indefinite cylinder C+ in a three-dimensional parameter space
suffices to represent all possible incarnations of A in a three-dimensional physical space.
Such a reduction (of the originally seven-dimensional parameter space) is obtained by fixing
a maximum of Φ on the North Pole of S2 and scaling its value to unity. We identified in C+
a number of special regions characterized by different symmetry groups for Φ and ordering
of its maxima relative to the orienting maximum at the North Pole. For sake of illustration,
each of these regions could be further divided in two subregions, which we distinguish by
a + or a − superscript indicating where the maxima of Φ that supplement the orienting
maximum have a larger or a smaller value than the latter.

The axis A of the cylinder C+ is characterized by a potential Φ enjoying the D3h symme-
try, with 4 maxima, 3 of which are equal and either exceed the fourth, orienting maximum
(in A+) or fall short of it (in A−). A special point of A separates A+ and A−: this is the
only point with tetrahedral symmetry Td , which, despite its singularity, has given its name
to a whole class of bent-core liquid crystal phases.15

On a disk D, which is the base of C+, Φ has the D2h symmetry and possesses 3 maxima.
D can be separated into an inner disk D1 and an outer annulus D2. The center C of D has
a special nature: there the potential Φ is axially symmetric. The symmetry group is D∞h

15Which thus are presumably more complicated than anticipated.
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and the (primary) maximum at the North Pole is accompanied by a full circle of (secondary)
maxima in the southern hemisphere of S2.

Away from all these special loci is the generic bulk B, where Φ has either 4 (generically
unequal) maxima (in B4) or 3 (unequal) maxima (in B3), separated by a surface S in param-
eter space, called the separatrix. Both B3 and B4 (where, if necessary, we could distinguish
the variants B±

3 and B±
4 ) enjoy three planes of symmetry, collectively denoted as P . Corre-

spondingly, Φ has on S2 a reflection symmetry across a plane through the poles. Therefore,
when the parameters fall in particular in B4 ∩P , two secondary maxima of Φ are equal.

Much like the decomposition of D into the union of D1 and D2, the separatrix S can be
further decomposed into the union of two surfaces, an inner S1 and an outer S2, where Φ has
10 and 12 critical points, respectively. The boundary L1 of S1 is a line of cusps in parameter
space where Φ has 8 critical points, whereas the outer boundary L2 of S2 is a line where Φ

has 10 critical points.
All secondary maxima of Φ have a remarkable, universal feature, irrespective of the

choice of parameters: they fall in the southern hemisphere of S2, when the North Pole is
marked by the primary, orienting maximum.

We trust that all the qualitative features of the octupolar potential described in this paper
would prompt a better understanding of the many physical instances where an octupolar
tensor is at play.
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Appendix: The Tetrahedron Group

In this Appendix we give further detail—beyond those mentioned in Sect. 6—on the tetra-
hedron group. We will work on a concrete realization of it in three-dimensional space; the
points identifying the tetrahedron will be

(
0,

2
√

2

3
,−1

3

)
,

(√
2

3
,−

√
2

3
,−1

3

)
,

(
−
√

2

3
,−

√
2

3
,−1

3

)
, (0,0,1).

In angular coordinates (ϑ1, ϑ2), these are(
θ0,−π

2

)
,

(
θ0,−π

6

)
,

(
θ0,

5π

6

)
,

(
π

2
,∗
)

,

where the symbol ∗ means that in this case ϑ2 is not determined, and

θ0 = − arcsin

(
1

3

)
.= −0.34.

The tetrahedron group Td ⊂ O(3) is made of 12 matrices of determinant +1, associated
to rotations of an angle 2π/3 and multiples around each of the four axes of the tetrahedron,
denoted as T +

d ⊂ SO(3); and other 12 matrices of determinant −1, collectively denoted as
T −

d , among which are those associated to reflections through planes containing axes of the
tetrahedron.
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We now give the twelve matrices in T +
d ; these are:

M1 =
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ , M2 =

⎛
⎜⎜⎝

− 1
2

√
3

2 0

−
√

3
2 − 1

2 0

0 0 1

⎞
⎟⎟⎠ ,

M3 =

⎛
⎜⎜⎝

− 1
2 −

√
3

2 0
√

3
2 − 1

2 0

0 0 1

⎞
⎟⎟⎠ , M4 =

⎛
⎜⎜⎜⎝

1
2

√
3

2 0

1
2
√

3
− 1

6
2
√

2
3√

2
3 −

√
2

3 − 1
3

⎞
⎟⎟⎟⎠ ,

M5 =

⎛
⎜⎜⎜⎝

1
2

1
2
√

3

√
2
3

√
3

2 − 1
6 −

√
2

3

0 2
√

2
3 − 1

3

⎞
⎟⎟⎟⎠ , M6 =

⎛
⎜⎜⎜⎝

1
2 −

√
3

2 0

− 1
2
√

3
− 1

6
2
√

2
3

−
√

2
3 −

√
2

3 − 1
3

⎞
⎟⎟⎟⎠ ,

M7 =

⎛
⎜⎜⎜⎝

1
2 − 1

2
√

3
−
√

2
3

−
√

3
2 − 1

6 −
√

2
3

0 2
√

2
3 − 1

3

⎞
⎟⎟⎟⎠ , M8 =

⎛
⎜⎜⎜⎜⎝

− 1
2

1
2
√

3

√
2
3

− 1
2
√

3
5
6 −

√
2

3

−
√

2
3 −

√
2

3 − 1
3

⎞
⎟⎟⎟⎟⎠ ,

M9 =

⎛
⎜⎜⎜⎜⎝

− 1
2 − 1

2
√

3
−
√

2
3

1
2
√

3
5
6 −

√
2

3√
2
3 −

√
2

3 − 1
3

⎞
⎟⎟⎟⎟⎠ , M10 =

⎛
⎜⎜⎜⎜⎝

0 1√
3

−
√

2
3

1√
3

− 2
3 −

√
2

3

−
√

2
3 −

√
2

3 − 1
3

⎞
⎟⎟⎟⎟⎠ ,

M11 =

⎛
⎜⎜⎜⎜⎝

0 − 1√
3

√
2
3

− 1√
3

− 2
3 −

√
2

3√
2
3 −

√
2

3 − 1
3

⎞
⎟⎟⎟⎟⎠ , M12 =

⎛
⎜⎜⎝

−1 0 0

0 1
3

2
√

2
3

0 2
√

2
3 − 1

3

⎞
⎟⎟⎠ .

The multiplication table for these matrices is the following:

P11 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9 10 11 12
2 3 1 11 7 8 12 10 4 6 9 5
3 1 2 9 12 10 5 6 11 8 4 7
4 12 6 5 1 11 9 2 10 7 3 8
5 8 11 1 4 3 10 12 7 9 6 2
6 4 12 10 8 7 1 11 3 2 5 9
7 10 9 2 11 1 6 5 12 4 8 3
8 11 5 6 10 12 2 9 1 3 7 4
9 7 10 12 3 4 11 1 8 5 2 6
10 9 7 8 6 5 3 4 2 1 12 11
11 5 8 7 2 9 4 3 6 12 1 10
12 6 4 3 9 2 8 7 5 11 10 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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These generate several subgroups; in particular—apart from the trivial ones consisting of
M1 alone and of the full group T +

d —we have four subgroups of order three,

G1 = {M1,M2,M3}, G2 = {M1,M4,M5}, G3 = {M1,M6,M7},
G4 = {M1,M8,M9};

three groups of order two,

G5 = {M1,M10}, G6 = {M1,M11}, G7 = {M1,M12};
and one group of order four,

G8 = {M1,M10,M11,M12}.
The latter is the only nontrivial normal subgroup, and also the only one acting freely.

We can also easily determine the subspaces Fk admitting each of these Gk as symmetry
subgroups; in particular,

F1 = (0,0, z), F2 = (
√

6z,
√

2z, z), F3 = (−√
6z,

√
2z, z),

F4 = (0,−2
√

2z, z);
the subgroups Gk , k = 1,2,3,4 act as rotations (by an angle 2π/3) around these axes, which
are just the axes of the tetrahedron. Moreover,

F5 =
(

−
√

3

2
z,−

√
1

2
z, z

)
, F6 =

(√
3

2
z,−

√
1

2
z, z

)
, F7 = (0,

√
2z, z);

these subgroups Gk , k = 5,6,7, represent rotations by π around the given axes Fk . Note
that F8 = {(0,0,0)}, and correspondingly G8 represents combined π rotations around the
F5,F6,F7 axes.

We can give as well the twelve matrices in T −
d ; these are:

M−
1 =

⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠ , M−

2 =
⎛
⎜⎝

1
2 −

√
3

2 0

−
√

3
2 − 1

2 ,0

0 0 1

⎞
⎟⎠ ,

M−
3 =

⎛
⎜⎝

1
2

√
3

2 0
√

3
2 − 1

2 ,0

0 0 1

⎞
⎟⎠ , M−

4 =

⎛
⎜⎜⎝

− 1
2 −

√
3

2 0
1

2
√

3
− 1

6
2
√

2
3√

2
3 −

√
2

3 − 1
3

⎞
⎟⎟⎠ ,

M−
5 =

⎛
⎜⎜⎝

− 1
2 − 1

2
√

3
−
√

2
3√

3
2 − 1

6 −
√

2
3

0 2
√

2
3 − 1

3

⎞
⎟⎟⎠ , M−

6 =

⎛
⎜⎜⎝

− 1
2

√
3

2 0

− 1
2
√

3
− 1

6
2
√

2
3

−
√

2
3 −

√
2

3 − 1
3

⎞
⎟⎟⎠ ,

M−
7 =

⎛
⎜⎜⎝

− 1
2

1
2
√

3

√
2
3

−
√

3
2 − 1

6 −
√

2
3

0, 2
√

2
3 − 1

3

⎞
⎟⎟⎠ , M−

8 =

⎛
⎜⎜⎜⎝

1
2 − 1

2
√

3
−
√

2
3

− 1
2
√

3
5
6 −

√
2

3

−
√

2
3 −

√
2

3 − 1
3

⎞
⎟⎟⎟⎠ ,
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M−
9 =

⎛
⎜⎜⎜⎜⎝

1
2

1
2
√

3

√
2
3

1
2
√

3
5
6 −

√
2

3√
2
3 −

√
2

3 − 1
3

⎞
⎟⎟⎟⎟⎠ , M−

10 =

⎛
⎜⎜⎜⎜⎝

0 − 1√
3

√
2
3

1√
3

− 2
3 −

√
2

3

−
√

2
3 −

√
2

3 − 1
3

⎞
⎟⎟⎟⎟⎠ ,

M−
11 =

⎛
⎜⎜⎜⎜⎝

0 1√
3

−
√

2
3

− 1√
3

− 2
3 −

√
2

3√
2
3 −

√
2

3 − 1
3

⎞
⎟⎟⎟⎟⎠ , M−

12 =

⎛
⎜⎜⎝

1 0 0

0 1
3

2
√

2
3

0 2
√

2
3 − 1

3

⎞
⎟⎟⎠ .

Once M−
1 has been defined, they are built by

M−
k = M−

1 Mk.

It is obvious that M−
1 represents a reflection (across the (y, z) plane), so that the matrices

M−
k represent the combination of rotations and reflections.
If we write Mk+12 = M−

k , the full multiplication table is given in block form by

P =
(

P11 P12

P21 P22

)
,

where P11 has been given above, and the other blocks are:

P12 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

13 14 15 16 17 18 19 20 21 22 23 24
15 13 14 21 24 22 17 18 23 20 16 19
14 15 13 23 19 20 24 22 16 18 21 17
18 16 24 22 20 19 13 23 15 14 17 21
19 22 21 14 23 13 18 17 24 16 20 15
16 24 18 17 13 23 21 14 22 19 15 20
17 20 23 13 16 15 22 24 19 21 18 14
21 19 22 24 15 16 23 13 20 17 14 18
20 23 17 18 22 24 14 21 13 15 19 16
23 17 20 19 14 21 16 15 18 24 13 22
22 21 19 20 18 17 15 16 14 13 24 23
24 18 16 15 21 14 20 19 17 23 22 13

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

P21 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

13 14 15 16 17 18 19 20 21 22 23 24
14 15 13 23 19 20 24 22 16 18 21 17
15 13 14 21 24 22 17 18 23 20 16 19
16 24 18 17 13 23 21 14 22 19 15 20
17 20 23 13 16 15 22 24 19 21 18 14
18 16 24 22 20 19 13 23 15 14 17 21
19 22 21 14 23 13 18 17 24 16 20 15
20 23 17 18 22 24 14 21 13 15 19 16
21 19 22 24 15 16 23 13 20 17 14 18
22 21 19 20 18 17 15 16 14 13 24 23
23 17 20 19 14 21 16 15 18 24 13 22
24 18 16 15 21 14 20 19 17 23 22 13

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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P22 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9 10 11 12
3 1 2 9 12 10 5 6 11 8 4 7
2 3 1 11 7 8 12 10 4 6 9 5
6 4 12 10 8 7 1 11 3 2 5 9
7 10 9 2 11 1 6 5 12 4 8 3
4 12 6 5 1 11 9 2 10 7 3 8
5 8 11 1 4 3 10 12 7 9 6 2
9 7 10 12 3 4 11 1 8 5 2 6
8 11 5 6 10 12 2 9 1 3 7 4
11 5 8 7 2 9 4 3 6 12 1 10
10 9 7 8 6 5 3 4 2 1 12 11
12 6 4 3 9 2 8 7 5 11 10 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We now have subgroups involving elements of both T +
d and T −

d ; in particular, using
again the 1 through 24 numeration and denoting Mk directly by k, we have the following
subgroups; those of types Ga through Gc extending those seen above, while those of type Gd

involve no other element of T +
d but the identity:

Ga : (1,2,3,13,14,15), (1,2,3,16,21,23), (1,2,3,17,19,24), (1,2,3,18,20,22);
(1,4,5,13,18,19), (1,4,5,14,16,22), (1,4,5,15,21,24), (1,4,5,17,20,23);
(1,8,9,13,20,21), (1,8,9,14,19,23), (1,8,9,15,17,22), (1,8,9,16,18,24);

Gb : (1,10,13,23), (1,10,14,17), (1,10,15,20), (1,10,16,19), (1,10,18,21),

(1,10,22,24);
(1,11,13,22), (1,11,14,21), (1,11,15,19), (1,11,16,20), (1,11,17,18),

(1,11,23,24);
(1,12,13,24), (1,12,14,18), (1,12,15,16), (1,12,17,21), (1,12,19,20),

(1,12,22,23);
Gc : (1,10,11,12,13,22,23,24), (1,10,11,12,14,17,18,21),

(1,10,11,12,15,16,19,20);
Gd : (1,13), (1,14), (1,15), (1,20), (1,21), (1,24).

Groups of type Ga contain rotations by 2π/3 around an axis and reflections through a
plane containing that axis, hence they are of type D3h, and only the first one leaves the
distinguished point at the North Pole untouched; those of type Gb contain rotations by π

around an axis and reflections through a plane containing that axis, hence are of type D2h,
but none of these leaves the distinguished point at the North Pole untouched; those of type
Gc combine rotations and reflections through different axes, and none of them preserves the
North Pole; and those of type Gd consist just of reflections in a plane, hence are of type Dh;
the first three preserve the North Pole.
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