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Preface

These are my notes for the three lectures that I gave during the Workshop “Theoret-
ical methods for studying nonequilibrium fluctuations”, held in Orsay (France), June
8–9, 2017. I am deeply grateful to the organizers, David Lacoste and Gatien Verley,
for having organized this very interesting workshop. I could take part in the Work-
shop while visiting the PCT-Gulliver Laboratory at the École Supérieure de Physique
et Chimie Industrielles in Paris, within the Labex CalTisPhysBio. I thank the Director
of the Laboratory, Élie Raphaël, and the Director of the École, Jean-François Joanny,
for their hospitality. I hope that these notes can be a useful reminder for those who
have taken part in the lectures. I apologize for all typos and more serious mistakes
that have crept in.

Paris, June 2017
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An introduction to stochastic

thermodynamics and the
thermodynamics of information

1.1 Equilibrium thermodynamics: A reminder

I start with a brief reminder of equilibrium thermodynamics, essentially for fixing
notations.

Let us consider a macroscopic system S in a generic macrostate X described by
few thermodynamic variables X = (X0, X1, . . . , Xr ).1 In these notes, I shall often con-
sider X to be a macrostate out of equilibrium: it might be produced by applying some
constraints on a thermodynamic system, and then by removing them. The microstate
x ofS is described by a very large set of variables x = (x1, . . . , xN ), N ∼ 1023. The “proba-
bility” W of X is (roughly) the number (or volume) of microscopic states that pertain
to X . We can then state the fundamental postulate of statistical mechanics as given
by Boltzmann’s relation:

The thermodynamic entropy S is given by

S(X ) = kB logW (up to sub-extensive corrections), (1.1)

where kB = 1.38 ·10−23 J/K is Boltzmann’s constant.

Most relations of statistical mechanics follow from this expressions and the properties
of S in thermodynamics.

1I shall often use the parentheses notation for tuples, e.g., A = (ai ) is understood as A = (a1, . . . , aq ),
where q is the length of A.
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1. STOCHASTIC THERMODYNAMICS AND THERMODYNAMICS OF INFORMATION

Shannon and Gibbs entropies

Macroscopic states X are associated with a probability distribution PX = (px) on the
microstates, e.g., the canonical distribution P eq = (peq

x ), where

peq
x := exp[−(Ex −F )/kBT ] . (1.2)

One considers averages of observables of the form 〈A〉P :=∑
x px Ax , where an observ-

able Ax is a function of the microstate.
The information content of a probability distribution (Shannon [1948]; Shannon

and Weaver [1949]) is measured by the Shannon entropy:

S [P ] :=−∑
x

px log px . (1.3)

The Shannon entropy is a measure of the uncertainty associated with the given dis-
tribution: the larger S [P ], the less informative P is. The link between Shannon’s en-
tropy S and the thermodynamical entropy S is expressed by Gibbs’ relation: If P eq is
an equilibrium probability distribution, one has S = kBS [P eq].

The probability distribution P eq of a system in thermal equilibrium satisfies a vari-
ational principle. For instance, if〈E〉P = ∑

x pxEx is fixed, then S [P eq] ≥ S [P ], ∀P ,
where P eq is the canonical distribution. By the same token, the Shannon entropy of
a grand canonical distribution is larger than that of any distribution with the same
values of the average energy and of the average number of particles.

Free energy and information

We can actually derive a more general result by considering the equilibrium of a sys-
tem in contact with a reservoir at temperature T . Let us assume that the system is
initially in a constrained equilibrium macrostate X associated with a probability dis-
tribution P over the microstates, for which the Shannon entropy is given by S [P ].
Define the Kullback-Leibler divergence DKL[P‖Q] between two probability distribu-
tions P = (px) and Q = (qx) by (cf. [Cover and Thomas, 1991, p.18–24])

DKL[P‖Q] :=∑
x

px log
px

qx
. (1.4)

One can then show that DKL[P‖Q] has the following properties:

a) DKL[P‖Q] ≥ 0;

b) DKL[P‖Q] = 0 only if px = qx “almost everywhere”. For discrete microstate
spaces, this means px = qx , ∀x. For continuous microstate spaces, the den-
sities can differ only in regions whose probability vanishes anyway.

One has indeed, due to the fact that − log x is a convex function of x, and by Jensen’s
inequality (cf. A.1),

DKL[P‖Q] =−∑
x

px log
qx

px
≥− log

∑
x

px
qx

px
=− log

∑
x

qx =− log1 = 0. (1.5)
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1.2. Stochastic thermodynamics: Manipulated systems

Note that the equality in (1.5) holds only if qx = px everywhere, since log x is a strictly
concave function of its argument. Also note that in general DKL[P‖Q] 6= DKL[Q‖P ].
For instance, if qx > 0, ∀x, while px = 0 for some x, DKL[P‖Q] is finite, but DKL[Q‖P ]
diverges. We can now define the availability F [P ] by

F [P ] = 〈E〉P −T S [P ]. (1.6)

For the equilibrium distribution at temperature T one has F eq = F [P eq] = 〈E〉eq −
T Seq = F (Helmholtz free energy). We can then prove that for all probability distribu-
tions P one has

F eq ≤F [P ]. (1.7)

One has indeed

∆F :=F [P ]−F [P eq]

=∑
x

[(
pxEx −peq

x Ex
)+kBT

(
px log px −peq

x log peq
x

)]
=∑

x

(
pxEx +kBT log px −F

)
= kBT

∑
x

px log
px

peq
x︸ ︷︷ ︸

Kullback-Leibler divergence

= kBT DKL[P‖P eq] ≥ 0. (1.8)

On the other hand, if 〈E〉P = 〈E〉P eq = E , we have

∆F =−kBT
(
S [P ]−S [P eq]

)= kBT DKL[P‖P eq] ≥ 0, (1.9)

and therefore S [P ] ≤S [P eq] as announced.
If we now assume that the macrostate described by P is such that one can de-

fine its thermodynamic entropy S = kBS [P ]. We can then evaluate the work −W
extracted2 from the system in changing it from non-equilibrium to equilibrium:

−W =Q −∆E (first principle) ≤ T ∆S −∆E (second principle) =−∆F . (1.10)

Thus if a system in contact with a thermal reservoir is not in an equilibrium state, one
can in principle bring it to equilibrium and extract a work W in the process, which is
proportional to the Kullback-Leibler divergence between the probability distribution
of the initial state and that of the equilibrium state.

1.2 Stochastic thermodynamics: Manipulated
systems

We now turn to the consideration of the thermodynamics of small systems. Since
these systems are far from the thermodynamic limit, some of the properties which
hold for ordinary (macroscopic) systems do not apply. In particular

2We consider as positive a work yielded to the system, and as negative a work extracted from it.

3



1. STOCHASTIC THERMODYNAMICS AND THERMODYNAMICS OF INFORMATION

Deterministic

Fluctuating

System S, N ∼ 1

Reservoir (r), N → ∞

Figure 1.1: The conceptual scheme of small-system thermodynamics. A microscopic
system S , subject to fluctuations, is in contact with a large reservoir (r). The balance
of thermodynamic quantities is evaluated on the reservoir, while only the physical
balance (e.g., of energy) is evaluated at the level of the small system.

• Different ensembles are not equivalent;

• Fluctuations are relevant.

Stochastic thermodynamics is the thermodynamic of small systems out of equilib-
rium. We shall see that microscopic reversibility has strong implications for the be-
havior of these systems out of equilibrium. We shall also see why these implications,
which in principle apply to systems of any size, are indeed relevant for small systems,
which are characterized by large fluctuations.

Small systems

Thermodynamics applies without qualifications to systems in the thermodynamic
limit, N →∞, where N is the number of units making the system. In this limit, fluc-
tuations are negligible, and the average values of thermodynamic quantities, such as
the work or heat exchanged with the surroundings, are equal to their typical values.
When the system size becomes very small, eventually just a few molecules, fluctua-
tions become important. In order to evaluate the implications of thermodynamics for
small systems, we shall think that they are in contact with one (or more) reservoirs,
which can be treated by usual thermodynamics. In this way, although we shall re-
frain from associating a non-equilibrium system with a well-defined thermodynami-
cal entropy, we shall evaluate the change in entropy of the associated reservoir for the
different realizations of a stochastic process that the (small) system of interest is un-
dergoing. This is reminiscent of the conceptual scheme of quantum theory, in which
the predictions of the microscopic thermodynamics (Schrödinger equation) can be
interpreted in terms of the interactions of the small system with a macroscopic sys-
tem, governed by classical mechanics. Ritort [2007] has provided a concise review of
the field, and there is a more recent extensive review (Seifert [2012]).
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1.2. Stochastic thermodynamics: Manipulated systems

Markov evolution

We shall discuss a system represented by Markov chain in discrete time. The mi-
crostates are denoted by x ∈ {1,2, . . . , q}, and the time is described by a variable t ∈
{0,1,2, . . .}. The energy of the microstate x is given by Ex(λ), where λ is an external
parameter that can be manipulated. We assume that the system is in contact with a
heat reservoir at temperature T . In this situation the equilibrium distribution is given
by P eq(λ) = (peq

x (λ)), where

peq
x (λ) = e−(Ex (λ)−F (λ))/kBT ; (1.11)

F (λ) =−kBT log
∑

x
e−βEx (λ). (1.12)

The evolution of the microstates is described by a Markov chain, defined by the matrix
W(λ) = (Wx ′x(λ)) which gives the conditional probability that if the system is in state
x at time t it is in state x ′ at time t +1. This probability depends on λ, but does not
otherwise depend explicitly on time. By the law of total probabilities, the evolution
of the probability P (t ) = (px(t )) that the system is in microstate x at time t obeys the
equation

px(t +1) =∑
x ′

Wxx ′(λ)px(t ). (1.13)

The equilibrium distribution P eq must be invariant under this dynamics. One has
therefore the following condition linking W and P eq:∑

x ′
Wxx ′(λ)peq

x ′ (λ) = peq
x (λ). (1.14)

However, for system obeying microscopic reversibility, the dynamics satisfies a stronger
condition, namely that for any pair (x, x ′) of microstates, the probability of a transi-
tion x −→ x ′ must be equal to the probability of the reverse transition x ′ −→ x at
equilibrium. This condition is known as the detailed-balance condition and reads

Wxx ′(λ)peq
x ′ (λ) =Wx ′x(λ)peq

x (λ), ∀x 6= x ′. (1.15)

Work and heat at equilibrium

Given a function Ax of the microstate and the probability distribution P = (px), the
average 〈A〉P is defined by

〈A〉P =∑
x

Ax px . (1.16)

In particular, if P is the equilibrium distribution P eq(λ), the average will be denoted
by 〈·〉eq

λ
. The internal energy at equilibrium is thus given by

E(λ) = 〈Ex(λ)〉eq
λ

=∑
x

Ex(λ)e−(Ex (λ)−F (λ))/kBT . (1.17)

Let us now evaluate the change in the internal energy at equilibrium as λ varies from,
say, λ to λ+dλ. One has E(λ+dλ) = E(λ)+dE(λ), with

dE(λ) =∑
x

dEx(λ) peq
x (λ(t ))︸ ︷︷ ︸

dW

+∑
x

Ex(λ)dpeq
x (λ)︸ ︷︷ ︸

dQ

. (1.18)
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1. STOCHASTIC THERMODYNAMICS AND THERMODYNAMICS OF INFORMATION

Thus dE is split into two contributions: the first one, which depends on the change of
the energies of the microstates, but not on the change of the probability distribution,
can be identified with the work dW performed on the system. The second contri-
bution involves the change in the occupation probability of the microstates. One can
surmise that this change is due to the interaction of the system with the reservoir, and
we can therefore identify this contribution with the heat dQ provided by the reservoir
to the system. The change in the entropy due to the change in the probability distri-
bution is given by

dSeq =−kB d

(∑
x

peq
x (λ) log peq

x (λ)

)
=−kB

∑
x

log peq
x (λ)dpeq

x (λ). (1.19)

Using the expression (1.11) of the equilibrium distribution and taking into account
that

∑
x dpeq

x = 0 one sees that

dSeq =−kB
∑

x
log peq

x (λ)dpeq
x (λ) = 1

T

∑
x

(Ex(λ)−F (λ)) dpeq
x (λ) = dQ

T
. (1.20)

Manipulated system

Let us now assume that the system is manipulated by changing λ, according to a ma-
nipulation protocol given by λ = (λ(0),λ(1), . . . ,λ(tf − 1)) from the initial time t = 0
to the final time t = tf. During this interval, the system evolves along a path x =
(x(0), x(1), x(2), . . . , x(tf)). To be definite, we assume that transitions take place with
the “old” probability matrix W(λ(t )), and that then the energy of the states change to
the new values Ex(λ(t +1)). The energy of the system changes during the evolution
step from t to t +1 by one of two possible mechanisms:

1. The system remains in a given state, say x, whose energy changes from Ex(λ(t ))
to Ex(λ(t +1)). In this case the probability of the occupation of the state has not
changed. We can thus identify the change in the system’s energy as due to work,
given by dWx = Ex(λ(t +1))−Ex(λ(t )).

2. The system jumps from x(t ) to a different state x(t +1) = x ′. This jump is ac-
companied in general by a change in energy, which has to be provided by an
interaction with the reservoir. We can then identify this energy change as due
to heat exchange, with the heat given by dQx ′x = Ex ′(λ(t ))−Ex(λ(t )).

We can now evaluate the probability of a path x , conditioned on its starting point
x(0). We obtain

P [x |x(0)] =Wx(tf),x(tf−1)(λ(tf −1)) · · ·Wx(2),x(1)(λ(1))Wx(1),x(0)(λ(0)). (1.21)

Work and Heat along a path

We can thus evaluate separately the total work and the total heat along a path x , given
the manipulation protocol λ. For the work W [x] we obtain

W [x] =
tf−2∑
t=0

Wx(t+1) =
tf−1∑
t=0

[
Ex(t+1)(λ(t +1))−Ex(t )(λ(t ))

]
. (1.22)
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1.2. Stochastic thermodynamics: Manipulated systems

0
t

Ex

1 2 3

1
0

2

3

4

5

Figure 1.2: Schematic representation of a path followed by a manipulated system.
The lines represent the energy levels of the different microstates of the system. Their
height varies due to the manipulation of the parameter λ, which takes place at the
times marked by a vertical dotted line. The blue lines follow the states actually occu-
pied by the system, and the red arrow denotes a transition. Thus the system starts, in
this case, in state 2 at time 0. The energy changes in going from t = 0 to t = 1, and then
again in going from t = 1 to t = 2. At t = 2 the system undergoes a transition to state 4,
which involves acquiring a quantity of heat Q = E4(λ(2))−E2(λ(2)) from the reservoir.
The energy of this state changes (due to a change in the parameter λ) between t = 2
and t = 3. Thus the system’s energy can change either because the energy of the state
occupied by the system changes (work) or because the system jumps to a state with a
different energy (heat).

Note that we assume that the system is allowed to make a transition at tf, but the
manipulation stops at tf − 1. The heat Q is evaluated by summning the changes of
energy due to changes in the microstate. One obtains

Q[x] =
tf−1∑
t=0

[
Ex(t+1)(λ(t ))−Ex(t )(λ(t ))

]
. (1.23)

The total change in energy is given by

∆E = Ex(tf)(λ(tf −1))−Ex(0)(λ(0)) =W [x]+Q[x]. (1.24)

The work W and the heat Q both depend on the whole path, while ∆E , since E is a
state function, depends only on initial and final states.

7



1. STOCHASTIC THERMODYNAMICS AND THERMODYNAMICS OF INFORMATION

Fluctuation relations: Crooks and Seifert

We assume that the states of the system are invariant under time reversal. Then to
each path x = (x(0), x(1), . . . , x(tf−1), x(tf)) we can associate the time-reversed path x̂ ,
defined by

x̂ := (x(tf), x(tf −1), . . . , x(1), x(0)); (1.25)

x̂(t ) := x(tf − t ) = x(t̂ ). (1.26)

We can likewise define the time-reversed protocol λ̂, defined by

λ̂ : λ̂(t ) :=λ(tf − t ) =λ(t̂ ); t = 1, . . . , tf. (1.27)

Note the shift in the argument: λ is defined for 0 ≤ t ≤ tf − 1, while λ̂ is defined for
1 ≤ t ≤ tf. We can then evaluate the conditional probability of the reversed path with
the reversed protocol. Given the direct transition x −→ x ′ for a given value of λ, the
probability of the reverse transition x ′ −→ x is simply given by Ŵxx ′(λ) = Wxx ′(λ).
Now, if detailed balance (1.15) holds, we have an explicit relation between these prob-
abilities:

Wxx ′(λ)e−Ex′ (λ)/kBT =Wx ′x(λ)e−Ex (λ)/kBT . (1.28)

One has therefore
Ŵxx ′(λ) =Wx ′x(λ)e−(Ex (λ)−Ex′ (λ))/kBT . (1.29)

Crooks’ relation

A basic insight is reached by comparing the probability of a “forward” path x under
the “forward” protocol λ with the probability of the reversed path x̂ under the re-
versed protocol λ̂. To ease the notation, we shall write the transition probabilities as
functions of time, rather than via their dependence on λ:

Wxx ′(λ(t )) =Wxx ′(t ). (1.30)

We then have
Ŵxx ′(t ) =Wx ′x(tf − t ), t = 1, . . . tf. (1.31)

Let us evaluate the ratio of the conditional probability of the “forward” path x , given
x(0), under the “forward” protocolλ, to that of the reverse path x̂ given x(0), i.e., x(tf),
under the reverse protocol λ̂, which we denote by P̂ [x̂ |x̂(0)]. We obtain

P [x |x(0)]

P̂ [x̂ |x̂(0)]
= Wx(tf)x(tf−1)(tf −1) · · ·Wx(2)x(1)(1)Wx(1)x(0)(0)

Ŵx̂(tf)x̂(tf−1)(tf) · · ·Ŵx̂(2)x̂(1)(2)Ŵx̂(1)x̂(0)(1)

= Wx(tf)x(tf−1)(tf −1)

Wx(tf−1)x(tf)(tf −1)
· · · Wx(1)x(0)(0)

Wx(0)x(1)(0)
(by permutation)

= e
−

(
Ex(tf)(tf−1)−Ex(tf−1)(tf−1)

)
/kBT · · ·e−(Ex(1)(0)−Ex(0)(0))/kBT (detailed balance)

= e−Q[x]/kBT . (1.32)

8



1.2. Stochastic thermodynamics: Manipulated systems

Thus this ratio of probabilities is related to the change in entropy of the reservoir.
Since Q =−T∆S(r) (assuming that the reservoir is always at equilibrium), we have

P [x |x(0)]

P̂ [x̂ |x̂(0)]
= e∆S(r)[x]/kB . (1.33)

This relation is fundamental in the theory of stochastic thermodynamics, and goes
under the name of Crook’s relation, since it was derived in Crooks [1999].

Unconditional probabilities: Seifert’s relation

To go from the conditional probabilities to the actual path probabilities it is sufficient
to multiply by the occupation probabilities px0 (0), pxf (tf) at either end of the path. In
this way we obtain

P [x] =P [x |x(0)] p(0)
x(0); (1.34)

P̂ [x̂] =P [x̂ |x̂(0)] p̂(0)
x̂(0) =P [x̂ |x̂(0)] p(f)

xf
. (1.35)

Thus we obtain

P̂ [x̂] = P̂ [x̂ |x̂(0)]p(f)
xf

=P [x]e
Q[x]/kBT−

(
log p(0)

x(0)−log p(f)
xf

)
. (1.36)

The second term in the exponential can be interpreted by introducing the notion of
stochastic entropy (Crooks [1999]; Qian [2002]) via the relation

sx(t ) :=−kB log px(t ). (1.37)

We then have (
log p(0)

x(0) − log p(f)
xf

)
= (

sxf (tf)− sx(0)(0)
)

/kB =∆s/kB. (1.38)

This relation implies

P̂ [x̂] =P [x]eQ[x]/kBT−∆s/kB =P [x]e−
(
∆S(r)+∆s

)
/kB . (1.39)

The exponent can be interpreted as the total entropy production associated with the
path x :

∆iS[x] =∆S(r)[x]+∆s[x]. (1.40)

This appears as the increase of the entropy of the complex formed by the system un-
der study and the reservoir with which it is in contact. Summing over x , and taking
into account that the probability P̂ [x̂] is normalized, and that to each path x corre-
sponds one and only one reversed path x̂ , we obtain the following integral fluctua-
tion relation:

〈e−∆iS[x]/kB〉 =∑
x

P [x]e−∆iS[x]/kB =∑
x

P̂ [x̂] = 1. (1.41)

By Jensen’s inequality, we recover Clausius’ expression of the second principle in the
form

〈∆iS[x]〉 ≥ 0. (1.42)

Relations (1.39,1.41) were derived by Seifert [2005]. In this way the total entropy pro-
duction appears to be intimately related to the probability of distinguishing one path
from its reverse.

9



1. STOCHASTIC THERMODYNAMICS AND THERMODYNAMICS OF INFORMATION

Jarzynski’s relation

In the special case in which the system is driven out of an initial equilibrium state,
i.e., P (0) = P eq, we obtain

− log px(0)(0) = (
Ex(0)(λ0)−F (λ0)

)
/kBT ; (1.43)

− log p̂x(0)(0) = (
Exf (λf)−F (λf)

)
/kBT ; (1.44)

∆s = [∆E − (F (λf)−F (λ0))]/kBT. (1.45)

Thus the relation (1.39) takes on the form

P̂ [x̂] =P [x]eQ[x]/kBT−∆s/kB =P [x]e−[W [x]−(F (λf)−F (λ0))]/kBT . (1.46)

Therefore one has the integral relation

〈e−W [x]/kBT 〉 = e−(F (λf)−F (λ0))/kBT . (1.47)

This relation, derived by Jarzynski [1997], is at the origin of much research. It pointed
out in particular on the possibility of extracting information about the free-energy
differences of macrostates by performing non-equilibrium experiments.

Elementary examples

In the present paragraph we see how Jarzynski’s relation works out in the case of sim-
ple manipulating protocols.

• Let us consider a sudden change of the parameter λ:

λ0 −→λf. (1.48)

In a sudden change, the microstate of the system does not have the time to
relax. Thus the change in energy is only due to the work, which is itself simply
given by

W [x] = Ex(0)(λf)−Ex(0)(λ0). (1.49)

Evaluating the average of e−W /kBT over the initial distribution P eq(λ0) we obtain

〈e−W /kBT 〉 =∑
x

e−(Ex (λf)−Ex (λ0))/kBT e−(Ex (λ0)−F (λ0))/kBT

=∑
x

e−(Ex (λf)−F (λ0))/kBT = e−(F (λf)−F (λ0))/kBT . (1.50)

• On the opposite limit, let us assume that the change is so slow that the system
has the time to relax to equilibrium for each value of the parameter λ. We can
formalize this hypothesis by setting

λ(t ) = `(t/tf), with `(0) =λ0 and `(1) =λf, (1.51)

10



1.2. Stochastic thermodynamics: Manipulated systems

and letting tf →∞. We then have

W [x] =
tf−1∑
t=0

(
Ex(t+1)(λ(t +1))−Ex(t+1)(λ(t ))

)
'

tf−1∑
t=0

∂Ex(t+1)(λ)

∂λ

∣∣∣∣
λ(t )

dλ

dt
∆t

'
tf−1∑
t=0

∂Ex(t+1)(λ)

∂λ

∣∣∣∣
λ=`(t/tf)

1

tf

d`

dx

∣∣∣∣
x=t/tf

=
∫ tf

0
dt ′ 〈∂Ex(t ′)(λ)

∂λ
〉
λ=λ(t ′)

λ̇(t ′)

=
∫ λf

λ0

dλ 〈∂Ex(λ)

∂λ
〉
λ
=W rev = F (λf)−F (λ0). (1.52)

In going from the third to the fourth line we have taken advantage of the fact
that the system is able to sample the equilibrium distribution for each value
of λ. As a consequence, the work W is no more a fluctuating variable but is
equal (with probability one) to the reversible work W rev, that, as we know, is
equal to the free-energy difference.

Dissipated work close to equilibrium

We can obtain an interesting relation for the dissipated work for the case in which the
system is manipulated slowly. From Jensen’s inequality we obtain

〈W 〉 ≥−kBT log〈e−W /kBT 〉 . (1.53)

Therefore the dissipated work is non-negative on average:

W diss := 〈W 〉−∆F ≥ 0. (1.54)

Assume W = 〈W 〉+δW , where δW is small and vanishes on average. This holds if λ is
manipulated slowly. We then obtain

e−∆F /kBT = 〈e−W /kBT 〉 = 〈e−(〈W 〉+δW )/kBT 〉 ' e−〈W 〉/kBT 〈e−δW /kBT 〉
= e−〈W 〉/kBT 〈1−δW /kBT + 1

2(kBT )2
δW 2 +·· ·〉

' e−〈W 〉/kBT
(
1+ 1

2(kBT )2
〈δW 2〉+ · · ·

)
. (1.55)

Taking the log, if higher orders in δW can be neglected, we obtain

W diss ' 1

2kBT
〈δW 2〉 . (1.56)

This relation connects fluctuations of the work to the dissipated work close to equi-
librium, and is therefore an instance of the Fluctuation-Dissipation Theorem, that we
discuss in the next paragraph.
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Generalized Jarzynski relation and the Fluctuation-Dissipation Theorem

It is possible to generalize Jarzynski’s relation by considering the average of a gen-
eral function Ax of the microstate x. Multiply both sides of (1.46) by Axf , where xf is
the last state of the path x . The argument of the exponential is nothing else as the
dissipated fluctuating work

W diss[x] =W [x]−∆F. (1.57)

Let us now take the sum over all paths x . The left-hand side simply becomes the
average of Ax taken with the equilibrium distribution with the final value λf of λ(t )
in the protocol. On the right-hand side we obtain the average of Ax(tf) taken over all

paths, weighted by the factor e−W diss[x]/kBT . We thus obtain the generalized Jarzynski
relation

〈Ax(tf)〉λf
= 〈Ax(tf)e

−W diss[x]/kBT 〉λ . (1.58)

Let us assume that the energy Ex(λ) depends on λ via the expression

Ex(λ) = E (0)
x −λBx , (1.59)

where Bx is some function of the microstate. Then the work W has the expression (I
use a continous-time formalism in this section)

W [x] =−
∫ tf

0
dt λ̇(t )Bx(t ). (1.60)

Let the perturbation protocol λ satisfy λ0 = λ(tf) = 0, with λ(t ) and its derivative
small. We can then take the functional derivative of both sides of equation (1.58)
with respect to λ(t ), and setλ→ 0. The left-hand side vanishes. We thus obtain

0 = δ〈A(tf)〉
δλ(t )

∣∣∣∣
λ===0

− 〈Ax(tf)
δ

δλ(t )
e−W diss[x]/kBT 〉

λ

∣∣∣∣
λ=0

. (1.61)

The first term on the rhs is equal to the response function R(tf, t ), defined by

R(tf, t ) := δ〈A(tf)〉
δλ(t )

∣∣∣∣
λ===0

. (1.62)

The second term yields
1

kBT

d

dt
〈A(tf)B(t )〉 . (1.63)

We thus obtain the Fluctuation-Dissipation theorem (for a recent review, cf. Marini
Bettolo Marconi et al. [2008]):

R(tf, t ) =− 1

kBT

d

dtf
〈A(tf)B(t )〉 . (1.64)

Thus Jarzynski’s generalized equality (1.58) can be interpreted as an extension of the
fluctuation-dissipation theorem far from equilibrium.

12



1.2. Stochastic thermodynamics: Manipulated systems

Applications: Exploring the free-energy landscape

We can take advantage of Jarzynski’s relation to obtain information on the depen-
dence of the free energy of a system on an observable M which acts as a collective
coordinate.

• Let Mx be a collective coordinate and M eq := 〈Mx〉eq its equilibrium average.

• Assume that we can manipulate the system via an energy function which de-
pends on the instantaneous value of M and on a parameter λ:

U (Mx ,λ) −→ Ex(λ) = E (0)
x −U (Mx ,λ). (1.65)

• We wish to evaluate the free energy of the system when M is constrained on
some value:

F0(M) :=−kBT log
∑

x
δ(M −Mx)e−E (0)

x /kBT . (1.66)

• Then the probability distribution of M in the unperturbed system is given by

P eq(M) = e−(F0(M)−F0)/kBT . (1.67)

Work probability distribution

To solve this problem, let us switch to a description of the system’s evolution in con-
tinuous time. Define the evolution operator Lλ which governs the evolution of the
instantaneous probability distribution P (t ) = (px(t )):

dpx(t )

dt
= (

Lλ(t ) P (t )
)

x . (1.68)

Here we have introduced the following notation: when a matrix A = (Axx ′) (x, x ′ =
1, . . . , q) is multiplied by a vector Q = (qx) (x = 1, . . . , q), yielding a vector V = (vx), we
set

vx =∑
x ′

Axx ′qx ′ = (A Q)x . (1.69)

The evolution operator can be expressed in terms of the transition rates kx ′x that de-
termine the condition probability per unit time that the system undergoes the tran-
sition x −→ x ′ (x 6= x ′). We have indeed the master equation

dpx(t )

dt
= ∑

x ′ ( 6=x)

[
kxx ′(λ)px ′(t )−kx ′x(λ)px(t )

]= (
Lλ(t ) P (t )

)
x . (1.70)

The evolution operator Lλ annihilates the equilibrium distribution P eq(λ), so that
P eq(λ) remains stationary. One has indeed

kx ′x(λ)e−Ex (λ)/kBT = kxx ′(λ)e−Ex′ (λ)/kBT (1.71)

by the detailed-balance condition, which implies(
LλP eq(λ)

)
x = 0, ∀λ, x. (1.72)
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1. STOCHASTIC THERMODYNAMICS AND THERMODYNAMICS OF INFORMATION

In this setting, a path x is defined by a sequence of states xk and of jump times tk :

x = ((x0, t0), (x1, t1), (x2, t2), . . . , (xf, tkf ), tf), (1.73)

such that x = xk for tk ≤ t < tk+1, and we set tf = tkf+1 as the last time (in which no
jump occurs). The fluctuating work is then given by

W =−
∫ tf

t0

dt ′ λ̇(t ′)
∂U

(
Mx(t ′),λ(t ′)

)
∂λ

. (1.74)

Let us evaluate the joint probability Φ(W, t ) = (φx(W, t )) that at time t the system is
in state x and the total work W (t ) accumulated until that time is equal to W . This
quantity obeys the following evolution equation:

∂φx(W, t )

∂t
= (

Lλ(t )Φ
)

x + λ̇(t )
∂U (Mx ,λ(t ))

∂λ

∂φx

∂W
. (1.75)

The first term on the right-hand side describes the evolution of the occupation prob-
ability of the states, and the second term describes the evolution of the accumulated
work W . This equation is difficult to handle, in particular because it becomes a partial
differential equation for the W -dependence. But it can be simplified if one introduces
the moment-generating function of the W distribution. This function is defined by
Ψ(µ, t ) = (ψx(µ, t )), where

ψx(µ, t ) :=
∫

dW eµW φx(W, t ), (1.76)

where µ is a parameter. We have indeed

∑
x

∂kψx(µ, t )

∂µk

∣∣∣∣
µ=0

= 〈(W (t ))k〉 , (1.77)

where the average is taken with respect to the instantaneous distribution Φ(W, t ). It
is a simple matter to obtain the evolution equation satisfied byΨ(µ, t ):

∂ψx

∂t
= (Lλ(t )Ψ)x +µλ̇(t )

∂U (Mx ,λ(t ))

∂λ
ψx(µ, t ). (1.78)

In this equation µ appears as a parameter. It can be then separately solved for each
value of µ. In particular, for µ=−1/kBT one obtains

ψx(−1/kBT, t ) = e−(Ex (λ(t ))−F (λ(0)))/kBT , (1.79)

and therefore ∑
x
ψx(−1/kBT, t ) = 〈e−W /kBT 〉 = e−(F (λ(t ))−F (λ(0)))/kt . (1.80)

In order to prove (1.79) let us define Γ(t ) = (γx(t )), where

γx(t ) = e−(Ex (λ(t ))−F (λ(0)))/kBT . (1.81)
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1.2. Stochastic thermodynamics: Manipulated systems

Then γx(t ) satisfies

γx(0) = peq
x (λ(0)) =Ψ(x,−1/kBT,0); (1.82)

∂γx

∂t
=− λ̇

kBT

∂Ex(λ(t ))

∂λ
γx(t ) = (

Lλ(t )Γ(λ(t ))
)

x −
λ̇

kBT

∂H(x,λ(t ))

∂λ
γx(t ), (1.83)

since Γ(t ) ∝ P eq(λ(t )) and LλP eq(λ) = 0. Therefore

Γ(t ) =Ψ(−1/kBT, t ), (1.84)

which we wished to prove. We can now multiply both sides of the expression (1.79)
by δ(M −Mx) and sum over x. We obtain

〈δ(M −Mx)e−W /kBT 〉 =∑
x
δ(M −Mx)e−(Ex (λ(t ))−F0)/kBT

= exp{− [F0(M)−U (M ,λ(t ))−F0]/kBT } . (1.85)

Multiplying both sides by eU (M ,λ(t ))/kBT we finally obtain

eU (M ,λ(t ))/kBT 〈δ(M −Mx)e−W /kBT 〉 = e−[F0(M)−F0]/kBT . (1.86)

This relation has been derived by Crooks [1998] and by Hummer and Szabo [2001]. It
has been exploited to evaluate the free energy differences of some microscopic sys-
tem manipulated via optical tweezers and other methods, as we shall see later.

Dissipation and irreversibility

Let us rewrite equation (1.46) in the form

e(W [x]−∆F )/kBT = P [x]

P̂ [x̂]
. (1.87)

Taking the log and averaging, we obtain

W diss = 〈W 〉−∆F = kBT
∑

x
P [x] log

P [x]

P̂ [x̂]︸ ︷︷ ︸
DKL[P ‖P̂ ]

. (1.88)

Therefore W diss measures the Kullback-Leibler divergence of P [x] from P̂ [x̂]. This
result was derived by Kawai et al. [2007]. Let use now define the work distribution
P (W ) for the forward process, and P̂ (W ) for the reversed process by

P (W ) =∑
x
δ(W −W [x])P [x]; (1.89)

P̂ (W ) =∑
x
δ(W −W [x])P̂ [x]. (1.90)

We then obtain from (1.87)

W diss = kBT
∫

dW P (W ) log
P (W )

P̂ (−W )
= kBT DKL[P (W )‖P̂ (−W )]. (1.91)

Therefore the whole divergence of P [x] from P̂ [x̂] is captured by the work distribu-
tion.
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Generalized Clausius Inequality

Let us recall the definition of availability for a system in a probability distribution P
in contact with a heat reservoir at temperature T , We have

F [P ] := 〈E〉P −T S [P ] = F +kBT DKL[P‖P eq]. (1.92)

On the other hand, we have the following expressions for the average energy and the
average (fluctuating) entropy:

〈E〉P =∑
x

Ex px ; (1.93)

S [P ] =−kB
∑

x
px log px . (1.94)

If the system undergoes a manipulation, and it follows a path x , the fluctuating heat
Q and the fluctuating work W are related to the change in energy ∆E by the relation
(1.24), that we can rewrite as follows:

Q[x] =∆E −W [x]. (1.95)

Taking the average, we obtain

〈Q[x]/kBT −∆s/kB〉 = 1

kBT

[
〈∆E〉−〈W 〉− 〈∆E〉+∆F +∆F (f) −∆F (i)

]
, (1.96)

where ∆F is the difference of availability associated with the instantaneous proba-
bility distribution P and the instantaneous value of λ from the corresponding equi-
librium free energy:

∆F (λ,P ) = 〈Ex(λ)〉P −T S [P ]. (1.97)

Seifert’s integral relation intimates that

〈e−Q[x]/kBT+∆s/kB〉 = 1. (1.98)

Thus, by Jensen’s inequality we obtain

〈−Q[x]/kBT +∆s/kB〉 =− 1

kBT

[
〈W 〉−∆F −∆F (f) +∆F (i)

]
≤ 0. (1.99)

Denoting by W the average work provided to the system during the transformation,
we obtain

W −∆F ≥∆F (f) −∆F (i). (1.100)

This result generalizes Clausius’ inequality to systems out of equilibrium. It was de-
rived by Sagawa and Ueda [2010] and in a slightly different form by Esposito and
van den Broeck [2011].
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1.3. Stochastic thermodynamics: Systems out of equilibrium

1.3 Stochastic thermodynamics: Systems out of
equilibrium

Steady states out of equilibrium

We have so far considered systems for which the transition matrixW satisfies detailed
balance. Let us now consider what happens if this condition is violated. In this case
there is a cycle x0 −→ x1 −→ ·· · −→ xn −→ x0 such that

Wx0xn · · ·Wx2x1Wx1x0

Wx0x1 · · ·Wxn−1xn Wxn x0

6= 1. (1.101)

Let us consider, e.g., a system with three states, whose energies are given by Ex , x ∈
{0,1,2}. We assume that the system is in contact with two reservoirs: one, at tem-
perature T0, for the transitions 0 *) 1 and 1 *) 2, and one at temperature T1 for the
transition 0*) 2. Thus we have

Wi j

W j i
= e−(E j−Ei )/kBT0 , for {i , j } = {0,1} or {i , j } = {1,2}; (1.102)

W20

W02
= e−(E2−E0)/kBT1 . (1.103)

We have indeed

W02W21W10

W01W12W20
= exp

[
− (E2 −E0)

(
1

kBT0
− 1

kBT1

)]
6= 1. (1.104)

It can be shown under mild hypotheses that in this situation there is a unique
probability distribution P ss = (pss

x ) over the state which is left invariant by the evolu-
tion, i.e., which satisfies ∑

x ′
Wxx ′pss

x ′ = pss
x . (1.105)

However, in the steady state, there is a non-vanishing probability flux between some
states, i.e., one has, for some pairs (x, x ′),

J ss
xx ′ :=Wxx ′pss

x ′ −Wx ′x pss
x 6= 0. (1.106)

In our simple case, it is still true that

Wxx ′

Wx ′x
= e∆S(r)

xx′/kB . (1.107)

However, the concerned reservoir is different for different transitions. If for each pair
of states (x, x ′) for which a transition is allowed the concerned reservoir is unique, we
can proceed pretty much along the same lines as for systems obeying detailed bal-
ance, since the relation (1.33) still holds, provided ∆S(r) is interpreted as the entropy
change of all reservoirs with which the system is in contact. A more general situa-
tion is one in which the same transition can be triggered by coupling with different
reservoirs (cf. Esposito [2012]). We shall discuss this situation later on. To ease the
notation, in this section we shall use units in which Boltzmann’s constant kB = 1.
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Fluctuation relations

From (1.107) we obtain Crooks’ relation in the form

P [x |x(0)]

P [x̂ |x̂(0)]
=

tf−1∏
t=0

Wx(t+1)x(t )

Wx(t )x(t+1)
= e∆S(r)[x]. (1.108)

Evans-Searles fluctuation relation

Multiplying this relation by pss
x0

/pss
xf and taking the log we obtain

log
P ss[x]

P ss[x̂]
=∆S(r)[x]+∆SS =∆Stot, (1.109)

where ∆Stot is the total entropy production. Summing over all paths x with a given
value of ∆Stot yields the fluctuation relation (Evans and Searles [1994]):

P ss(∆Stot)

P ss(−∆Stot)
= e∆Stot

. (1.110)

This obviously implies 〈∆Stot〉 ≥ 0 by Jensen’s inequality, but leaves open the possibil-
ity that ∆Stot < 0 for some realizations of the process. This behavior has been, rather
unfortunately, called “transient violation of the second law” (Evans et al. [1993]). How-
ever, there is no violation of the second law, since the average of the entropy produc-
tion is always positive. It is important to realize that entropy production is measured
in units of kB. Thus if the considered system is too large, or the duration of the path
is too long, the probability of observing negative values of the entropy production
becomes extremely small.

Distribution function for the entropy

Let us now evaluate the joint probabilityΦx(S, t ) distribution of the state x, and of the
total entropy S exchanged with the reservoirs up to time t . This quantity obeys the
evolution equation

∆Φx(S, t +1) =Wx,xΦx(S, t )+ ∑
x ′ (6=x)

Wxx ′Φx ′(S −∆Sxx ′ , t )−Φx(S, t ). (1.111)

Let us remind of the identity

f (x −∆) = e−∆∂/∂x f (x), (1.112)

which holds for each analytic function f (x) and can be proved by Taylor expanding
both sides of the relation. Applying this identity the previous relation assumes the
form

∆Φx(S, t +1) = ∑
x ′ (6=x)

[
Wxx ′e−∆Sxx′∂/∂SΦ(x ′,S, t )−Wx ′xΦ(x,S, t )

]
, (1.113)
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where the entropy ∆Sxx ′ yielded to the reservoirs is given by (1.107) which we can
rewrite as

∆Sxx ′ = log
Wxx ′

Wx ′x
. (1.114)

We now define the moment-generating functionΨx(µ, t ) by

Ψx(µ, t ) :=
∫

dS eµSΦx(S, t ). (1.115)

Then the dependence on ∆Sxx ′ in equation (1.113) transforms according to

e−∆Sxx′∂/∂S −→ e−µ∆Sxx′ =
(

Wxx ′

Wx ′x

)µ
. (1.116)

As a consequence,Ψx(µ, t ) satisfies the evolution equation

Ψx(µ, t +1) =∑
x ′

Wxx ′

(
Wxx ′

Wx ′x

)µ
Ψx ′(µ, t ) = (

T(µ) ·Ψ)
x . (1.117)

This result was obtained by Lebowitz and Spohn [1999]. Thus, ifΛmax(µ) is the largest
eigenvalue of T(µ), we have, for large values of t ,

Ψx(µ, t ) ∝ e−tψ(µ), (1.118)

where

ψ(λ) =− logΛmax(µ). (1.119)

In this way ψ(µ) appears as a large-deviation function (cf. Ellis [1985], Touchette
[2009]) for the rate of entropy yielded to the reservoir in a time interval of duration
t . Indeed, if we define the time-averaged entropy rate Σ by

Σ= S

t
, (1.120)

the probability distribution function of Σ satisfies a large-deviation principle. In fact,
evaluating the inverse Laplace transform ofΨ(µ, t ) for large values of t by the saddle-
point method, we obtain the following estimate of the the probability density Pt (Σ)
that the time-averaged value of the entropy yielded to the reservoir during a time t is
equal to Σ:

Pt (Σ) ∝ e−t I (Σ), (1.121)

where the rate function I (Σ) is the Legendre transform of ψ(µ):

I (Σ) = min
µ

(
ψ(µ)+µΣ)

(1.122)
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The Gallavotti-Cohen symmetry

Let us evaluate T(µ−1). We obtain

Txx ′(µ−1) =Wxx ′

(
Wxx ′

Wx ′x

)µ−1

=Wx ′x

(
Wx ′x
Wxx ′

)−µ
= Tx ′x(−µ). (1.123)

Thus T(µ−1) and T(−µ) are one the transposed of the other and have therefore the
same spectrum. Thus their largest eigenvalues coincide, and one has

ψ(−µ) =ψ(µ−1). (1.124)

Taking the Legendre transform, we obtain the following symmetry for the rate equa-
tion:

I (−Σ) = I (Σ)+Σ, (1.125)

that can be interpreted as
Pt (Σ)

Pt (−Σ)
= et Σ. (1.126)

This relation is known as the Gallavotti-Cohen fluctuation theorem, since it was de-
rived by them in the context of hamiltonian dynamics (with some rather strong er-
godicity conditions) (Gallavotti and Cohen [1995a], Gallavotti and Cohen [1995b]).
As a consequence, the relation (1.124) will be called the Gallavotti-Cohen symme-
try. Gallavotti [1996] showed that this relation implies, for states close to equilibrium,
both the Fluctuation-Dissipation theorem and the reciprocity law of kinetic coeffi-
cients derived by Onsager.

Note that the fluctuation relation (1.110) holds for finite times, starting from the
steady state, provided one takes for ∆Stot the total change in entropy of the system
and the reservoirs. However, since the change in entropy of the system is bounded,
while the change of the entropy in the reservoirs grows with time, we have for large
values of t

∆Stot '∆S(r). (1.127)

One has however to take into account the fact that the probability of observing nega-
tive entropy production vanishes exponentially as t grows.

Transitions along different channels

Let us consider a situation in which the transition form a state j to a state i can take
place with different modalities, identified by the variable α: the transition rate with
modality α is thus given by W α

i j , and the total transition rate is given by

W tot
i j =∑

α

W α
i j . (1.128)

The entropy exchange associated with the transition in modality α is given by

∆Sαi j = log
W α

i j

W α
j i

(1.129)
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and the expected exchange rate associated with a transition is given by

〈Ṡi j 〉 =
∑
α

W α
i j log

W α
i j

W α
j i

. (1.130)

On the other hand, if we neglect the difference between different modalities, we have

∆Stot
i j = log

W tot
i j

W tot
j i

, (1.131)

yielding an exchange rate

〈Ṡtot
i j 〉 =W tot

i j log
W tot

i j

W tot
j i

. (1.132)

Let us set
W α

i j =W tot
i j pα

i j , (1.133)

so that
∑
αpα

i j = 1. Then

〈Ṡi j 〉 =W tot
i j log

W tot
i j

W tot
j i

+W tot
i j

∑
α

pα
i j log

pα
i j

pα
j i

. (1.134)

The last term is always positive. Thus (as it is natural to expect) neglecting the differ-
ent modalities yields an underestimation of the entropy production. This is relevant,
e.g., when nonequilibrium is generated by connecting the system with different ther-
mal or chemical reservoirs.

Adiabatic and non-adiabatic entropy production

In a stationary system without detailed balance a certain amount of dissipation is
needed to maintain the steady state. Let us consider the entropy ∆Sx ′x yielded to the
environment upon a transition x −→ x ′. We can write this quantity in the following
way, introducing the instantaneous probability distribution px :

∆Sxx ′ = log
Wxx ′

Wx ′x
= log

Wxx ′px ′

Wx ′x px︸ ︷︷ ︸
∆iSxx′

− log
px ′

px︸ ︷︷ ︸
∆S (S)

xx′

. (1.135)

We recognize in the first term the entropy production ∆iS (cf. equation (1.40)), while
the second term is the change in the system’s fluctuating entropy. Let us now evaluate
the average of the first term as a function of the instantaneous probability distribution
P . We obtain

〈∆iS〉 = 1

2

∑
xx ′

(
Wxx ′px ′ −Wx ′x px

)︸ ︷︷ ︸
Jxx′

log
Wxx ′px ′

Wx ′x px︸ ︷︷ ︸
Xxx′

. (1.136)
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The quantity Jxx ′ is the net probability current from x ′ to x in the state considered. It
appears multiplied by a “force” Xxx ′ given by

Xxx ′ := log
Wxx ′px ′

Wx ′x px
= log

Wxx ′pss
x ′

Wx ′x pss
x︸ ︷︷ ︸

X (ad.)
xx′

+ log
px ′pss

x

px pss
x ′︸ ︷︷ ︸

X (n.ad.)
xx′

, (1.137)

where we have introduced the steady-state probability distribution P ss = (pss
x ). The

force appears therefore split into an adiabatic contribution (the first term) and a non-
adiabatic one (the second term). Note that the non-adiabatic term vanishes if the sys-
tem is in the steady state. It is then easy to show that the average entropy production
is split into two contributions of the form

∑
J X , which are separately non-negative

on average (Esposito and Van den Broeck [2010]):

〈∆iS〉 = 1

2

∑
xx ′

Jxx ′ X (ad.)
xx ′︸ ︷︷ ︸

∆iS(ad.)≥0

+ 1

2

∑
xx ′

Jxx ′ X (n.ad.)
xx ′︸ ︷︷ ︸

∆iS(n.ad.)≥0

. (1.138)

The adiabatic contribution is also called “housekeeping heat”, because it is the en-
tropy generated in order to maintain the system in its non-equilibrium steady state.

The adiabatic contribution satisfies an integral fluctuation relation, from which
the fact that it is non-negative on average follows by means of Jensen’s inequality. Let
us define ϕx ′x by

ϕx ′x := Probss(x −→ x ′) =Wx ′x pss(x). (1.139)

We then have

ϕx ′x ≥ 0, ∀x, x ′;
∑
x ′x
ϕx ′x = 1, ∀x. (1.140)

Therefore (ϕx ′x) is a probability distribution. Define moreover

ϕ̂xx ′ =ϕx ′x , (1.141)

which corresponds to a probability distribution, too. We then have the integral fluc-
tuation theorems (Speck and Seifert [2005], Esposito and Van den Broeck [2010]):

〈e−∆iS(ad)〉 =∑
xx ′

ϕxx ′

ϕx ′x
ϕx ′x =∑

xx ′
ϕxx ′ = 1; (1.142)

〈e−∆iS(n.ad.)〉 =∑
xx ′

Wxx ′px ′
px pss

x ′

px ′pss
x
=∑

x
px = 1. (1.143)

These relation imply, by Jensen’s inequality,

〈∆iS
(ad.)〉 ≥ 0; (1.144)

〈∆iS
(n.ad)〉 ≥ 0. (1.145)
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1.3. Stochastic thermodynamics: Systems out of equilibrium

The Hatano-Sasa relation

The Hatano-Sasa relation, that we are now going to discuss, is a relation that applies
to general non-equilibrium systems when their dynamics is manipulated. Therefore
it does not require that the underlying dynamics satisfies microscopic reversibility.
The only formal requirement is that the dynamics is ergodic, i.e., that the invariant
probability distribution of the dynamics, when the manipulation parameter is fixed,
is unique and attainable (this requires that there are no absorbing states and some
further rather mild conditions). Let us consider a system with transition probabilities
W(λ) =Wxx ′(λ) which depend on a parameter λ, that can be manipulated according
to a protocol λ = (λ(t )). For each given value of λ there is a steady-state probability
distribution P ss(λ) = (pss

x (λ)) on the microstates, which satisfies

pss
x (λ) =∑

x ′
Wxx ′(λ)pss

x ′(λ). (1.146)

Let us fix the protocol λ. Then the conditional probability P [x |x(0)], given its initial
state x(0), is given by

P [x |x(0)] =
tf−1∏
t=0

Wx(t+1)x(t )(λ(t )) (1.147)

The probability of a path x , assuming that the initial state is described by the steady-
state distribution P ss(λ0) corresponding to the initial value of λ, is given by

P [x] =P [x |x(0)]pss
x(0)(λ0). (1.148)

Let us define the quantity φx(λ) by

φx(λ) :=− log pss
x (λ). (1.149)

This appears like a fluctuating entropy in the steady state of the dynamics. If the
system undergoes a transition x −→ x ′, we have of course

∆φx ′x(λ) :=φx ′(λ)−φx(λ). (1.150)

Let us evaluate the sum of ∆φ over a path x , when the system is manipulated accord-
ing to a protocolλ:

Φ[x] :=
tf−1∑
t=0

∆φx(t+1)x(t )(λ(t )) =
tf−1∑
t=0

[
φx(t+1)(λ(t ))−φx(t )(λ(t ))

]
=φx(tf)(λ(tf))−

tf−1∑
t=0

[
φx(t+1)(λ(t +1))−φx(t+1)(λ(t ))

]−φx(0)(λ(0))

=φx(tf)(λ(tf))−φx(0)(λ(0))−A [x], (1.151)

where we have defined A [x] by

A [x] :=
tf−1∑
t=0

[
φx(t+1)(λ(t +1))−φx(t+1)(λ(t ))

]
. (1.152)
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The Hatano-Sasa relation

Let us defineΨx(tf), for all paths x taking place between t = 0 and t = tf by the relation

Ψx(tf) := ∑
x : x(t )=x

e−A [x]P [x], (1.153)

where A is defined by (1.152). We can show thatΨx(t ) has the expression

Ψx(t ) = pss
x (λ(t )). (1.154)

One has indeed
Ψx(t=0) = pss

x (λ0). (1.155)

One then has, assuming (1.154) holds for t −1,

Ψx(t ) =∑
x ′

Wxx ′(λ(t ))
pss

x ′(λ(t ))

pss
x ′(λ(t −1))

pss
x ′(λ(t −1)) =∑

x ′
Wxx ′(λ(t ))pss

x ′(λ(t ))

= pss
x (λ(t )). (1.156)

Summing over x , one obtains a relation similar to Seifert’s for A :

〈e−A 〉 = 1. (1.157)

This is the Hatano and Sasa [2001] relation. The quantity A can be connected, via
(1.151), to the non-adiabatic entropy production defined in (1.138). Prost et al. [2009]
have exploited this relation to obtain an analog of the Fluctuation-Dissipation theo-
rem for general non-equilibrium systems.

Biased ensembles

We have found in several cases the need to evaluate averages of the form

ψ(µ, t ) := 〈eµQ〉 =∑
x

P [x]eµQ[x], (1.158)

where Q[x] is some functional of the path x . We now try and discuss the ways in
which these averages can be evaluated. Let us first remark that, by taking the deriva-
tive of ψ(µ, t ) with respect to µ, we obtain

∂ψ(µ, t )

∂µ
= 〈Q〉µψ(µ, t ), (1.159)

where we have defined the biased average

〈· · ·〉µ :=∑
x
· · · eµQ[x]

ψ(µ, t )
P [x]. (1.160)

Integrating (1.159) we obtain

ψ(µ, t ) = exp

[∫ µ

0
dµ′ 〈Q〉µ′

]
. (1.161)
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1.3. Stochastic thermodynamics: Systems out of equilibrium

Thus the problem boils down to the evaluation of the biased average 〈Q〉µ. The dif-
ficulty lies in the fact that in its expression (1.160) appears the same function ψ(λ, t )
that we wish to evaluate. However, it only appears as a normalizing factor. Let us
introduce an arbitrary (positive-valued) functional Π[x] of the path x . Then one can
express 〈Q〉µ in the following way:

〈Q〉µ =
∑

x (Q[x]/Π[x])Π[x]P [x]eµQ[x]∑
x (1/Π[x])Π[x]P [x]eµQ[x]

= 〈Q/Π〉µ,Π

〈1/Π〉µ,Π
, (1.162)

where we have defined

〈· · ·〉µ,Π =∑
x

(· · · )Π[x]P [x]eµQ[x]. (1.163)

To be more concrete, let us consider a stationary non-equilibrium Markov pro-
cess, with an initial distribution P (0) = p(0)

x . Then the path probability P [x] is given
by

P [x] =WxN ,xN−1WxN ,xN−1 · · ·Wx1,x0 p(0)
x . (1.164)

We also assume that we wish to evaluate (1.158) where Q[x] is the total entropy ex-
change with the reservoir over a certain period of time of duration, say, t . ThenΨ(µ, t )
satisfies the Lebowitz-Spohn equation of motion (1.117), which does not conserve
probability. Let us define a biased process satisfying the evolution equation

Ψx(µ, t +1) =∑
x ′

W̃xx ′Ψx ′(µ, t ), (1.165)

where the transition rates W̃xx ′ are defined by

W̃xx ′ :=Wxx ′

(
Wx ′x
Wxx ′

)µ
for x 6= x ′;

W̃xx := 1− ∑
x ′(6=x)

W̃x ′x .
(1.166)

These rates differ from those of the Lebowitz-Spohn equation by the diagonal term.
However, they now conserve probability and thus generate a bona fide Markov pro-
cess. Let us now introduce the functionalΠ[x], defined by

Π[x] :=
M∏

k=1
Πxk ,xk−1 (tk ), (1.167)

where

Πxx ′(t ) :=


1, if x 6= x ′;

W̃xx(t )/Wxx(t ), if x = x ′.
(1.168)

We can then define the biased weight of the paths x :

Pλ[x] :=P [x]Π[x]eµQ[x] (1.169)

= W̃xN ,xN−1W̃xN−1,xN−2 · · ·W̃x1,x0 p(0)
x0

. (1.170)
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Therefore generating the paths via the process defined by (1.165) and weighting them
according to equation (1.162) we can evaluate 〈Q〉µ and, by integrating overµ,Ψ(µ, t ).
The large-deviation function can then be obtained in the large-time limit:

g (µ) = lim
t→∞−1

t
logΨ(µ, t ). (1.171)

This method has been applied, e.g., to the asymmetric exclusion process (ASEP) by Im-
parato and Peliti [2007]. The problem with this technique is that the biased process
tends to sample poorly the full distribution. However, one can improve the statistics
by monitoring the behavior of 1/Π[x], trying to obtain a good compromise between
sampling and reweighting. The problem can also be circumvented by using a cloning
approach, introduced by Giardinà et al. [2006], which is described in detail in Vivien
Lecomte’s lectures at this Workshop.

1.4 Thermodynamics of Information

There is an excellent recent review on the topic: Parrondo et al. [2015]. A number of
important papers are collected and discussed in Leff and Rex [2002]. The connections
between thermodynamics and information predate the birth of information theory
by several decades, since when Maxwell, and then Boltzmann and Gibbs, emphasized
the statistical nature of the second law.

Maxwell’s demon

In his Theory of Heat (1871), J. C. Maxwell illustrated the statistical nature of the sec-
ond principle by this very famous argument:

Now let us suppose that such a vessel is divided into two portions, A
and B, by a division in which there is a small hole, and that a being, who
can see the individual molecules, opens and closes this hole, so as to al-
low only the swifter molecules to pass from A to B, and only the slower
molecules to pass from B to A. He will thus, without expenditure of work,
raise the temperature of B and lower that of A, in contradiction to the sec-
ond law of thermodynamics.

Thus if a demon has a way to ascertain the energy of a single molecule, it can use this
information to reduce the entropy of the vessel, driving it away from equilibrium. It
would then be in principle possible to exploit this disequilibrium to extract work.

Szilard’s engine

Szilárd [1929] proposed an intriguing conceptual experiment that made the connec-
tion between the second law and information more precise. (The paper is translated
in Szilard [2006] and can be found in Leff and Rex [2002].)
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1.4. Thermodynamics of Information

• Consider a closed cylindrical vessel of volume V , in contact with a heat reser-
voir at temperature T .

• Let the vessel contain an ideal gas, made of a single molecule. The molecule is
initially free to wander in the whole cylinder.

• Assume that the vessel can be separated into two possibly unequal sections of
volumes VL (left) and VR = V −VL (right) respectively by inserting a partition
that can be moved left or right in the cylinder, thus becoming a piston.

• Let an agent initially insert the piston, and then ascertain by some means if the
molecule is in the left (L) or in the right (R) section of the cylinder.

• The following procedure depends on the case:

– If the particle is in L, let the piston be slowly moved to the right, until it
reaches the end of the cylinder. The molecule will keep bouncing on the
piston, yielding a work −W which is given by the usual expression for an
isothermal expansion:

−WL =
∫ V

VL

p dV = kBT log
V

VL
. (1.172)

This will take place with a probability pL =VL/V .

– By the same token, if the particle is on the right, the piston will be moved
to the left, until it reaches the end of the cylinder. One thus obtains a work
−WR = kBT log(V /VR). This will take place with a probability pR =VR/V .

• At the end of the expansion, the partition is removed and the cylinder returns
to the initial state. The cycle can then be repeated.

• In this way, the agent can extract from the reservoir a work −W which is equal
to

−W = kBT

[
pL log

V

VL
+pR log

V

VR

]
=−kBT

∑
`∈{L,R}

p` log p` = kBT S [P ] (1.173)

per cycle. The maximum value of this expression is obtained when the two
sections have equal volume, and −W = kBT log2.

In this way information about the location of the particle in the cylinder is turned into
work extraction. This idea was generalized by Bennett and popularized by Feynman,
by considering a machine in which a very long sequence of microscopic vessels, each
containing a single molecule in a known L or R location, are exploited to extract work
by a reservoir ([Feynman, 1996, p.146–147]).
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Figure 1.3: The Bennett-Feynman information-fueled engine. A tape containing a
large number of Szilard cylinders, with the molecule in state 1 (R), is fed into the
machine. Inside, each cylinder undergoes Szilard’s manipulation, and work −W =
kBT log2 is extracted on average for each site in the tape. At the end of the manipula-
tion the location of the molecule in the cylinder is randomized. The net result is that
the information contained in the tape is randomized, and work −W = kBT log2 for
each tape location is extracted.

Landauer’s principle

How can this result be reconciled with the second principle? The Second Principle, in
Lord Kelvin’s words (Thomson [1851]), intimates that

it is impossible, by means of inanimate material agency, to derive me-
chanical effect from any portion of matter by cooling it below the temper-
ature of the coldest of the surrounding objects.

Yet the Szilard engine appears to accomplish exactly that. We have to consider the
effects of the manipulation on the total system, made by the particle and the mea-
surement device. Let us assume, e.g., that the two variables, i.e., the location x ∈ {L,R}
of the particle and its measured location y ∈ {L,R}, are initially independent and each
distributed with equal probabilities on the two possible states. Before the measure-
ment, the total system can be in any of the four states (L,L), (L,R), (R,L) or (R,R) with
equal probability. The Shannon entropy of this distribution is equal to log4 = 2log2.
After the measurement (assumed error-free) only the states (L,L) or (R,R) are avail-
able. Therefore the entropy of the total system (with this initial condition) has been
reduced to log2 by the measurement, and this cannot be achieved without providing
some work to the system, equal at least to −T ∆S = kBT log2. By the same token, after
the measurement and the manipulation have taken place, the states of the particle

28



1.4. Thermodynamics of Information

and of the measurement devices are uncorrelated, and the total system can find itself
in any of the four states mentioned above.

Let us consider a mechanical system evolving by Hamiltonian dynamics. Let the
initial condition be described by a distribution in a region Γ0 of phase space, of vol-
ume Ω0. If the system is manipulated, but prevented from exchanging heat with its
surroundings, the volumeΩt of the evolved regionΓt will be equal to the initial one by
Liouville’s theorem. If on the contrary we find that the phase-space volume has been
reduced, we can conclude that the system has exchanged heat with its surrounding,
yielding them a quantity Q of heat such that the entropy increase of the surround-
ings more than compensates its own entropy loss. This argument is weak because
the concept of entropy is well established only for thermodynamic systems at equi-
librium. However, here we suppose to be measuring only the entropy increase (or
decrease!) of the heat bath, that is supposed to be always at equilibrium, and for
which therefore the thermodynamic notion of entropy applies.

To be definite, let X denote the possible microstates of a system at equilibrium at
temperature T .3 The energy of microstate x is given by Ex . Let the system be con-
nected to a measuring apparatus with states Y , all of equal energy (for simplicity).
The measurement is a manipulation that introduces correlations between the states
of X and Y . These correlations are measured by the mutual information I (X ;Y ) de-
fined by

I (X ;Y ) =∑
x,y

PX Y (x, y) log
PX Y (x, y)

PX (x)PY (y)
. (1.174)

Since this expression has the form of the Kullback-Leibler divergence between the
joint probability distribution PX Y of X and Y and the product PX PY of the marginal
distributions, it is immediate to see that it is non-negative, and vanishes only if X
and Y are independent. Moreover, it is symmetrical upon the exchange of X and Y .
Now, if the system and the measuring apparatus are not coupled, the equilibrium dis-
tribution of the (X ,Y ) system factorizes into P eq

X P eq
Y . Let us assume that the measure-

ment yields a joint probability distribution PX Y with some mutual dependence. If the
measurement does not perturb the state of X , the marginal distribution PX remains
invariant. We can also assume that the measuring apparatus is optimized so that the
marginal PY (y) after the measurement is equal to the initial one. (It is left as an exer-
cise to check what happens if this is not true.) Let us evaluate the availability F after
the measurement: we obtain

F = 〈E〉PX Y +kBT
∑
x,y

PX Y (x, y) logPX Y (x, y), (1.175)

while the equilibrium free energy, by the factorization of the probabilities, is given by

F eq = 〈E〉P eq
X
+kBT

∑
x,y

P eq
X (x)P eq

Y (y) log
(
P eq

X (x)P eq
Y (y)

)
. (1.176)

3Much of this discussion I gathered from TE Ouldridge (Imperial College, London) in the Luxem-
bourg Workshop on Chemical Reaction Networks.
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In our hypotheses, 〈E〉PX Y = 〈E〉PX . Thus

F −F eq = kBT
∑
x,y

PX Y (x, y) log
PX Y (x, y)

P eq
X (x)P eq

Y (y)
= kBT I (X ;Y ). (1.177)

According to (1.8), the maximum work that can be extracted from the relaxation of
the system to equilibrium is given by F −F eq. Thus we obtain that a measurement
allows one to extract from the reservoir a work −W whose average satisfies

−W =−〈W 〉 ≤ kBT I (X ;Y ). (1.178)

To reconcile this result with the second principle we have to admit that during the
manipulation corresponding to the measurement a quantity of heat equal at least
to W has been provided to the surrounding, increasing the entropy of the reservoir
by at least kBI (X ;Y ). Thus the operation of the Szilárd engine can be summarized as
follows:

1. Let us start from the situation in which the partition is placed in the middle of
the cylinder, but no measurement has yet been done. The Shannon entropy of
the (X ,Y ) system is equal to 2log2.

2. The measurement is performed, and now one has y = x ∈ {L,R}. The Shannon
entropy of the system is equal to log2. Therefore an amount of work equal at
least to kBT log2 has been performed on the system, and passed as heat to the
reservoir.

3. By performing the free expansion, an amount of work no larger than kBT log2
is gleaned from the reservoir.

4. The partition is placed again in the middle of the cylinder, and the first state is
recovered, since the correlation between X and Y is now broken.

The working of the Szilard engine can be analyzed from the point of view of stochas-
tic thermodynamics. This applies more generally to the ways of exploiting the infor-
mation on a thermodynamic system obtained by measurement to extract work from
a heat reservoir.

• Let us consider a system at equilibrium, whose states are distributed by the “a
priori” probability P eq

X = (peq
x ).

• A measurement apparatus yields a signal M correlated with the state of the sys-
tem. Thus, having received the signal m the distribution of the system is given
by the conditional Pm = (px|m).

• Let us denote by PX |M = (px,m) the joint probability of X and M . We have px,m =
px|m pm .

• Assume that the internal energy 〈E〉PX does not vary upon the measurement.
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• We can now evaluate the change in the availability before and after the mea-
surement:

F (f) −F (i) = kBT
∑
x,m

px,m log
px,m

px pm
(1.179)

= kBT
∑
x,m

px,m log
px|m

px︸ ︷︷ ︸
I (X ;M)

. (1.180)

Here I (X ; M) is the mutual information between the system X and the mea-
surement M .

• By exploiting the relation (1.10) between the differences in availability and the
work W to be performed on the system we obtain the inequality

W ≥−kBT I (X ; M). (1.181)

One can also consider the reverse process, in which a system is manipulated in order
to be brought to a reference state (i.e., by reducing its entropy). This allows us to
obtain Landauer’s bound in the context of stochastic thermodynamics.

• Assume again that 〈∆E〉 does not vary upon the manipulation.

• Consider, e.g., a two-state memory: P (i) = (p0, p1) which is brought to a refer-
ence state: P (i) −→ P (f) = δx0.

• Evaluate the change in availability: ∆F (f)−∆F (i) =−T S(f)+T S(i) = kBT H [P (i)],
where S [P (i)] is the Shannon entropy of the initial distribution.

• We obtain therefore W ≥ kBT H [P (i)], which corresponds to Landauer’s bound.

Historically this analysis followed a rather wandering path. Szilárd [1929] hinted
that the demon could be exorcised if the measurement of the particle’s position re-
quired dissipation, and Brillouin [1949] made the argument more explicit by consid-
ering detailed measurement protocols. On the other hand, it was argued that a dissi-
pationless measurement could be performed provided the measuring apparatus was
in a “standard state” before the measurement. This does not contradict what we said
above, because in this case the change of state of Y does not change the entropy of
the X ∪Y system. But to produce the measuring apparatus in the reference state, an
entropy-reduction manipulation should take place. Landauer [1961] pointed out that
in this context it was necessary to spend some work to erase the former state of the
measuring apparatus (or of the demon’s memory). If the demon is considered as a
mechanical device operating from the measurement’s input it is not necessary to ex-
plicitly consider the demon’s memory, but only the state of the measuring apparatus.
In the context of the thermodynamics of computation, Bennett [2003] generalized it
in the following way:
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Any logically irreversible manipulation of information, such as the era-
sure of a bit or the merging of two computation paths, must be accom-
panied by a corresponding entropy increase in non-information bearing
degrees of freedom of the information processing apparatus or its envi-
ronment.

This statement is referred to as Landauer’s principle. Sagawa and Ueda [2010] pointed
out that the entropy increase mentioned by Bennett can take place as well in the mea-
surement as in the erasure state. However, if we only consider the coupling between
the measuring apparatus and the system, and treat the demon as a purely mechan-
ical model, the erasure step is unnecessary. The only point is that after the cycle is
finished, and the partition is reset, the correlation between the particle and the mea-
suring system is broken and has to be reestablished.

Irreversible reset

An experimental demonstration of Landauer’s principle has been carried out by Bérut
et al. [2012]. In this experiment, a colloidal particle is trapped in a bistable potential
created by rapidly switching a laster trap between two neighboring locations. The
height of the potential barrier can be controlled by varying the laser intensity, and a
uniform potential drop (tilt) can be produced by slowly moving the underlying fluid.
Then it is possible to device a protocol such that, irrespectively on whether the parti-
cle is initially on state L or R, it ends up eventually in state 1, thus providing a “refer-
ence state” for further manipulations. The potential Vλ(x) felt by the particle can be
obtained by sampling the histogram P (x) of its positions for each state of the laser, via
the relation pλ(x) ∝ e−Vλ(x)/kBT . In this way, the work W performed on the particle on
a trajectory x = (x(t ))can be evaluated via the expression

W [x] =
∫ tf

t0

dt λ̇(t )
∂Vλ(t )(x(t ))

∂λ
. (1.182)

The experiment shows that, in the chosen protocol, the Landauer bound can be
approached when the manipulation is carried out sufficiently slowly.
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Figure 1.4: The erasure protocol used in the experiment by Bérut et al. [2012]. One
bit of information stored in a bistable potential is erased by first lowering the central
barrier and then applying a tilting force. In the figures, we represent the transition
from the initial state, 0 (left-hand well), to the final state, 1 (right-hand well). We do
not show the obvious 1 −→ 1 transition. Indeed the procedure is such that irrespective
of the initial state, the final state of the particle is always 1. The potential curves shown
are those measured in the experiment. From the original publication.
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Figure 1.5: a, Success rate of the erasure cycle as a function of the maximum tilt am-
plitude, Fmax, for constant Fmaxτ. b, Approach to the Landauer bound. Heat distribu-
tion P (Q) for transition 0 −→ 1 with t = 25s and Fmax = 1.89·10−14N. The solid vertical
line indicates the mean dissipated heat, 〈Q〉, and the dashed vertical line marks the
Landauer bound, 〈Q〉Landauer. c, Mean dissipated heat for an erasure cycle as a func-
tion of protocol duration, τ, measured for three different success rates, r : plus signs,
r ≥ 0.90; crosses, r ≥ 0.85; circles, r ≥ 0.75. The horizontal dashed line is the Landauer
limit. The continuous line is the fit with the function [A exp(−t/τK )+1]B/τ, where τK

is the Kramers time for the low barrier. Error bars, 1 s.d. From Bérut et al. [2012].
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2
Applications of Stochastic
Thermodynamics to living

systems

2.1 Introduction

I cannot find a better justification for discussing the relevance of stochastic thermo-
dynamics in living processes that the observations made in Phillips and Quake [2006]
on the energy scale relevant for the tiny objects that make up the machinery of life.
The relevant thermal energy scale is kBT which, at 300K is about 4.1 ·10−21 J. The typ-
ical length scale is the nanometer, and therefore we expect the typical force to be of
the order of a few picoNewton. Interestingly, the energies of a number of processes
become comparable with kBT (and with each other) at the nanometer scale, as de-
tailed in Figure 2.1. On the other hand, the energies of chemical bonds (of the order
of the eV' 1.6·10−19 J) are somehow larger, allowing for the stability of chemical com-
plexes. These observation imply that it is not possible to understand the workings of
the molecular machinery of life without taking into account fluctuations.

A rotary motor: ATP synthase

A number of essential cell mechanisms are dedicated to free-energy transduction
(cf. Hill [1989]), i.e., the transformation of available free energy from one form to an-
other, which is possibly more suitable for the cell’s workings. For example, in most
eukaryotes the free energy received either from light or from the decomposition of or-
ganic or inorganic compounds is transduced into the difference of an electro-chemical
potential across a membrane. This difference can then be put to work for several pro-
cesses. One very important example of this mechanisms is provided by ATP synthase
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2. STOCHASTIC THERMODYNAMICS IN LIVING SYSTEMS

grees of freedom is to consider collective excitations. For
example, phonons characterize the vibrations of a crys-
talline solid and magnons describe collective excitations of
magnetic spins. 

Indeed, physicists talk of “-ons” of all kinds. The bio-
logical setting provides a loose analogy because some
biological structures are characterized with the label 
“-somes,” which derives from the Greek word for “body.”
The term refers to macromolecular assemblies that are
made from multiple molecular components that act in a
collective fashion to perform multiple functions. Some of
the most notable examples include the ribosome, used in
protein synthesis; the nucleosome, which is the individual
packing unit for eukaryotic DNA; the proteasome, an as-
sembly that mediates protein degradation; and the tran-
scriptisome, which mediates gene transcription. By mech-
anisms and principles that are still largely unknown,
proteins assemble into -somes, perform a task, and then
disassemble again.

One of the most pleasing examples of biological col-
lective action is revealed by the machines of the so-called
central dogma. The term refers to the set of processes
whereby DNA is copied (replication), genes are read and
turned into messenger RNA (transcription), and finally,
messenger RNA is turned into the corresponding protein
by ribosomes (translation). Such processes involve multi-
ple layers of orchestration that range from the assembly
of macromolecular complexes to the simultaneous action
of multiple machines to the collective manner in which
cells may undertake the processes. Figure 3 shows the ma-
chines of the central dogma in bacteria engaged in the
processes of transcription and translation simultaneously.

The theme of collective action is also revealed in the
flow of information in biological systems. For example, the
precise spatial and temporal orchestration of events that oc-
curs as an egg differentiates into an embryo requires that
information be managed in processes called signal trans-
duction. Biological signal transduction is often broadly pre-
sented as a series of cartoons: Various proteins signal by in-
teracting with each other via often poorly understood
means. That leads to a very simple representation: a net-
work of blobs sticking or pointing to other blobs. Despite lim-
ited knowledge, it should be possible to develop formal the-
ories for understanding such processes. Indeed, the general
analysis of biological networks—systems biology—is now
generating great excitement in the biology community.

Information flow in the central dogma is likewise often
presented as a cartoon: a series of directed arrows show-
ing that information moves from DNA to RNA to proteins,
and from DNA to DNA. But information also flows from
proteins to DNA because proteins regulate the expression
of genes by binding to DNA in various ways. Though all bi-
ologists know that interesting feature of information flow,
central-dogma cartoons continue to omit the arrow that
closes the loop. That omission is central to the difference
between a formal theory and a cartoon. A closed loop in a
formal theory would admit the possibility of feedback and
complicated dynamics, both of which are an essential part
of the biological information management implemented by
the collective action of genes, RNA, and proteins.

Understanding collective effects in the cell will require
merging two philosophical viewpoints. The first is that life
is like a computer program: An infrastructure of machines
carries out arbitrary instructions that are encoded into DNA
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Figure 2. The confluence of energy scales is illustrated in this graph, which shows how thermal, chemical, mechanical, and
electrostatic energies associated with an object scale with size. As the characteristic object size approaches that at which mo-
lecular machines operate (shaded), all the energies converge. The horizontal line shows the thermal energy scale kT which, of
course, does not depend on an object’s size. We estimate binding energy (purple) by considering an electron in a box; for com-
parison, the graph shows measured binding energies for hydrogen bonds (square), phosphate groups in ATP (triangle), and co-
valent bonds (circle), along with characteristic energies for nuclear and subatomic particles. In estimating the bending energy
(blue), we took an elastic rod with an aspect ratio of 20:1 bent into a semicircular arc, and to compute the fracture energy
(green) we estimated the energy in chemical bonds in a longitudinal cross section of the rod. The electrostatic energy (orange)
was obtained for a spherical protein with singly charged amino acids of specified size distributed on the surface.

Figure 2.1: The confluence of energy scales is illustrated in this graph, which shows
how thermal, chemical, mechanical, and electrostatic energies associated with an ob-
ject scale with size. As the characteristic object size approaches that at which molec-
ular machines operate (shaded), all the energies converge. The horizontal line shows
the thermal energy scale kBT which, of course, does not depend on an object’s size.
We estimate binding energy (purple) by considering an electron in a box; for com-
parison, the graph shows measured binding energies for hydrogen bonds (square),
phosphate groups in ATP (triangle), and covalent bonds (circle), along with charac-
teristic energies for nuclear and subatomic particles. In estimating the bending en-
ergy (blue), we took an elastic rod with an aspect ratio of 20:1 bent into a semicircular
arc, and to compute the fracture energy (green) we estimated the energy in chemi-
cal bonds in a longitudinal cross section of the rod. The electrostatic energy (orange)
was obtained for a spherical protein with singly charged amino acids of specified size
distributed on the surface. From Phillips and Quake [2006].

(cf. Figure 2.2), an enzyme which exploits proton imbalance across the mitochondrial
membrane to produce ATP. Remarkably, this protein is composed to two main units,
called F0 and F1, which together form a kind of rotary motor. More specifically, the
insoluble F0 unit remains attached to the membrane, while the F1 unit is hydrophilic
and responsible for hydrolyzing ATP. The workings of this protein have been thor-
oughly investigated via single-molecule experiments (Yasuda et al. [1998]). In partic-
ular, the experimenters were able to show that the enzyme can reverse its function,
consuming ATP while pushing protons across the membrane. Following the move-
ment of a single F1 unit, they exhibited its functioning by 120◦ rotation steps, which
also occasionally contains some backward steps (cf. Figure 2.3).
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2.2. Enzymes and molecular motors

Figure 2.2: ATP synthase is an enzyme that creates the energy storage molecule
adenosine triphosphate (ATP). Left: Molecular model of ATP synthase determined
by X-ray crystallography. The blue part is the F0 unit, while the red part is the F1 one.
Right: Depiction of the operation of ATP synthase using the chemiosmotic proton
gradient to power ATP synthesis through oxidative phosphorylation. From Wikipedia.

Nonequilibrium processes in the cell

It is not too far-fetched to describe the inner workings of the cell as an intricate net-
work of far-from-equilibrium chemical reactions. These chemical reactions take part
in the free energy transduction and also take advantage of free-energy imbalances in
handling different kinds of information, e.g., by using transport to enhance spatial
localization of some reactions, or by using template-directed polymerization for the
transcription of DNA into RNA, or of mRNA into polypeptides, or for the synthesis of
compounds useful for the cell, like ATP. All these reactions involve free-energy imbal-
ances of a few kBT ’s and objects of the size of a few nanometers at most. Thus fluc-
tuations are strong, and may be stronger for reaction which involve small number of
molecules. It is interesting therefore to investigate what stochastic thermodynamics
has to tell us on chemical reactions.

2.2 Enzymes and molecular motors

In this section we consider a few chemical reactions, of increasing complexity, from
the point of view of stochastic thermodynamics. The theory was developed in large
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2. STOCHASTIC THERMODYNAMICS IN LIVING SYSTEMS

Figure 2.3: Stepwise rotation of the F1 unit of the ATP synthase at low ATP concentra-
tion. The inset shows the angular position of the unit as inferred from the position of
a long actin filament attached to the unit. Note the backward step in the early part of
the track. From Yasuda et al. [1998].

part by Gaspard [2004].

Isomerization

Let us consider an isomerization reaction, in which a chemical A is transformed in a
chemical B:

A
k+
*)
k− B. (2.1)

We denote by [X] the concentration of chemical X ∈ {A,B}. We then have, e.g.,

d

dt
[A] =−k+[A]+k−[B], (2.2)

and therefore, at equilibrium,
[B]

[A]
= k+

k− . (2.3)

On the other hand, if the difference in (free) energy between a B molecule and an A
molecule1 is equal to ε, we must have, at temperature T ,

[B]

[A]
= e−ε/kBT . (2.4)

1I speak of “free energy”, since the molecules could have some internal degrees of freedom, and
therefore ε could acquire a temperature dependence arising from a trace over them. I explicitly rule
out, however, dependence on concentration arising from entropy of mixing, etc.

38



2.2. Enzymes and molecular motors

Therefore the reaction scheme (2.1) is compatible with thermodynamic equilibrium
only if

k+

k− = e−ε/kBT . (2.5)

This corresponds to the de Donder relation which relates the forward and backward
reaction steps of a chemical reaction to the affinity A, i.e., to the change in free energy
associated with the extent of reaction. This relation was fist derived by Wegscheider
[1901], and de Donder [1936] exploited it to introduce the concept of the chemical
affinity of a reaction.

Given the microscopic reaction rates k+ and k−, we can write down the mas-
ter equation for the isomerization reaction of a system containing a total of N A+B
molecules. If we denote by n the number of A molecules, the rates of the transitions
n −→ n ±1 are given by

n −→ n −1 : k−n;

n −→ n +1 : k+(N −n).
(2.6)

Denoting by pn(t ) the probability that there are n A molecules at time t , we have

dpn

dt
= ∑

n′ (6=n)

[
Wnn′pn′(t )−Wn′n pn(t )

]
, (2.7)

where the transition rates Wn′n are given by:

Wn′n = k+nδn′,n−1 +k− (N −n)δn′,n+1. (2.8)

We have therefore, e.g., for n′ = n +1,

Wn+1,n

Wn,n+1
= k+n

k−(N −n −1)
' e−∆G/kBT , (2.9)

where ∆G =G(n +1)−G(n), in which

G(n) = n logn + (N −n)
[
ε+ log(N −n)

]
, (2.10)

is the Gibbs free energy of a state with n A particles, taking into account the entropy
of mixing. This is the connection which gives the “macroscopic” rates in term of the
“microscopic” ones appearing in (2.5).

“Passive” catalysis

Let us now consider the case in which the isomerization is catalyzed by an enzyme E.
We assume that the enzyme forms with either A or B a complex E∗, which can then
decompose in either A+E or B+E. This can be represented by the scheme shown in
figure 2.2. We obtain therefore the reaction scheme

A+E
k+

1
*)
k−

1

E∗ k+
2
*)
k−

2

B+E, (2.11)
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B

E

E∗

A

Figure 2.4: Reaction scheme of “passive” catalysis. The unbound enzyme E can bind
either an A or a B molecule, going to the bound state E∗. It can then release either of
them. All reactions are considered reversible.

where E∗ represents the bound enzyme. The condition of thermodynamic equilib-
rium require

k+
1 k+

2

k−
1 k−

2

= e−ε/kBT . (2.12)

We can parametrize the reaction constants in this way:

1. Two overall attempt frequencies ω1, ω2;

2. An energy barrier ε∗ for the formation of the complex E∗.

Then we have k+
1 =ω1 e−ε

∗/kBT , k−
1 =ω1, etc., and

k+
1

k−
1

= e−ε
∗/kBT ; (2.13)

k+
2

k−
2

= e−(ε−ε∗)kBT . (2.14)

The relation (2.5) then straightforwardly follows.
We can now discuss the evolution of the catalysis by introducing an integer n mea-

suring the number of B molecules synthesized since an arbitrary starting point. This
number can be negative. We also assign an index to represent the state of the enzyme:
0 if it is free, and 1 if it is bound. We then have a master equation for the catalysis:

dp0n

dt
= k−

1 p1n +k+
2 p1,n−1 −

(
k+

1 [A] +k−
2 [B]

)
p0n ; (2.15)

dp1n

dt
= k+

1 [A] p0n +k−
2 [B] p0,n+1 −

(
k−

1 +k+
2

)
p1n . (2.16)
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2.2. Enzymes and molecular motors

The dependence on the concentration is related of course to the rate at which an en-
zyme molecule meets either an A or a B molecule. It is useful to simplify the equation
by introducing the effective rate constants k̃, defined by

k̃−
1 = k−

1 ; k̃+
1 = k+

1 [A]; (2.17)

k̃−
2 = k−

2 [B]; k̃+
2 = k+

2 . (2.18)

We can now write down an evolution equation for the probability that the enzyme
molecule is free or bound. Let us denote by P =∑

n p1n the probability that it is bound.
We then have

dP

dt
= (

k̃+
1 + k̃−

2

)
(1−P )− (

k̃−
1 + k̃+

2

)
P. (2.19)

The steady-state solution at fixed A and B concentration is

P ss =
(

1+ k̃−
1 + k̃+

2

k̃+
1 + k̃−

2

)−1

. (2.20)

At equilibrium, when [B] = [A]e−ε/kBT , with the above parametrization of the rate con-
stants, we have

P eq = [A]e−ε
∗/kBT

1+ [A]e−ε∗/kBT
, (2.21)

which is consistent with the Langmuir isotherm.

Large deviations

Let us now look at the large deviations of the catalysis rate, in a steady state in which
the concentration of A and B is fixed. We define the generating functionΨα(λ, t ) by

Ψα(λ, t ) =
+∞∑

n=−∞
eλ(n+α/2)pα,n(t ), (2.22)

where α ∈ {0,1} and the sum runs over all integers. In this way we have assigned
by convention a half-integer value of n to states where the enzyme is bound. Then,
letting z = eλ/2, from eqs.(2.15,2.16) we obtain

d

dt

(
Ψ0

Ψ1

)
= L(z)

(
Ψ0

Ψ1

)
, (2.23)

where the evolution matrix L(z) is given by

L(z) =
( −(

k̃+
1 + k̃−

2

)
, z−1k̃−

1 + zk̃+
2

zk̃+
1 + z−1k̃−

2 , −(k̃−
1 + k̃+

2 )

)
. (2.24)

Let us remark that z only appears in the off-diagonal elements, and determines the
eigenvalues of L(z) only via their product

Π(z) = z2k̃+
1 k̃+

2 + k̃−
1 k̃+

1 + k̃−
2 k̃+

2 + z−2k̃−
1 k̃−

2 . (2.25)
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Thus, for a value z̄ of the variable which exchanges the values of the first and last term,
the eigenvalues of L(z) remain the same. We have therefore

z̄2k̃+
1 k̃+

2 = z−2k̃−
1 k̃−

2 . (2.26)

Taking into account the relation (2.12), the definition of the effective rates (2.17,2.18),
and the definition of the free-energy change per step

∆G = ε−kBT ln
[A]

[B]
, (2.27)

this symmetry corresponds to

λ−→ λ̄=∆G/kBT −λ. (2.28)

In particular, for the equilibrium case, where ∆G = 0, we obtain the symmetry with
respect to a sign change for λ.

Let us denote by θ(λ) the leading eigenvalue of L. Then for long times t we have

Ψ∼ et θ(λ), (2.29)

while we have just seen that

θ(λ) = θ(∆G/kBT −λ). (2.30)

This corresponds to the Gallavotti-Cohen symmetry. To interpret this symmetry, let
us evaluate the probability pn(t ) =∑

αpα,n(t ) by inverting the Laplace transformation
defined in equation (2.22). We have, for large values of t ,

pn(t ) '
∫ +i∞

−i∞
dλ

2πi
e−λn+tθ(λ). (2.31)

We can focus on values of n ' J t , where J is some average production rate. This
corresponds to looking at large deviations (of order t ) in the number n of produced
B particles. We can then evaluate the integral via the saddle-point method, obtaining
an expression for the probability Pt (J ) = p J t (t ):

Pt (J ) ' e−tψ(J ), (2.32)

where
ψ(J ) = min

λ
[λJ −θ(λ)]. (2.33)

Let us assume that this minimum is reached for λ∗ satisfying

θ′(λ∗) = J . (2.34)

Then ifλ∗ corresponds to a given value of J ,∆G/kBT −λ∗ corresponds to the opposite
value of J . We have therefore

Pt (−J ) = e−J t∆G/kBT Pt (J ), (2.35)
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where the total entropy produced in an interval of duration t appears in the argument
of the exponential.

The explicit expression of θ(λ) is the following:

θ(λ) =−1

2

[
[A]k+

1 +k−
1 +k+

2 + [B]k−
2

+
√(

k̃+
1 + k̃−

1 + k̃+
2 + k̃−

2

)2 +4
(
1−e−λ

)(
k̃+

1 k̃+
2 eλ− k̃−

1 k̃−
2

)]
.

(2.36)

One can check that the expression under square root is always positive. Its asymptotic
behavior is as follows:

θ(λ) '


√
k̃+

1 k̃+
2 eλ/2, for λ→+∞;√

k̃−
1 k−

2 e−λ/2, for λ→−∞.
(2.37)

We can then exploit this result to evaluate the effective isomerization rate J , i.e.,
the average number of A −→ B transitions per unit time, via the relation (2.34). We
obtain

J = k̃+
1 k̃+

2 − k̃−
1 k̃−

2

k̃+
1 + k̃−

1 + k̃+
2 + k̃−

2

. (2.38)

It is clear that J vanishes at equilibrium, when eq. (2.12) is satisfied. In a similar way
one can obtain the “diffusion coefficient” for the motion along the n axis. Since the
derivative dθ/dλ can take any real value for |λ| large enough, the possible values of J
are also unbounded. By plugging in this behavior into (2.33) we obtain, for large |J |,

ψ(J ) ' 1

2
|J |. (2.39)

Thus there are exponential tails in the distribution of the production rate.

Entropy production

We now consider the distribution of the entropy production. In the transition from
(α,n) to (ᾱ,n′) (ᾱ= 1−α, n′ ∈ {n ±1,n}), the system is given an entropy contribution
(in units kB) given by

∆S((ᾱ,n′), (α,n)) = log
W(ᾱ,n′),(α,n)

W(α,n),(ᾱ,n′)
. (2.40)

We have

W(1,n),(0,n) = k̃+
1 ; (2.41a)

W(1,n−1),(0,n) = k̃−
2 ; (2.41b)

W(0,n),(1,n) = k̃−
1 ; (2.41c)

W(0,n+1),(1,n) = k̃+
2 . (2.41d)
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Let us denote by (Φα(λ, t )) the generating function of the entropy exchanged, condi-
tioned by the state α of the enzyme. We then have

d

dt

(
Φ0

Φ1

)
=M(λ)

(
Φ0

Φ1

)
, (2.42)

where

(M(λ))00 =−k̃+
1 − k̃−

2 [B]; (2.43)

(M(λ))01 = k̃−
1

(
k̃−

1

k̃+
1

)λ
+ k̃+

2

(
k̃+

2

k̃−
2

)λ
; (2.44)

(M(λ))10 = k̃+
1

(
k̃+

1

k̃−
1

)λ
+k−

2 [B]

(
k̃−

2

k̃+
2

)λ
; (2.45)

(M(λ))11 =−k̃−
1 − k̃+

2 . (2.46)

The evident symmetry

M(1−λ) =M†(λ) (2.47)

again yields the Gallavotti-Cohen relation.

One can check that the leading eigenvalue of M(λ) vanishes at equilibrium as a
consequence of (2.12). Indeed the eigenvalues depend on λ via the product of the
off-diagonal elements, which is given by

Π1(λ) = k̃+
1 k̃−

1 + k̃−
2 k̃+

2 + k̃+
1 k̃+

2

(
k̃+

1 k̃+
2

k̃−
1 k̃−

2

)λ
+ k̃−

1 k̃−
2

(
k̃−

1 k̃−
2

k̃+
1 k̃+

2

)λ
, (2.48)

and we have, because of (2.12) and of the definitions (2.17,2.18) of the k̃’s in terms of
the “bare” rates k,

k̃+
1 k̃+

2

k̃−
1 k̃−

2

= [A][B]eq

[A]eq[B]
, (2.49)

which is equal to 1 at equilibrium. Thus at equilibrium the eigenvalues of M(λ) are
independent of λ.

Misfolding

We now consider the case in which the enzyme can make errors, i.e., yield (starting
from A) a “misfolded” product C rather than the “correct” one B. The reaction scheme
is shown in figure 2.5. The right-hand cycle corresponds to the folding cycle shown
in figure 2.2, while the left-hand cycle corresponds to misfolding. The rate equations
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read:

d[A]

dt
= k−

1 [E∗]−k+
1 [E][A]; (2.50a)

d[B]

dt
= k+

2 [E∗]−k−
2 [E][B]; (2.50b)

d[C]

dt
= k+

3 [E∗]−k−
3 [E][C]; (2.50c)

d[E∗]

dt
= (

k+
1 [A]+k−

2 [B]+k−
3 [C]

)
[E]− (

k−
1 +k−

2 +k−
3

)
[E∗]; (2.50d)

d[E]

dt
= (

k−
1 +k−

2 +k−
3

)
[E∗]− (

k+
1 [A]+k−

2 [B]+k−
3 [C]

)
[E]. (2.50e)

In this case we need to consider a two-dimensional state space (n,m), where n is
the number of B molecules and m the number of C molecules produced since an
arbitrary time. Let us denote by p0(n,m, t ) the probability of having the free enzyme
in the state (n,m), and by p1(n,m, t ) the probability that it is bound, in state (n,m).
These probabilities satisfy the master equation

dp0(n,m, t )

dt
= k−

1 p1(n,m, t )+k+
2 p1(n −1,m, t )+k+

3 p1(n,m −1, t )+
− (

k+
1 [A]+k−

2 [B]+k−
3 [C]

)
p0(n,m, t ); (2.51a)

dp1(n,m, t )

dt
= k+

1 [A] p0(n,m, t )+k−
2 [B] p0(n +1,m, t )+k−

3 [C] p0(n,m +1, t )

− (
k−

1 +k+
2 +k+

3

)
p1(n,m, t ). (2.51b)

The “right” cycle CB involving B corresponds to the enzyme-assisted folding we have
seen before, and therefore the relations (2.12) still apply. The “left” cycle CC involving
C introduces an extra reaction E∗ −→ E+C, with two new rates, k±

3 , which satisfy

k+
3

k−
3

= e−(ε′−ε∗), (2.52)

where ε′ is the (free) energy per molecule of C, measured in units of kBT . We can thus
parametrize the transition rate as before, introducing the (free) energy ε′ for the state
C of the molecule, and an attempt frequency ω3:

k+
3 =ω3 e−(ε′−ε∗); k−

3 =ω3. (2.53)

We make no assumption on ε′: C can be more or less stable than the “correct” fold
B. In this case the discrimination between “right” and “wrong” product is only due to
the attempt frequency ω3, which we can assume to be sufficiently smaller than ω2.

We can now introduce the effective reaction rates k̃, by complementing (2.17,2.18)
by

k̃−
3 = k−

3 [C]; k̃+
3 = k+

3 . (2.54)
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E∗

E

BC A

Figure 2.5: The cycles involved in the misfolding reaction. The free enzyme E can
bind an A, B or C molecule, and go to the bound state E∗. It then produces an A, B or
C molecule, with different rates.

The product of the transition rates taken along CB clockwise, divided by the cor-
responding product taken counterclockwise, satisfies (2.12). Substituting the expres-
sions for the effective transition rates, we obtain

k̃+
1 k̃+

2

k̃−
1 k̃−

2

= e−ε
[A]

[B]
. (2.55)

In the same way, for the cycle CC we obtain

k̃+
1 k̃+

3

k̃−
1 k̃−

3

= e−ε
′ [A]

[C]
. (2.56)

Large deviations

Let us rewrite the master equation satisfied by pα(n,m, t ) by means of the effective
reaction rates:

dp0(n,m, t )

dt
= k̃−

1 p1(n,m, t )+ k̃+
2 p1(n −1,m, t )+ k̃+

3 p1(n,m −1, t )+
− (

k̃+
1 + k̃−

2 + k̃−
3

)
p0(n,m, t ); (2.57a)

dp1(n,m, t )

dt
= k̃+

1 p0(n,m, t )+ k̃−
2 p0(n +1,m, t )+ k̃−

3 p0(n,m +1, t )

− (
k̃−

1 + k̃+
2 + k̃+

3

)
p1(n,m, t ). (2.57b)

We can then define the generating function by introducing

λ= (λ1,λ2), (2.58)

and setting, for α ∈ {0,1},

Ψα(λ, t ) = ∑
n,m

eλ·(n+α1
2 ,m +α1

2 ) pα(n,m, t ), (2.59)
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Figure 2.6: Reaction scheme for isomerization with misfolding. The free enzyme E
can bind an A, B or C molecule, and go to the bound state E∗. It can then release an
A, B or C molecule, with different rates. The states (n,m), with n and m both integers,
correspond to the free enzyme. If a molecule of B is produced, n increases by 1. If a
molecule of C is produced, m increases by 1.

where the sum runs over all integer values of (n,m). The generating function satisfies
the evolution equation

d

dt

(
Ψ0

Ψ1

)
=L2(λ)

(
Ψ0

Ψ1

)
(2.60)

where, having defined zi = eλi /2, i ∈ {1,2}, the matrix L2(λ) is defined by

(L2(λ))00 =−(
k̃+

1 + k̃−
2 + k̃−

3

)
; (2.61a)

(L2(λ))01 = k̃−
1 /(z1z2)+ k̃+

2 (z1/z2)+ k̃+
3 (z2/z1); (2.61b)

(L2(λ))10 = k̃+
1 z1z2 + k̃−

2 (z2/z1)+ k̃−
3 (z1/z2); (2.61c)

(L2(λ))11 =−(
k̃−

1 + k̃+
2 + k̃+

3

)
. (2.61d)

The leading eigenvalue of L2(λ) is given by

θ(z1, z2) = 1
2

{−(
k̃+

1 + k̃−
1 + k̃+

2 + k̃−
2 + k̃+

3 + k̃−
3

)
+

[(
k̃+

1 + k̃−
1 + k̃+

2 + k̃−
2 + k̃+

3 + k̃−
3

)2

+4
(
k̃+

1 k̃+
2 (−1+ z2

1)+ k̃−
1 k̃−

2 (z−2
1 −1)+ k̃−

3 k̃−
1 (z−2

2 −1)

+ k̃+
1 k̃+

3 (−1+ z2
2)+ k̃−

2 k̃+
3

(
−1+ z2

2

z2
1

)
+ k̃−

3 k̃+
2

(
z2

1

z2
−1

))]1/2}
.

(2.62)
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One can check that this expression is invariant with respect to the transformation
(z1, z2) −→ (z̄1, z̄2), where

z̄2
1 =

k̃−
1 k̃−

2

k̃+
1 k̃+

2 z2
1

= 1

z2
1

eε
[B]

[A]
; (2.63a)

z̄2
2 =

k̃−
1 k̃−

3

k̃+
1 k̃+

3 z2
2

= 1

z2
2

eε
′ [C]

[A]
. (2.63b)

This corresponds to two symmetries similar to (2.28), which must be applied at the
same time.

Active catalysis

Let us now consider the situation in which the folding A −→ B is accompanied by the
hydrolysis of an ATP molecule. We can describe the reaction by the following scheme,
where all reactions are considered reversible:

B

EATP

E1=E•ATP

A
E2=E•ATP•A

ADP+P

E3=E•B

We then have the following rate equations:

d[E]

dt
= k+

4 [E3]+k−
1 [E1]−k+

1 [E][ATP]−k−
4 [E][B]; (2.64a)

d[E1]

dt
= k+

1 [E][ATP]+k−
2 [E2]−k−

1 [E1]−k+
2 [E1][A]; (2.64b)

d[E2]

dt
= k+

2 [E1][A]+k−
3 [E3][ADP][P]− (k−

2 +k+
3 )[E2]; (2.64c)

d[E3]

dt
= k+

3 [E2]+k−
4 [E][B]− (k+

4 +k−
3 [ADP][P])[E3]. (2.64d)

Detailed balance intimates, for each step i of the reaction (i = 1, . . . ,4) the relations

k+
i

k−
i

= e−∆εi /kBT , (2.65)
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where ∆εi is the free-energy difference between the complex enzyme+reactants at
the beginning and at the end of the reaction step. Thus the kinetic rates satisfy the
following identity:

k+
1 k+

2 k+
3 k+

4

k−
1 k−

2 k−
3 k−

4

= e−(∆εA+∆εATP)/kBT , (2.66)

where

∆εA = εB −εA; (2.67)

∆εATP = εADP +εP −εATP. (2.68)

We can consider a steady state in which the reactant concentrations are kept fixed.
Then the system is traversed by a current JA = k+

2 [E1][A]−k−
2 [E2] of A molecules per

unit time which fold into B, while consuming JATP = k+
1 [E][ATP]−k−

1 [E1] ATP molecules
per unit time.

Thus we have a state variable α which can take four values: α ∈ {0,1,2,3}, and two
chemical variables, i.e., i for the A molecules, and j for the ATP molecules. As above,
we count “a half” for bound particles. The kinetic equations carry on to the following
master equation for Pα(i , j ):

∂P0(i , j , t )

∂t
= k+

4 P3(i − 1
2 , j , t )+k−

1 P1(i , j + 1
2 , t )

− (
k+

1 [ATP]+k−
4 [B]

)
P0(i , j , t ); (2.69a)

∂P1(i , j + 1
2 , t )

∂t
= k+

1 [ATP]P0(i , j , t )+k−
2 P2(i + 1

2 , j + 1
2 )

− (
k−

1 +k+
2 [A]

)
P1(i , j + 1

2 , t ); (2.69b)

∂P2(i + 1
2 , j + 1

2 , t )

∂t
= k+

2 [A]P1(i , j + 1
2 , t )+k−

3 [ADP][P]P3(i + 1
2 , j +1)

− (
k−

2 +k+
3

)
P2(i + 1

2 , j + 1
2 , t ); (2.69c)

∂P3(i + 1
2 , j , t )

∂t
= k+

3 P2(i + 1
2 , j − 1

2 , t )+k−
4 [B]P0(i +1, j , t )

− (
k−

4 +k+
3 [ADP][P]

)
P3(i + 1

2 , j , t ). (2.69d)

As before, we can incorporate the concentrations by defining effective rates, e.g.,

k̃+
1 = k+

1 [ATP]; (2.70a)

k̃+
2 = k+

2 [A]; (2.70b)

k̃−
3 = k−

3 [ADP][P]; (2.70c)

k̃−
4 = k−

4 [B], (2.70d)

Thus we can define the generating function

Ψα(λ, t ) =
+∞∑

i1,i2=−∞
Pα(i1, i2, t )eλ1i1+λ2i2 , (2.71)
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depending onλ= (λ1,λ2), and where the sum runs over integers and half-integers. It
satisfies the evolution equations

∂Ψ0

∂t
= k̃+

4 eλ1/2Ψ3 + k̃+
1 e−λ2/2Ψ1 −

(
k̃+

1 + k̃−
4

)
Ψ0; (2.72a)

∂Ψ1

∂t
= k̃+

1 eλ2/2Ψ0 + k̃−
2 e−λ1/2Ψ2 −

(
k̃−

1 + k̃+
2

)
Ψ1; (2.72b)

∂Ψ2

∂t
= k+

2 eλ1/2Ψ1 +k−
3 e−λ2/2Ψ3 −

(
k̃−

2 + k̃+
3

)
Ψ2; (2.72c)

∂Ψ3

∂t
= k̃+

3 eλ2/2Ψ2 + k̃−
4 e−λ1/2Ψ0 −

(
k̃−

4 + k̃+
3

)
Ψ3. (2.72d)

Introducing the vectorΨ= (Ψα) and the shorthands

z1 = eλ1/2; (2.73a)

z2 = eλ2/2; (2.73b)

this equation can be written in the form

∂Ψ

∂t
=M(z)Ψ, (2.74)

where the matrix M(z) is given by

M(z) =


−(

k̃+
1 + k̃−

4

)
, k̃−

1 /z2, 0, k̃+
4 z1

k̃+
1 z2, −(

k̃−
1 + k̃+

2

)
, k̃−

2 /z1, 0
0, k̃+

2 z1, −(
k̃−

2 + k̃+
3

)
, k̃−

3 /z2

k̃−
4 /z1, 0, k̃+

3 z2, −(
k̃−

4 + k̃+
3

)
 . (2.75)

The matrix M(z) exhibits the symmetry

M(z) =Q−1M†(z)Q, (2.76)

where

z2
1 =

k̃−
2 k̃−

4

k̃+
2 k̃+

4

1

z2
1

; (2.77a)

z2
2 =

k̃−
1 k̃−

3

k̃+
1 k̃+

3

1

z2
2

, (2.77b)

and Q is a diagonal matrix, diag(q1, q2, q3, q4),with

q1 = k−
2

√
k−

1 k+
3 k−

3

k+
1

; (2.78a)

q2 = k−
2 k−

3 ; (2.78b)

q3 = k−
3

√
k+

2 k−
2 k−

4

k+
4

; (2.78c)

q4 =
√

k−
1 k+

2 k+
3 k−

3 k−
4

k+
1 k+

4

. (2.78d)
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Therefore the leading eigenvalue θ(z) of M(z) satisfies the Gallavotti-Cohen symme-
try

θ(z) = θ(z), (2.79)

where the transformation can be expressed in terms of the affinity as before. Note
that because there is only one independent cycle in this reaction scheme, one only
has a single symmetry transformation.

2.3 Fluctuation relations

We have seen that Crooks relation leads to equation (1.86), which allows one, in prin-
ciple, to evaluate the free-energy landscape as a function of a collective coordinate M
by nonequilibrium measurements. This relation has been exploited in particular to
obtain the free energy difference between a folded and unfolded RNA hairpin by Collin
et al. [2005], and the similar difference for a polypeptide domain by Imparato et al.
[2008].

RNA hairpin pulling experiments

In Collin et al. [2005], the system was a small interfering (si)RNA hairpin that targets
the mRNA of one receptor of the HIV virus, and then unfolds irreversibly, with a dis-
sipated work of the order of 6kBT . Thus it was expected that the distribution of work
W upon folding and refolding will be sufficiently wide to allow for the application of
the fluctuation relation in the form

P̂ (−W ) = e−(W −∆F )/kBT P (W ), (2.80)

where P (W ) corresponds to unfolding and P̂ (W ) to refolding. The hairpin was con-
nected to two DNA handles which allowed them to attach to ssDNA-coated latex
spheres which were then pulled by optical tweezers. The force is obtained by mea-
suring the displacement of the sphere from the focus of the laser (with a know in-
tensity of the beam) and the work can in this case be approximated quite well by the
force-time displacement integral

W =∑
i
∆xi Fi . (2.81)

It is consequence of equation (2.80) that the two distributions P (W ) and P̂ (−W ) cross
at W =∆F :

P̂ (−W ∗) = P (W ∗) ⇒ W ∗ =∆F. (2.82)

If the work distribution is wide enough for this crossing to take place where the num-
ber of points with W 'W ∗ is large for both probability distribution, one can be quite
confident in using this relation for the evaluation of ∆F . The result of the unfold-
ing and folding experiments are shown in figure 2.7. In this way one can explore the
free-energy landscape for the secondary and tertiary structure of small RNA’s.
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along the unfolding path while (absolute) values smaller than DG
occur more often along the refolding path. As can be seen from
equation (1), the CFT states that although PU(W), PR(2W) depend
on the pulling protocol, their ratio depends only on the value of DG.
Thus the value of DG can be determined once the two distributions
are known. In particular, the two distributions cross at W ¼ DG:

PUðWÞ ¼ PRð2WÞ)W ¼ DG ð3Þ
regardless of the pulling speed. Although the simple identity (3)
already gives an estimate of DG, it is not necessarily very precise
because it uses only the local behaviour of the distribution around
W ¼ DG. Using the whole work distribution increases the precision
of the free-energy estimate19. In particular, as we show below, when
the overlapping region of work values between the unfolding and
refolding work distributions is too narrow (as may happen for large
values of the average dissipated work, defined as kWdisl ¼ kWl 2
DG), the use of Bennett’s acceptance ratio method20 makes it possible
to extract accurate estimates of DG using the CFT (see the Sup-
plementary Information).
We first experimentally test the validity of the CFT for a molecular

transition occurring near equilibrium. For this, we use a short
interfering (si)RNA hairpin that targets the messenger RNA of the
CD4 receptor of the human immunodeficiency virus (HIV)11 and
that unfolds irreversibly but not too far from equilibrium at acces-
sible experimental pulling speeds (dissipated work values less than
6kBT). Under these conditions, the unfolding and refolding work
distributions overlap over a sufficiently large range of work values to
justify the use of the direct method to experimentally test equation
(1). The work done on the molecules during either pulling or
relaxation is given by the areas below the corresponding force–
extension curves (Fig. 1).
Unfolding and refolding work distributions at three different

pulling speeds are shown in Fig. 2. Irreversibility increases with the
pulling speed and unfolding–refolding work distributions become
progressively more separated. Note, however, that the unfolding and
the refolding distributions cross at a value of the work DG¼
110:3^ 0:5kBT that does not depend on the pulling speed, as
predicted by equation (3). Moreover, the work distributions also

satisfy the CFT, that is, equation (1) (see the Supplementary
Information). We also notice that work distributions are compatible
with, and can be fitted to, gaussian distributions (data not shown).
After subtracting the contribution arising from the entropy loss due
to the stretching of the molecular handles attached on both sides of
the hairpin (DGhandles ¼ 23.8 kBT) and of the extended single-
stranded (ss)RNA ðDGssRNA ¼ 23:7^ 1kBTÞ from the total work,
DGexp ¼ 110:3^ 0:5kBT, we obtain for the free energy of unfolding
at zero forceDGexp

0 ¼ 62:8^ 1:5kBT ¼ 37:2^ 1kcalmol21 (at 258C,
in 100mM Tris-HCl, pH 8.1, 1mM EDTA), in excellent agreement
with the result obtained using the Visual OMP from DNA software21

DGmfold
0 ¼ 38kcalmol21 (at 258C, in 100mM NaCl).
To extend the experimental test of the validity of the CFT to the

very-far-from-equilibrium regime where the work distributions are
no longer gaussian, we apply the CFT to determine: (1) the difference
in folding free energy between an RNA molecule and a mutant that
differs only by one base-pair, and (2) the thermodynamic stabilizing
effect of Mg2þ ions on the RNA structure. The RNAwe consider is a
three-helix junction of the 16S ribosomal RNA of Escherichia coli12

that binds the S15 protein. The secondary structure of this RNA is a
common feature in RNA structures22–24 that plays, in this case, a
crucial role in the folding of the central domain of the 30S ribosomal
subunit. For comparison, and to verify the accuracy of the method,
we have pulled the wild type and a CzG to GzC mutant (C754G to
G587C) of the three-helix junction.
Figure 3 depicts the unfolding and refolding work distributions for

the wild-type and mutant molecules (work values were binned into
about 10–20 equally spaced intervals). For both molecules, the
distributions display a very narrow overlapping region. In contrast
with the hairpin distribution, the average dissipated work for the
unfolding pathway is now much larger—in the range 20–40kBT —
and the unfolding work distribution shows a large tail and strong
deviations from gaussian behaviour. Thus, these molecules are ideal
to test the validity of equation (1) in the far-from-equilibrium
regime. As shown in the inset of Fig. 3, the plot of the log ratio of
the unfolding to the refolding probabilities versus total work done on
the molecule can be fitted to a straight line with a slope of 1.06, thus
establishing the validity of the CFT (see equation (1)) under far-
from-equilibrium conditions. Ourmeasurements reveal the presence
of long tails in the work distribution PU(W) along the unfolding path

Figure 2 | Test of the CFT using an RNA hairpin. Work distributions for
RNA unfolding (continuous lines) and refolding (dashed lines). We plot
negative work, PR(2W), for refolding. Statistics: 130 pulls and three
molecules (r ¼ 1:5pNs21), 380 pulls and four molecules (r ¼ 7:5pNs21),
700 pulls and three molecules (r ¼ 20:0pNs21), for a total of ten separate
experiments. Good reproducibility was obtained among molecules (see
Supplementary Fig. S2). Work values were binned into about ten equally
spaced intervals. Unfolding and refolding distributions at different speeds
show a common crossing around DG¼ 110:3kBT.

Figure 1 | Force–extension curves. The stochasticity of the unfolding and
refolding process is characterized by a distribution of unfolding or refolding
work trajectories. Five unfolding (orange) and refolding (blue) force–
extension curves for the RNA hairpin are shown (loading rate of 7.5 pN s21).
The blue area under the curve represents the work returned to the machine
as the molecule switches from the unfolded to the folded state. The RNA
sequence is shown as an inset.
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along the unfolding path while (absolute) values smaller than DG
occur more often along the refolding path. As can be seen from
equation (1), the CFT states that although PU(W), PR(2W) depend
on the pulling protocol, their ratio depends only on the value of DG.
Thus the value of DG can be determined once the two distributions
are known. In particular, the two distributions cross at W ¼ DG:

PUðWÞ ¼ PRð2WÞ)W ¼ DG ð3Þ
regardless of the pulling speed. Although the simple identity (3)
already gives an estimate of DG, it is not necessarily very precise
because it uses only the local behaviour of the distribution around
W ¼ DG. Using the whole work distribution increases the precision
of the free-energy estimate19. In particular, as we show below, when
the overlapping region of work values between the unfolding and
refolding work distributions is too narrow (as may happen for large
values of the average dissipated work, defined as kWdisl ¼ kWl 2
DG), the use of Bennett’s acceptance ratio method20 makes it possible
to extract accurate estimates of DG using the CFT (see the Sup-
plementary Information).
We first experimentally test the validity of the CFT for a molecular

transition occurring near equilibrium. For this, we use a short
interfering (si)RNA hairpin that targets the messenger RNA of the
CD4 receptor of the human immunodeficiency virus (HIV)11 and
that unfolds irreversibly but not too far from equilibrium at acces-
sible experimental pulling speeds (dissipated work values less than
6kBT). Under these conditions, the unfolding and refolding work
distributions overlap over a sufficiently large range of work values to
justify the use of the direct method to experimentally test equation
(1). The work done on the molecules during either pulling or
relaxation is given by the areas below the corresponding force–
extension curves (Fig. 1).
Unfolding and refolding work distributions at three different

pulling speeds are shown in Fig. 2. Irreversibility increases with the
pulling speed and unfolding–refolding work distributions become
progressively more separated. Note, however, that the unfolding and
the refolding distributions cross at a value of the work DG¼
110:3^ 0:5kBT that does not depend on the pulling speed, as
predicted by equation (3). Moreover, the work distributions also

satisfy the CFT, that is, equation (1) (see the Supplementary
Information). We also notice that work distributions are compatible
with, and can be fitted to, gaussian distributions (data not shown).
After subtracting the contribution arising from the entropy loss due
to the stretching of the molecular handles attached on both sides of
the hairpin (DGhandles ¼ 23.8 kBT) and of the extended single-
stranded (ss)RNA ðDGssRNA ¼ 23:7^ 1kBTÞ from the total work,
DGexp ¼ 110:3^ 0:5kBT, we obtain for the free energy of unfolding
at zero forceDGexp

0 ¼ 62:8^ 1:5kBT ¼ 37:2^ 1kcalmol21 (at 258C,
in 100mM Tris-HCl, pH 8.1, 1mM EDTA), in excellent agreement
with the result obtained using the Visual OMP from DNA software21

DGmfold
0 ¼ 38kcalmol21 (at 258C, in 100mM NaCl).
To extend the experimental test of the validity of the CFT to the

very-far-from-equilibrium regime where the work distributions are
no longer gaussian, we apply the CFT to determine: (1) the difference
in folding free energy between an RNA molecule and a mutant that
differs only by one base-pair, and (2) the thermodynamic stabilizing
effect of Mg2þ ions on the RNA structure. The RNAwe consider is a
three-helix junction of the 16S ribosomal RNA of Escherichia coli12

that binds the S15 protein. The secondary structure of this RNA is a
common feature in RNA structures22–24 that plays, in this case, a
crucial role in the folding of the central domain of the 30S ribosomal
subunit. For comparison, and to verify the accuracy of the method,
we have pulled the wild type and a CzG to GzC mutant (C754G to
G587C) of the three-helix junction.
Figure 3 depicts the unfolding and refolding work distributions for

the wild-type and mutant molecules (work values were binned into
about 10–20 equally spaced intervals). For both molecules, the
distributions display a very narrow overlapping region. In contrast
with the hairpin distribution, the average dissipated work for the
unfolding pathway is now much larger—in the range 20–40kBT —
and the unfolding work distribution shows a large tail and strong
deviations from gaussian behaviour. Thus, these molecules are ideal
to test the validity of equation (1) in the far-from-equilibrium
regime. As shown in the inset of Fig. 3, the plot of the log ratio of
the unfolding to the refolding probabilities versus total work done on
the molecule can be fitted to a straight line with a slope of 1.06, thus
establishing the validity of the CFT (see equation (1)) under far-
from-equilibrium conditions. Ourmeasurements reveal the presence
of long tails in the work distribution PU(W) along the unfolding path

Figure 2 | Test of the CFT using an RNA hairpin. Work distributions for
RNA unfolding (continuous lines) and refolding (dashed lines). We plot
negative work, PR(2W), for refolding. Statistics: 130 pulls and three
molecules (r ¼ 1:5pNs21), 380 pulls and four molecules (r ¼ 7:5pNs21),
700 pulls and three molecules (r ¼ 20:0pNs21), for a total of ten separate
experiments. Good reproducibility was obtained among molecules (see
Supplementary Fig. S2). Work values were binned into about ten equally
spaced intervals. Unfolding and refolding distributions at different speeds
show a common crossing around DG¼ 110:3kBT.

Figure 1 | Force–extension curves. The stochasticity of the unfolding and
refolding process is characterized by a distribution of unfolding or refolding
work trajectories. Five unfolding (orange) and refolding (blue) force–
extension curves for the RNA hairpin are shown (loading rate of 7.5 pN s21).
The blue area under the curve represents the work returned to the machine
as the molecule switches from the unfolded to the folded state. The RNA
sequence is shown as an inset.
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Figure 2.7: Left: Force–extension curves for RNA hairpin unfolding and refolding.
The stochasticity of the unfolding and refolding process is characterized by a distri-
bution of unfolding or refolding work trajectories. Five unfolding (orange) and re-
folding (blue) force– extension curves for the RNA hairpin are shown (loading rate of
7.5pN/s). The blue area under the curve represents the work returned to the machine
as the molecule switches from the unfolded to the folded state. The RNA sequence
is shown as an inset. Right: Test of the CFT using an RNA hairpin. Work distribu-
tions for RNA unfolding (continuous lines) and refolding (dashed lines). Negative
work, PR(−W ), is plotted for refolding. Statistics: 130 pulls and three molecules (r =
1.5pN/s), 380 pulls and four molecules (r = 7.5pN/s), 700 pulls and three molecules
(r = 20.0pN/s ), for a total of ten separate experiments. Work values were binned into
about ten equally spaced intervals. Unfolding and refolding distributions at different
speeds show a common crossing around ∆G = 110.3kBT . From Collin et al. [2005].

Unfolding a large protein

Imparato et al. [2008] have studied the mechanical unfolding of a protein composed
of eight repeats of the Ig27 domain of the large protein titin. The unfolding was per-
formed via manipulation by means of an atomic-force microscope (AFM). In single-
molecule force spectroscopy experiments exploiting an AFM, the molecule deposited
onto the substrate is grabbed by the AFM probe. Mechanical unfolding of the protein
is thus induced by moving the probe away from the substrate with a constant velocity
v (linear protocol). As the probe is retracted, the force exerted on the molecule in-
creases until the molecule suddenly unfolds. If the molecule is composed of multiple
domains, as in the present case, further retraction causes the extension of successive
folded domains, until all the domains are unfolded and the protein-tip interaction is
broken. The corresponding force-distance curve has a typical sawtooth structure, as
shown in figure 2.8 (Bottom left). The energy landscape of the polypeptide can be
evaluated by exploiting equation (1.86), which we rewrite in the form

〈δ(`−`t )e−Wt /kBT 〉t eU (`,z(t )) = exp[−F0(`)/kBT ]/Z0, (2.83)
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2.3. Fluctuation relations
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Figure 2.8: Top: Cartoon of the protein made by eight repeats of the Ig27 domain
of titin, attached to the tip on an AFM. Bottom: Left: Force extension curve of the
polyprotein composed of eight repeats of the Ig27 domain. The typical distance be-
tween two consecutive peaks ranges between 22 and 26 nm. Right: Free-energy land-
scape F0 as a function of the molecular elongation `, for different values of the probe
velocity, v = 200, 400, 2000nm/s: the number of unfolding trajectories considered is
66, 35, 29, respectively. The error bars are obtained by using the jackknife approach
for data resampling: for each value of v subsamples of the total number of trajectories
are considered, and for each subsample the free-energy landscape is evaluated. One
obtains thus a set of curves F0(`), and the error bars are obtained, for each value of `,
as the standard deviation of the mean with respect to this set. The bars are mutually
shifted for clarity’s sake. Inset: Plot of F in the small-` range. From Imparato et al.
[2008].

53



2. STOCHASTIC THERMODYNAMICS IN LIVING SYSTEMS

where z(t ) is the position of the probe at time t , ` the elongation of the molecule, Wt

the work accumulated up to time t , Z0 is the partition function of the unperturbed
system, U (`, z(t )) = (k/2)(z(t )−`)2 is the external potential associated with the tip of
the AFM, and the average is taken with respect to all realizations of the process up
to time t . By this method one can evaluate the free energy F0(`) as a function of the
elongation `. From figure 2.8 one can see that the results can be trusted provided the
manipulation protocol is not too fast.
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3
Accuracy-speed-dissipation

trade-off

3.1 The Problem

Several core processes in the cell are related to information handling. For example,
transcription is the process by which single-stranded RNA is polymerized on a DNA
template. The transcript is than exploited in different ways, e.g., mRNA acts itself
as template for translation, the process in which ribosomes synthesize polypeptides
which are then further processed to make proteins. In DNA replication, a ssDNA
strand is polymerized using a pre-existing DNA strand as a template. In these pro-
cesses, the possibility of a mismatch between the template and the newly incorpo-
rated unit of the growing polymer is always open. Template-free processes are also
relevant in information handling: for example, the actual translation from the codon
(made of three consecutive nucleotides) to an amino acid in the growing polypetide
chain during translation is encoded by the complex tRNA-amino acid. The complex-
ation of tRNA is performed by special enzymes, called aminoacylases, which must
bind on the one hand with a tRNA carrying the anticodon in tis proper place, and
on the other hand with the correct amino acid, and then bind the two molecules to-
gether. This process is also prone to error, in particular since there is no natural ther-
modynamical preference (higher affinity) of a given amino acid for its corresponding
tRNA.

While these processes all involve some probability for errors, it is observed that
the actual observed error rates in physiological conditions are much smaller than ex-
pected on the basis of thermodynamics alone in most life forms. For example, in the
transcription process the discrimination between correct matching of the nucleotide
in the growing RNA strand and the one in the DNA template is expected to be due
to the correspondence in hydrogen binding. Since the energy ε involved in hydrogen
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3. ACCURACY-SPEED-DISSIPATION TRADE-OFF

bonding in water is of the order of 2.5kBT , one would expect error rates of the order
of e−ε/kBT ∼ 10−2. In human DNA replication error rates are of the order of 10−10 (in-
terestingly, the error rates apparently are inversely correlated with genome length, so
that there are usually roughly the same number of errors per replication, at least for
eukaryotes). In RNA transcription, error rates are of the order of 10−4 ÷10−5, and in
translation the error rates are somewhat larger (10−3÷104), but always well below the
error rates expected on the basis of equilibrium thermodynamics.

A solution in principle to the puzzle of the existence of these small error rates was
independently found by Ninio [1975b] (cf. also Ninio [1975a]) and Hopfield [1974].
They conjectured that discrimination would be enhanced if the polymerization re-
action allowed for additional steps, each of which could discriminate between cor-
rect and incorrect substrate and allowed for the release of the incorrect substrate by
an irreversible (ATP-fueled) step. This mechanism was called kinetic proofreading
by Hopfield, and the term is remained. A slightly different mechanism, also involv-
ing an ATP-fueled step, was proposed by Bennett [1979]. More recently, several de-
tailed mechanisms for kinetic proofreading have been proposed (see, e.g., Voliotis
et al. [2009], Murugan et al. [2012], Murugan et al. [2014], Peliti and Rao [2015]), while
the theory has been developed by Andrieux and Gaspard [2008] (see also Andrieux
and Gaspard [2009]) and by Sartori and Pigolotti [2013] (cf. also Sartori and Pigolotti
[2015]). In particular, since incrementing the accuracy beyond its equilibrium value
involves bringing the system out of equilibrium, and therefore dissipation, it is inter-
esting to evaluate the performance of the different proofreading schemes from both
point of view, i.e., error rate and dissipation, to which it is also reasonable to add
speed, i.e., the amount of processing steps that can be performed in a unit time. If
improving the performance on one of these aspects involves degrading it on one or
both of the others, one speaks of tradeoffs. It is interesting therefore to see if and how
the thermodynamics of small systems allows us to identify fundamental tradeoffs in
these functions.

Reaction schemes

Here I briefly describe the class of models considered by Sartori and Pigolotti [2015].
We consider a reaction in which an enzyme catalyzes a reaction involving a substrate
s which can be right (r) or wrong (w). The reaction is represented by a Markov chain
with n states, i ∈ {1, . . . ,n}. The scheme can be represented by the diagram in fig-
ure 3.1. Conventionally, j = 0 represent the binding of a new substrate to the enzyme,
and j = n +1 corresponds to the release of the product. Thus the system is described
by the master equation

dps
i

dt
=

n+1∑
j=0

[
ks

i j ps
j −ks

j i ps
i

]
=∑

j
Ji j . (3.1)

However, the states j = 0 and j = n + 1 both correspond to the empty enzyme. Let
us suppose that the steady-state probability of this state is 0. The net production rate
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3.1. The Problem

Figure 3.1: State space of the template-assisted polymerization model. Monomer
incorporation occurs via a network of intermediate states represented inside the
dashed circles. The two colors distinguish networks leading to incorporation of right
and wrong monomers. The structure is repeated in a tree-shaped structure as the
polymer grows by addition of more and more monomers. From Sartori and Pigolotti
[2015].

can be split into the r and the w channel:

J = J r + J w =
n∑

i=1

[
kr

n+1,i pr
i −kr

i ,n+1pr
n+1

]
+

n∑
i=1

[
kw

n+1,i pw
i −kw

i ,n+1pw
n+1

]
. (3.2)

This must be equated with the out-flux from i = 0. We can make the ansatz

J w = ξ J out. (3.3)

This defines the error rate ξ, while J out can be identified with the total yield of the
reaction on a single enzyme.

The entropy production is given by the usual expression. In the steady state (de-
noted by ss) it boils down to

Ṡtot =
∑
<i j>

∑
ss

J ss
i j log

kss
i j pss

j

kss
j i pss

i

. (3.4)
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3. ACCURACY-SPEED-DISSIPATION TRADE-OFF

We can parametrize the rates k(r,w)
i j , k(r,w)

j i in terms of an attempt rate ωi j , which is
the same for all the processes for the (i j ) link one is considering, a differenceδi j in the
height of the barrier that the wrong substrate has to overcome in going from i to j (or
viceversa) with respect to that the right substrate has to overcome (δi j > 0, so that the
wrong substrate has fewer chances to overcome the barrier), and the thermodynamic
contributions. These can be split into the energy difference ∆E (r,w)

i of the enzyme
in state i with respect to a reference state, and the contribution µi j of the chemical
driving, due, e.g., to the hydrolysis or the synthesis of, say, ATP, in going from j to i .
This is made clearer by the following scheme, which is also due to Sartori and Pigolotti
[2015].

3

closes sub-networks of n intermediate states, characteris-
tic of the copying protocol. The intermediate states, rep-
resented as blue/green circles for right/wrong matches in
Fig. 2A, are used by the machine to process a tentatively
matched monomer and decide whether to incorporate it
or not. We note intermediate states as . . . rrwrri, with
1  i  n, and analogously for wrong monomers. A copy-
ing protocol is fully specified by the topology of the sub-
networks, assumed to be the same for right and wrong
matches, and the kinetic rates kr

ij for right matches and
kw

ij for wrong ones. Di↵erences in the rates are responsi-
ble for discrimination. Possible examples of sub-networks
of increasing complexity are represented in Fig. 2B.

Because of thermal fluctuations induced by the en-
vironment at temperature T , all kinetic transitions are
stochastic. The states are thus characterized by time-
dependent probabilities P (. . . r), P (. . . w), P (. . . ri) and
P (. . . wi). Their evolution is governed by a set of mas-
ter equations which can be solved at steady state, see
Methods. Key to the solution is to postulate that er-
rors are uncorrelated along the chain, so that P (. . . ) /
⌘Nw

(1�⌘)N�Nw

, where N is the length of the chain and
Nw is the total number of incorporated wrong matches.
The error ⌘ can then be determined via the condition

⌘

1 � ⌘
=

vw(⌘)

vr(⌘)
, (1)

where vr and vw are the average incorporation speeds of
right and wrong monomers, respectively. They represent
the average net rates at which right and wrong monomers
are incorporated in the copy. The net elongation speed v
is the sum of these two contributions, v = vr + vw. Sub-
stituting the solution for P (. . .) into the master equations
leads to explicit expressions for vw and vr as a function
of the error and all the kinetic rates. In this way, Eq. (1)
becomes a closed equation for the only unknown ⌘. Note
that Eq. 1 and the definition of v imply vr = (1 � ⌘)v
and vw = ⌘v.

Thermodynamics of copying with errors

The kinetic rates kr
ij and kw

ij are determined by the
energy landscape of the system, the chemical drivings
µij of the reactions, and the temperature T of the ther-
mal bath, as represented in Fig. 3A. The chemical driv-
ings represent the di↵erence in chemical potential of re-
actions, such as ATP hydrolysis, fueling the transitions
j ! i. The energy di↵erences of an intermediate state
respect to the state before the candidate monomer incor-
poration are �Er

i = E(. . . ri)�E(. . . ), and similarly for
wrong incorporation; the energy changes after finalizing
incorporation of a monomer are �Er = E(. . . r)�E(. . . )
and analogously for wrong matches. Note that these en-
ergies are in a strict sense free energies as they might
depend, for example, on the monomer concentrations in

the cell. Energetic discrimination can be exploited when
the wrong match is energetically more unstable than the
right one, �Ew � �Er. In addition, wrong matches can
also be discriminated kinetically, i.e. by exploiting dif-
ferent activation barriers �ij in the transitions performed
by the machine when a right monomer is bound. In gen-
eral, complex copying protocols can combine both these
mechanisms [13, 19]. Full expressions of the rates are
summarized in Fig. 3B.

A B

j i

FIG. 3. Energy landscape and kinetic rates. A Ener-
getic diagram of a single transition in the reaction network.
B Corresponding kinetic rates. The transition j ! i can
be driven by energy di↵erences and the chemical driving µij .
Transitions involving a right and a wrong monomer can be
characterized by di↵erent kinetic barriers �ij , as well as dif-
ferent energetic landscapes �Ew

j 6= �Er
j . The bare rate !ij

is the inverse characteristic time scale of each reaction.

Given a steady-state elongation speed v, the chemical
drivings perform an average work per added monomer
�W =

P
hiji µij(J

r
ij + Jw

ij )/v, where Jr
ij and Jr

ij are

probability fluxes (see also Methods). Further, the free-
energy change per added monomer at equilibrium would
be �Feq = �T log(e��Er/T + e��Ew/T ). In the limit
v ! 0, the system approaches equilibrium and the
population of all states is determined by detailed bal-
ance. This implies that the equilibrium error is ⌘eq =
exp [(��Ew + �Feq)/T ]. When driving the dynamics
out of equilibrium, the error will in general depart from
its equilibrium value, leading to a positive total entropy
production. In Methods, we derive that the total entropy
production per copied monomer and the error are linked
by the relation

T�Stot = �W ��Feq � TD(⌘||⌘eq) � 0 , (2)

where D(⌘||⌘eq) = ⌘ log(⌘/⌘eq) + (1� ⌘) log[(1� ⌘)/(1�
⌘eq)] is the Kullback-Leibler distance between the equi-
librium and non-equilibrium error distribution, which is
always non-negative and vanishes only for ⌘ = ⌘eq. Eq.
2 states that the average performed work is greater than
the equilibrium free energy increase by a configurational
bound, �W � �Feq � T D(⌘||⌘eq) � 0. In this view,
the Kullback-Leibler term in Eq. 2 can be interpreted as
the additional free energy stored in a copy characterized

We thus obtain the following parametrization of the reaction rates:

kr
i j =ωi j exp

[
(∆E r

j +µi j +δi j )/kBT
]

; (3.5)

kw
i j =ωi j exp

[
(∆E w

j +µi j )/kBT
]

; (3.6)

kr
j i =ωi j exp

[
(∆E r

i +δi j )/kBT
]

; (3.7)

kw
j i =ωi j exp

[
∆E w

i /kBT
]

. (3.8)

We can then evaluate the entropy production in the steady state:

Ṡtot =
∑
<i j>

∑
s

J (s),ss
i j

µi j

T
+ ∑

<i j>

∑
s

J (s),ss
i j log

p(s),ss
j

p(s),ss
i

+ ∑
<i j>

∑
s

J (s),ss
i j

∆E (s)
j −∆E (s)

i

T
. (3.9)

Except for the first term, all other term vanish when summed over the internal links,
due to flux conservation in the steady state. Only the links which lead outside of the
network yield a contribution, and these can be expressed in terms of the rates of right
or wrong incorporation. Thus one obtains

T Ṡtot =
∑
<i j>

∑
s

J (s),ss
i j µi j −ξJ

[
logξ+∆E (w)]−ξJ ss [

log(1−ξ)∆E (r)]
= J ss [

∆W −∆F −kBT DKL(ξ‖ξeq)
]

.
(3.10)
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3.1. The Problem

To evaluate the working of the system, it is convenient to assume that the final
product is released with a rate F (equal for both right and wrong substrate) when the
final state is reached. We can then evaluate the entropy production and flow in the
steady state according to the following expressions:

Ṡi := 1

2

∑
i 6= j

′∑
s

(
k(s)

i j p(s),ss
j −k(s)

j i p(s),ss
i

)
log

k(s)
i j p(s),ss

j

k j i p(s),ss
i

; (3.11)

Ṡe :=−1

2

∑
i 6= j

′∑
s

(
k(s)

i j p(s),ss
j −k(s)

j i p(s),ss
i

)
log

k(s)
i j

k(s)
j i

. (3.12)

Since in the steady state the entropy of the system does not change with time, we have

− d

dt

∑
k

pk log pk = Ṡi + Ṡe −ṠF︸︷︷︸
catalysis

= 0, (3.13)

where the have emphasized that the entropy flow due to the final catalysis step is
negative in order for the reaction to have a positive flux of the products. We can then
evaluate the mean step duration (i.e., the mean time needed to release one unit of the
product) by

τ := (
total catalysis rate: J (r) + J (w))−1

. (3.14)

The entropy production per step is then given by multiplying the total entropy pro-
duction rate by τ:

∆iS := τ Ṡi ≥ 0. (3.15)

One can similarly evaluate the entropy flow per unit product:

∆eS := τ Ṡe ≤ 0. (3.16)

The free-energy dissipation in the final catalysis step is given by

∆SF := τ ṠF = τF
∑
s

p̄final state(s)∆µfinal step. (3.17)

Because of the relation (3.13), we can define the efficiency η by

η :=∆SF /∆eS = 1+∆iS/∆eS, (3.18)

which satisfies, since ∆eS ≤ 0 and ∆SF ≥ 0,

0 ≤ η≤ 1. (3.19)

Let us take into account (3.10), and the following relations:

DKL(ξ‖ξeq) = ξ log
ξ

ξeq
+ (1−ξ) log

1−ξ
1−ξeq

≈ ξeq ¿ 1, (3.20)

T ∆S(w) =∆W (w) −∆F −T log
ξ

ξeq
≥ 0. (3.21)

We can thus obtain the following expression of the error rate:

ξ= ξeq exp
[−∆S(w) + (∆W (w) −∆F )/kBT

]
. (3.22)

This relation highlights that reducing the error below its equilibrium value with a
fixed work budget requires some entropy production, i.e., dissipation.
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3. ACCURACY-SPEED-DISSIPATION TRADE-OFF

3.2 Models

Kinetic and energetic discrimination

Let us consider a simple Michaelis-Menten process, described by the scheme

k±
r

Pw
E

Pr

w r

F F

k±
w

Here E denotes the empty enzyme, and the rates are given by

k+
r =ωeδ+ε, k−

r =ωeδ; (3.23)

k+
w =ωeε, k−

w =ωeγ. (3.24)

The parametrization of the rates can be physically interpreted in terms of the free-
energy landscape represented in the following scheme (energy units in kBT , scheme
after Sartori and Pigolotti [2013]):

ǫ

δ

γ

(w)

reaction coordinate

fr
ee

en
er

gy (r)

Pw Pr
E

Thus δ parametrized the difference in barrier height that the substrate-enzyme com-
plex must overcome to go to the product state, while γ parametrizes the free-energy
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difference of the final product. One can then straightforwardly evaluate the steady
state distribution and the error rate, obtaining

ξ= F p̄w

F p̄w+F p̄r
= eδω+F

(eγ+1)eδω+ (
eδ+1

)
F
≥ 1

emax{δ,γ}+1
' e−max{δ,γ}. (3.25)

We can therefore distinguish two discrimination regimes:

Energetic discrimination: γ > δ. In this regime, the minimum error rate ξmin is
reached close to equilibrium (F → 0).

Kinetic discrimination: γ< δ; In this regime, ξmin is reached for F →∞.

The behavior of the dissipation as a function of the error rate for the different regimes
is shown in the following plot.

The entropy production per unit product ∆iS is plotted as a function of the error rate
ξ for the simple Michaelis-Menten model with γ = 3, ε = 10, ω = 1 and δ = 0 (green),
δ = 6 (light blue), δ = 12 (dark blue). Note that the blue lines (for which δ > γ, cor-
responding to kinetic discrimination) yield a monotonically decreasing error rate as
∆iS grows. The green line corresponds to energetic discrimination, and the error rate
increases as ∆iS grows. From Peliti and Rao [2015].

We can also evaluate the efficiency η as a function of the error rate ξ, obtaining
the following plot, also from Peliti and Rao [2015].
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3. ACCURACY-SPEED-DISSIPATION TRADE-OFF

Here the efficiency η (defined in (3.18)) is plotted vs. the error rate ξ for the simple
Michaelis-Menten model. The parameters are as in the previous figure. Note that the
efficiency decreases with the error rate for kinetic discrimination (blue lines), while
it increases for energetic discrimination (green line). To understand in greater detail
what happens for the kinetic discrimination regime in the intermediary error-rate
range, one can blow up the plateau which appears for the blue curves in the previous
figure, obtaining the following plot (note the change of scales).

Efficiency-error trade-off in the purely kinetic regime of discrimination, for the simple
Michaelis-Menten model with γ= 3, ε= 10, ω= 1 and δ= 6 (grey), δ= 8 (light blue),
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3.2. Models

δ = 10 (dark blue). From Peliti and Rao [2015]. Note the presence of an efficiency
maximum for intermediate values of the error rate. In contrast, we have seen that the
entropy production ∆iS monotonically increases as the error rate gets smaller.

To make these considerations more concrete, let us consider the working regimes
of two different DNA polymerases.

• T7 Phage DNA polymerase: Estimates from Tsai and Johnson [2006] yield η ∼
10−2÷10−6, v ∼ 5÷250bps, thus ε∼ 5, γ∼ 14, δ∼ 8: apparently this polymerase
works in the energetic regime.

• Polγ (human) DNA polymerase: Estimates by Andrieux and Gaspard [2008]
yield η ∼ 10−3 ÷ 10−5, with ε ∼ 5 this yields δ ∼ 11, γ ∼ 0, which would corre-
spond to the kinetic regime.

The Ninio-Hopfield model

In this context, proofreading appears as the opening of a pathway that allows for the
release of the substrate before reaching the product release step. This is summarized
by the following diagram, in which the empty enzyme is denoted by &. Note the ap-
pearance of an intermediate step &s∗ (with s ∈ {r,w}), from which the system can pro-
ceed further to the product release step or backward to the empty-enzyme state. The
final complexed state, &s, can also reach the empty-enzyme state by the pathway de-
noted by (3), which involves a large decrease in the Gibbs free energy, and is therefore
essentially irreversible (this step is represented by the broken line in the free-energy
diagram).
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3. ACCURACY-SPEED-DISSIPATION TRADE-OFF

With this scheme, the reaction rates can be parametrized as follows:

k+
r =ωeδ+ε, k−

r =ωeδ, (3.26)

k+
w =ωeε, k−

w =ωeγ, (3.27)

h+
r =ωie

εi , h−
r =ωi, (3.28)

h+
w =ωie

εi , h−
w =ωi, (3.29)

K +
r =ωpe−δp , K −

r =ωpeεp−δp , (3.30)

K +
w =ωp, K −

w =ωpeεp+γ. (3.31)

Here the label “p” denotes the proofreading pathway. The results for this model are
shown in figure 3.2.

We can conclude that kinetic and energetic discrimination regimes can cooperate
in the proofreading pathway, reducing the error rate. Moreover, faster, more dissi-
pative and more efficient process obtains when the kinetic discrimination predomi-
nates on the first pathway. The minimum error rate is given by ξmin = e−2γ (Hopfield
[1974]):

ξmin ' e−(max(γ,δ)+γ+δp) (3.32)

Let us point out that the minimum error rate is always achieved in the vanishing catal-
ysis rate (F → 0) limit. In this regime all the free energy provided to the system is spent
to proofread at the expense of the process speed. Hence, both the mean step time and
the dissipation diverge when one approaches the minimum error rate.

The Murugan-Huse-Leibler model

One can consider a more general class of models, where the reaction network con-
tains multiple proofreading cycles. A number of these models have been introduced
by Murugan et al. [2012] (see also Murugan et al. [2014]), and are represented by
schemes of the following form, where the broken lines represent an indefinite num-
ber of cycles:
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Figure 3.2: Mean step time (a), dissipation per step (b), and efficiency (c) versus
the error-rate for the Hopfield model. We have chosen the following values for the
coefficients: ε = 10, ω = 1, γ = 3 and (δ,δp) = (0,0) (green curve: purely energetic
discrimination), (δ,δp) = (6,0) (light blue curve: kinetic discrimination on the first
chemical pathway), (δ,δp) = (0,6) (blue curve: kinetic discrimination on the proof-
reading chemical pathway), (δ,δp) = (6,6) (dark blue curve: kinetic discrimination on
both chemical pathways). The other constant, namely ωi, ωp, εi, εp, are those which
minimize the error-rate function ξ. In this way, the minimum achievable error rate
is recovered by the trade-offs. They have been obtained by numerically minimizing
the error-rate function given the discrimination constants and the driving energy ε,
and are consistent with the values predicted in Hopfield [1974]. The dashed orange
curve refers to the equilibrium error rate for γ = 3. Therefore, in the Hopfield model
one consistently obtains smaller error rates than in the MM model for equal values
of the discrimination constants. The light blue and blue curves highlight that kinetic
and energetic discrimination regimes yield a resulting lower error rate only when they
cooperate in the proofreading pathway. Remarkably, when the kinetic discrimination
predominates on the first pathway the process becomes faster, more dissipative and
more efficient. Finally, it is worth noting that high efficiency at lower error rates ap-
pears as a general trait of the kinetic discrimination for simple models, like the MM
and the Hopfield ones. From Peliti and Rao [2015].
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3. ACCURACY-SPEED-DISSIPATION TRADE-OFF

Any substrate chemical network is coupled with N chemical forces of equal affinity
A . These forces act on the N cycles of type ysn → xsn → xsn+1 → ysn+1 → ysn and drive
the chemical complex towards the final product state on the x-chain of reactions and
towards the free enzyme state on the y-chain of reactions. The xsi

*) ysi reactions dis-
criminate the substrates either kinetically or energetically. The discrimination con-
stants, denoted by γ and δ, and will be taken to be equal for any of the N +1 pathways
xsi

*) ysi .
We will focus our analysis to the behavior of the chemical network for varying

number of independent forces, and thus of cycles. For this purpose we neglect the
discrimination performed on the first stage &*) ys1 and assume that the related rate
constants are the same for both substrates: k+

r = k+
w =ωeε and k−

r = k−
w =ω.

Thus the rate constants related to the ladder part of the network are expressed by

ur =ωueεU+δ, dr =ωueδ, (3.33)

uw =ωueεu , dw =ωueγ, (3.34)

f + =ωf, f − =ωfe
−εf , (3.35)

b+ =ωb, b− =ωbe−εb . (3.36)

We can evaluate the error rate, the mean step rate and the efficiency by solving
the steady-state dynamics, inverting the related error-rate function, and substituting
the result in the relevant expressions, obtaining the results shown in fig. 3.3.

Conclusions

Natural biological processes, like the enzyme assisted assembly processes that we
have considered, must satisfy several, sometimes contradictory, requirements. The
error rate should be lower than a threshold, the average duration of the process should
not be too long, and the free-energy consumption should not be too large. It is likely
that the detailed mechanisms of naturally occurring processes have evolved to op-
timize some combination of these quantities, whose expression depends on the re-
quirements of the process itself. Clarifying the interplay between these requirements
will constitute an important step towards formulating general thermodynamic prin-
ciples limiting the accuracy of non-equilibrium information processing.
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3.2. Models

Figure 3.3: Mean step time (a), dissipation per step (b), and efficiency (c) versus the
error rate for the MHL model in the purely energetic discrimination regime (γ= 3 and
δ= 0). The plot (d), instead, shows the dissipation per step for the same model in the
purely kinetic discrimination regime (γ = 0 and δ = 3). The curves are distinguished
by the number of cycles in the network: light green and light purple curves, N = 1;
green and purple curves, N = 2; dark green and dark purple curves, N = 3. The curves
in (a–c) correspond to the following values of the parameters: γ= 3, εu = 8, εf = 8 and
εb = 8, which represent the driving energy related to the reactions xsi → ysi , xsi → xsi+1

and ysi+1 → ysi , respectively. The other constant,ωu,ωf,ωb, are those which minimize
the minimal error rate ξmin, when the other parameters are kept fixed. The first two
plots in (a) and (b) highlight the lowering of the error rate as the number of forces
increase. However, both the mean step time and the entropy production increase and
the system exhibits a progressively lower efficiency (c). Interestingly, in the kinetic
regime (d), the system needs at least two forces in order to reduce the error rate. Let us
observe that the model embedding just one cycle is very similar to Hopfield scheme,
except for the non-discriminating pathways &*) ys0 . We thus suppose that these last
pathways, detaching the free enzyme state from the part of the network performing
the proofreading, spoil the discrimination in the kinetic regime. Finally, for the plot
(d) the numeric constants chosen are: ω = 1, ε = 10, δ = 3. The values of the other
coefficients are those which minimize the minimal error rate ξmin, and are given by
εu = 8, εf = 9, εb = 9, ωu = 0.1, ωf = 10, ωb = 10). From Peliti and Rao [2015].
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A.1 Convex functions and Jensen’s inequality

Many inequalities in information theory are a consequence of a general relation
called Jensen’s inequality, which holds for convex functions.
Definition 1 A function f (x) is said to be convex over an interval (a,b) if given any
x0, x1 ∈ (a,b) and α ∈ [0,1], one has

f (αx0 + (1−α)x1) ≤α f (x0)+ (1−α) f (x1). (A.1)

A function f is said to be concave if − f is convex. If the inequality is strict for any
x0 6= x1 and α ∈ (0,1), f is said to be strictly convex.

Theorem 1 If the function f (x) has a second derivative which is non-negative (posi-
tive) in (a,b), then f is convex (strictly convex).

Proof. Given x0, x we have, by Taylor’s expansion and by the mean-value theorem, for
some u between x0 and x,

f (x) = f (x0)+ f ′(x0)(x −x0)+ 1

2
f ′′(u)(x −x0)2, (A.2)

where the last term is non-negative. Now let x =αx0 + (1−α)x1. We obtain

f (x0) ≥ f (x)+ f ′(x)(x0 −x) = f (x)− f ′(x)(1−α)(x1 −x0). (A.3)

Similarly we obtain

f (x1) ≥ f (x)+ f ′(x)(x1 −x) = f (x)+ f ′(x)α(x1 −x0). (A.4)

Multiplying (A.3) by α and (A.4) by 1−α and adding, we obtain (A.1). The strict in-
equality is derived along the same lines when f ′′(x) > 0, ∀x ∈ (x0, x1).

69



A. COMPLEMENTS

The converse of this theorem also holds in the form:

Theorem 2 Let the convex function f (x) be twice derivable in the interval [x0, x1].
Then f ′′(x) ≥ 0 in the interval.

Proof. By definition, we have, for any x for which f ′′(x) exists,

f ′′(x) = lim
h→0

f (x +h)+ f (x −h)−2 f (x)

h2
. (A.5)

On the other hand, by convexity, one has

1

2

(
f (x +h)+ f (x −h)

)≥ f (x). (A.6)

Thus the quantity on the right-hand side of the relation above is non-negative for all
h 6= 0. In the limit we obtain f ′′(x) ≥ 0.

One can see that the strict inequality need not hold, even if f (x) is strictly convex, by
considering the function f (x) = x4.

We shall also need the following lemma:

Theorem 3 Let f (x) be a convex function which is twice derivable in (a,b) and let
x0 ∈ (a,b). Then f (x) ≥ f (x0)+ f ′(x0)(x − x0) for x ∈ (a,b). The inequality is strict if
f (x) is strictly convex.

Proof. By Taylor expansion and the mean-value theorem, we have, for some u ∈ (x0, x),

f (x) = f (x0)+ f ′(x0)(x −x0)+ 1

2
f ′′(u)(x −x0)2, (A.7)

where the last term is non-negative. Thus we have proved the weak inequality. To
prove the strict inequality, let us assume that f (x) is strictly convex, and that f (x) =
f (x0)+ f ′(x0)(x −x0) for some x 6= x0. Then, by convexity, we have, for any u ∈ (x0, x),

f (u) ≤ f (x)
u −x0

x −x0
+ f (x0)

x −u

x −x0
= f ′(x0)(u −x0)+ f (x0). (A.8)

On the other hand, by the result we have just derived, we have

f (u) ≥ f ′(x0)(u −x0)+ f (x0). (A.9)

This implies

f (u) = f (x)
u −x0

x −x0
+ f (x0)

x −u

x −x0
, (A.10)

which violates the strict convexity.

If X is a random variable, let us denote by 〈 f 〉 the average of f (x) according to the
distribution of X . We then have
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A.2. The basics of large-deviation theory

Theorem 4 (Jensen’s inequality) If f is a convex function and X is a random variable,
then

〈 f 〉 ≥ f (〈x〉). (A.11)

If f is strictly convex, the equality in (A.11) implies that X is a constant.

Proof. Define g (x) := f (〈X 〉)+ f ′(〈X 〉)(x −〈X 〉). Since f (x) is convex, one has f (x) ≥
g (x), ∀x, with equality for x = 〈X 〉. Moreover, if f (x) is strictly convex, one has f (x) >
g (x), ∀x 6= 〈X 〉. Since g (x) is linear, 〈g (X )〉 = g (〈X 〉). Thus we have

〈 f 〉 ≥ 〈g 〉 = g (〈X 〉) = f (〈X 〉). (A.12)

The inequality is strict if f (x) is strictly convex, unless X assumes only one value.

A.2 The basics of large-deviation theory

Let us consider a sequence X t of i.i.d. random variables, assuming the value xk (for,
say, k ∈ {1, . . . q}) with probability P = (pk ). Let us consider the behavior of the sum
Mn of the values of X t for t = 1, . . .n:

Mn :=
n∑

t=1
X t . (A.13)

Then we know that 〈Mn〉 = n 〈X 〉 and σ2
n := 〈(Mn −〈Mn〉)2〉 = n 〈(X −〈X 〉)2〉, as long as

〈X 〉 and 〈X 2〉 exist. Moreover, from the Central Limit theorem, we know that in this
case the probability that Mn exhibits a small deviation (of order

p
n) from its average

n 〈X 〉 behaves like a Gaussian:

P (Mn=M) ∝ exp

[
− (M −n 〈X 〉)2

2σ2
n

]
. (A.14)

The aim of large-deviation theory is to extend these results to cases in which Mn devi-
ates from its average by a quantity of order n. In our simple case, it can be shown that
the distribution of Mn satisfies a large-deviation principle for n →∞. The principle
stipulates that the probability density of the mean m := Mn/n behaves exponentially
for large n. This implies that the following limit exists:

I (m) :=− lim
n→∞

1

n
logP (Mn=nm). (A.15)

The function I (m) is called the rate function. Since the limit vanishes for m = 〈X 〉,
I (m=〈X 〉) = 0. The relation (A.15) is often written in the form

Pn(M) ³ e−nI (M/n). (A.16)

It is instructive to evaluate the rate equation for our simple system. The probability
distribution function Pn(M) is given by

Pn(M) = ∑
k1···kn

n∏
t=1

pktδ

( n∑
t=1

xkt −M

)
. (A.17)
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A. COMPLEMENTS

This expression is awkward due to the delta function. We can however make it more
compliant by introducing the integral representation of the delta function:

δ(x) =
∫ +i∞

−i∞
dy

2πi
ey x . (A.18)

We thus obtain

Pn(M) =
∫ +i∞

−i∞
dy

2πi

∑
k1···kn

n∏
t=1

pkt exp

[
y

n∑
τ=1

xkτ − y M

]

=
∫ +i∞

−i∞
dy

2πi
ey M

n∏
t=1

∑
kt

pkt e−y xkt =
∫ +i∞

−i∞
dy

2πi
e−y M 〈ey x〉n .

(A.19)

Setting M = nm and defining ψ(y) = − log〈ey x〉 we can evaluate the integral by the
saddle-point method:

Pn(M) =
∫ +i∞

−i∞
dy

2πi
exp

[−n
(
ym +ψ(y)

)]≈ e−nI (m), (A.20)

where
I (m) := min

y

(
ψ(y)+ ym

)
. (A.21)

Thus, the rate function is obtained by the Legendre transform of the ψ(y), which is
the cumulant-generating function of the initial distribution px .

There is a second level of large-deviation theory, which deals with the asymptotic
behavior of the empirical distributions. In our simple case, the empirical distribution
Ξn is a collection of q random variables Ξn = (ξn,1, . . .ξn,q ) defined by

ξn,` := 1

n

∑̀
k=1

δxk ,`. (A.22)

Thus ξn,` measures the frequency of the outcome ` over n trials. By the law of large
numbers we expect that limn→∞ξn,` = p` with probability one. We are interested
in evaluating the probability that Ξn differs substantially from P for large n. Given
ξ = (ξ1, . . . ,ξq ), the probability that Ξ = ξ is given by the probability that n` = nξ` for
`= 1, . . . , q , where n` is the number of times that X = ` in n trials. This probability is
given by

P (Ξ=ξ) = n!

(nξ1)!(nξ2)! · · · (nξq )!
pnξ1

1 · · ·p
nξq
q ≈ exp

[
−n

q∑
k=1

ξk
(
logξk − log pk

)]
,

(A.23)
where we have used Stirling’s formula. We recognize in the sum the Kullback-Leibler
divergence between the empirical distribution Ξ and the probability P :

DKL[Ξ‖P ] =
n∑

k=1
ξk log

ξk

pk
. (A.24)

72



A.2. The basics of large-deviation theory

Thus the probability of the empirical distribution satisfies a large-deviation principle,
whose rate function is the Kullback-Leibler divergence between the empirical distri-
bution itself and the event probability. The behavior of Ξn for n →∞, as dictated by
the law of large numbers, follows immediately. This result was derived by Boltzmann
[1877]. In the words of Ellis [1999]:

This fundamental calculation represents a revolutionary moment in
human culture during which both statistical mechanics and the theory of
large deviations were born.
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