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Abstract

This paper presents generalizations of Bayes likelihood-ratio updating rule
which facilitate an asynchronous propagation of the impacts of new beliefs
and/or new evidence in hierarchically organized inference structures with
multi-hypotheses variables. The computational scheme proposed specifies a
set of belief parameters, communication messages and updating rules which
guarantee that the diffusion of updated beliefs is accomplished in a single
pass and complies with the tenets of Bayes calculus.

Introduction

This paper addresses the issue of efficiently propagating the impact of new evi-
dence and beliefs through a complex network of hierarchically organized inference
rules. Such networks find wide applications in expert-systems [1], [2], [3], speech
recognition [4], situation assessment [5], the modelling of reading comprehension
[6] and judicial reasoning [7].

Many AI researchers have accepted the myth that a respectable computational
model of inexact reasoning must distort, modify or ignore at least some principles
of probability calculus. Consequently, most AI systems currently employ ad-hoc
belief propagation rules which may hinder both the inferential power of these
systems and their acceptance by their intended users. The primary purpose of
this paper is to examine what computational procedures are dictated by traditional
probabilistic doctrines and whether modern requirements of local asynchronous
processing render these doctrines obsolete.

We shall assume that beliefs are expressed in probabilistic terms and that the
propagation of beliefs is governed by the traditional Bayes transformations on the
relation P(D[H), which stands for the judgmental probability of data D (e.g., a
combination of symptoms) given the hypothesis H (e.g., the existence of a certain
disease). The unique feature of hierarchical inference systems is that the relation
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P(D|H) is computable as a cascade of local, more elementary probability relations
involving intervening variables. Intervening variables, (e.g., organisms causing a
disease) may or may not be directly observable. Their computational role, how-
ever, is to provide a conceptual summarization for loosely coupled subsets of
observational data so that the computation of P(H|D) can be performed by local
processes, each employing a relatively small number of data sources.

The belief maintenance architecture proposed in this paper is based on a dis-
tributed asynchronous interaction between cooperating knowledge sources with-
out central supervision similar to that used in the HEARSAY system [4]. We
assume that each variable (i.e., a set of hypotheses) is represented by a separate
processor which both maintains the parameters of belief for the host variable and
manages the communication links to and from the set of neighboring, logically re-
lated variables. The communication lines are assumed to be open at all times, i.e.,
each processor may at any time interrogate its message-board for revisions made
by its neighbors, update its own belief parameters and post new messages on its
neighbors’ boards. In this fashion the impact of new evidence may propagate up
and down the network until equilibrium is reached.

The asynchronous nature of this model requires a solution to an instability
problem. If a stronger belief in a given hypothesis means a greater expectation
for the occurrence of a certain supporting evidence and if, in turn, a greater cer-
tainty in the occurrence of that evidence adds further credence to the hypothesis,
how can one avoid an infinite updating loop when the two processors begin to
communicate with one another? Thus, a second objective of this paper is to present
an appropriate set of belief parameters, communication messages and updating
rules which guarantee that the diffusion of updated beliefs is accomplished in a
single pass and complies with the tenets of Bayes calculus.

A third objective is to demonstrate that proper Bayes inference can be accom-
plished among multivalued variables and that, contrary to the claims made by
Pednault, Zucker and Muresan [8], this does not render conditional independence
incompatible with the assumption of mutual exclusivity and exhaustivity.

Definitions and Nomenclature

A node in an inference net represents a variable name. Each variable represents
a finite partition of the world given by the variable values or states. It may be
a name for a collection of hypotheses (e.g., identity of organism: ORG1, ORG2,
. . . ) or for a collection of possible observations (e.g., patient’s temperature: high,
medium, low). Let a variable be labeled by a capital letter, e.g., A, B, C, . . . , and
its various states subscripted, e.g., A1, A2, . . . .

An inference net is a directed acyclical graph where each branch A© → B©
represents family of rules of the form: if Ai then Bj. The uncertainties in these
rules are quantified by a conditional probability matrix, M(B|A), with entries:
M(B|A)ij = P(Bj|Ai). The presence of a branch between A and B signifies the
existence of a direct communication line between the two variables. The direc-
tionality of the arrow designates A as the set of hypotheses and B as the set of
indicators or manifestations for these hypotheses. We shall say that B is a son
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of A and confine our attention to trees, where every node has only one multi-
hypotheses father and where the leaf nodes represent observable variables.

In principle, the model can also be generalized to include some graphs (mul-
tiple parents), keeping in mind that the states of each variable in the tree may
represent the power set of multi-parent groups in the corresponding graph.

Structural assumptions

Consider the following segment of the tree:

De f i ni t i ons  and Nome nc l at ur e  

A node  i n an i nf e r e nc e  ne t  r e pr e s e nt s  a  var i -  
abl e  name .  Eac h var i abl e  r e pr e s e nt s  a  f i ni t e  par -  
t i t i on of  t he  wor l d gi ve n by t he  var i abl e  val ue s  or  
s t at e s .  I t  may be  a name  f or  a c ol l e c t i on of  hy-  
pot he s e s  ( e . g . ,  i de nt i t y of  or gani s m:  ORG1,  ORG2,  
.  .  .  .  .  )  or  f or  a c ol l e c t i on of  pos s i bl e  obs e r vat i ons  
( e . g . ,  pat i e nt ' s  t e mpe r at ur e :  hi gh,  me di um,  l ow) .  
Le t  a  var i abl e  be  l abe l e d by a c api t al  l e t t e r , e . g . ,  
A, B, C , - * . ,  and i t s  var i ous  s t at e s  s ubs c r i pt e d,  
e . g . ,  A1, A2, . . .  .  

An i nf e r e nc e  ne t  i s  a  di r e c t e d ac yc l i c al  
gr aph whe r e  e ac h br anc h @ -  @ r e pr e s e nt s  a  
f ami l y of  r ul e s  of  t he  f or m:  i f  Ai  t he n Bi .  The  
unc e r t ai nt i e s  i n t he s e  r ul e s  ar e  quant i f i e d by a 
c ondi t i onal  pr obabi l i t y  mat r i x,  I ( BI A) , wi t h e nt r i e s :  
M( Bl A) i j = P( Bj l Ai ) .  The  pr e s e nc e  of  a  br anc h be -  
t we e n A and B s i gni f i e s  t he  e xi s t e nc e  of  a  di r e c t  
c ommuni c at i on l i ne  be t we e n t he  t wo var i abl e s .  The  
di r e c t i onal i t y  of  t he  ar r ow de s i gnat e s  A as  t he s e t  
of  hypot he s e s  and B as  t he  s e t  of  i ndi c at or s  or  
mani f e s t at i ons  f or  t he s e  hypot he s e s .  We  s hal l  s ay 
t hat  B i s  a  s on of  A and c onf i ne  our  at t e nt i on t o 
t r e e s ,  whe r e  e ve r y node  has  onl yone mul t i - hypot he -  
s e s  f at he r  and whe r e  t he  l e af  node s  r e pr e s e nt  
obs e r vabl e  var i abl e s .  

I n pr i nc i pl e ,  t he  mode l  c an al s o be  ge ne r al i z e d 
t o i nc l ude  s ome  gr aphs  ( mul t i pl e  par e nt s ) ,  ke e pi ng 
i n mi nd t hat  t he  s t at e s  of  e ac h var i abl e  i n t he  
t r e e  may r e pr e s e nt  t he  powe r  s e t  of  mul t i - par e nt  
gr oups  i n t he  c or r e s pondi ng gr aph,  

St r uc t ur al  As s umpt i ons  

Cons i de r  t he  f ol l owi ng s e gme nt  of  t he  t r e e :  
The  l i ke l i hood of  t he  
var i ous  s t at e s  of  B 
woul d,  i n ge ne r al ,  D 
de pe nd on t he  e nt i r e  
dat a obs e r ve d s o f ar ,  k/  
i . e . ,  dat a f r om t he  t r e e  A 

r oot e d at  B,  t he  t r e e  B 
r oot e d at  C and t he  t r e e  C 
above  A.  Howe ve r ,  t he  
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f ac t  t hat  B c an c ommuni -  
E 

c at e  di r e c t l y  onl y wi t h 
Y ,  ,  

*  t  
i t s  f at he r  ( A)  and i t s  

;  ' 4  

s ons  ( F and E)  me ans  t hat  t he  i nf l ue nc e  of  t he  e n-  
t i r e  ne t wor k above  B on B i s  c ompl e t e l y s ummar i z e d 
by t he  l i ke l i hood i t  i nduc e s  on t he  s t at e s  of  A.  
Mor e  f or mal l y,  l e t  Dd( B)  s t and f or  t he dat aobt ai ne d 
f r omt he t r e e  r oot e d at B, and D"( B)  f or  t he  dat a ob-  
t ai ne d f r omt he  ne t wor k above  B.  The  pr e s e nc e of onl y 
one l i nkc onne c t i ngDU( B) and ( B) i mpl i e s :  

P( Bj l Ai , DU( B) )  = P( Bj l Ai )  ( 1)  

Thi s  s t r uc t ur al  as s umpt i on of  l oc al  c ommuni c at i on 
i mme di at e l y di c t at e s  what  i s  nor mal l y c al l e d "Con-  
di t i onal  I nde pe nde nc e ";  i f  C and B ar e  s i bl i ngs  and 
A i s  t he i r  par e nt ,  t he n 

P( Bj , CkI Ai )  = P( Bj I Ai )  *  P( CkI Ai )  (2) 

be c aus e  t he  dat a C=Cki s  par t  of  D"( B)  and he nc e  ( 7)  
i mpl i e s  P( Bj / Ck, Ai )  = P( Bj l Ai ) ,  f r om whi c h ( 2) f ol l ows .  

Not e  t he  di f f e r e nc e  be t we e n t he  we ak f or m of  
c ondi t i onal  i nde pe nde nc e  i n ( 2)  and t he  ove r -  
r e s t r i c t i ve  f or m adapt e d by Pe dnaul t  e t  al .  [ 8] ,  
who al s o as s e r t e d i nde pe nde nc e  wi t h r e s pe c t  t o  t he  
c ompl e me nt s  Ai .  

Combi ni ng Top and Bot t om Evi de nc e s  

Our  s t r uc t ur al  as s umpt i on ( 1)  al s o di c t at e s  
how e vi de nc e s  above  and be l ow s ome var i abl e  B s houl d 
be  c ombi ne d.  As s ume  we  wi s h t o f i nd t he  l i ke l i hood 
of  t he  s t at e s  of  B i nduc e d by s ome  dat a D,  par t  of  
whi c h,  D"( B) ,  c ome s  f r om above  B and par t ,  Dd( B) ,  
f r om be l ow.  Baye s  t he or e m,  t oge t he r  wi t h ( l ) , yi e l ds  
t he  pr oduc t  r ul e :  

P( Bi l DU( B) , Dd( B) ) =UPCDd( B) I Bi I *PI Bi I Du( B) I ,  ( 3)  

whe r e  a i s  a  nor mal i z at i on c ons t ant .  Thi s  i s  a  
ge ne r al i z at i on of  t he  c e l e br at e d Baye s  f or mul a f or  
bi nar y var i abl e s :  

O( HI  E)  = X( E)  O( H)  ( 4)  

whe r e  A( E) =P( E[ H) / P( EI n)  i s  known as  t he  l i ke l i hood 
r at i o,  and O( H) =P( H) / P( f l )  as  t he  pr i or  odds  [ 2] .  

Equat i on ( 3)  ge ne r al i z e s  ( 4)  i n t wo ways .  
Fi r s t ,  i t  pe r mi t s  t he  t r e at me nt  of  non- bi nar y var i -  
abl e s  whe r e  t he  me nt al  t as k of  e s t i mat i ng P( EI R)  i s  
of t e n unnat ur al ,  and whe r e  c ondi t i onal  i nde pe nde nc e  
wi t h r e s pe c t  t o  t he  ne gat i ons  of  t he  hypot he s e s  i s  
nor mal l y vi ol at e d ( i . e . ,  P( El , E21R) f P( El / R) P( E2l ~) ) .  
Se c ond,  i t  i de nt i f i e s  a  s ur r ogat e  t o t he  pr i or  
pr obabi l i t y  t e r m f or  any i nt e r me di at e  node  i n t he  
t r e e ,  e ve n af t e r  obt ai ni ng s ome  e vi de nt i al  dat a.  
Ac c or di ng t o,  t he  mul t i pl i c at i ve  r ol e  of  t he  
pr i or  pr obabi l i t y  i n Equat i on ( 4)  i s  t ake n ove r  by 
t he  c ondi t i onal  pr obabi l i t y  of  a  var i abl e  bas e d 
onl y on t he  e vi de nc e  gat he r e d by t he  ne t wor k above  
i t ,  e xc l udi ng t he  dat a c ol l e c t e d f r om be l ow.  Thus ,  
t he  pr oduc t  r ul e  ( 3)  c an be  appl i e d t o any node  i n 
t he  ne t wor k,  wi t hout  r e qui r i ng pr i or  pr obabi l i t y  
as s e s s me nt s .  

The  r oot  i s  t he  onl y node  whi c h r e qui r e s  a  
pr i or  pr obabi l i t y  e s t i mat i on.  Si nc e  i t  has  no ne t -  
wor k above ,  D"( B)  s houl d be  i nt e r pr e t e d as  t he  
avai l abl e  bac kgr ound knowl e dge  whi c h r e mai ns  une x-  
pl i c at e d by t he  ne t wor k be l ow.  Thi s  i nt e r pr e t at i on 
r e nde r s  P( Bi l D' ( B) )  i de nt i c al  t o  t he  c l as s i c al  no-  
t i on of  s ubj e c t i ve  pr i or  pr obabi l i t y .  The  pr oba-  
bi l i t i e s  of  al l  ot he r  node s  i n t he  t r e e  ar e  uni que -  
l y  de t e r mi ne d by t he  ar c - mat r i c e s ,  t he dat aobs e r ve d 
and t he  pr i or  pr obabi l i t y  of  t he  r oot .  

Equat i on ( 3)  s ugge s t s  t hat  t he  pr obabi l i t y  
di s t r i but i on of  e ve r y var i abl e  i n t he  ne t wor kc an 
be  c omput e d i f  t he  node  c or r e s pondi ng t o t hat  var i -  
abl e  c ont ai ns  t he  par ame t e r s  

x( Bi )  a ,  P( Dd( B) I Bi )  ( 5)  
and 

q( Bi )  4  P( Bi l D' ( B) ) .  (6) 

q( Bi )  r e pr e s e nt s  t he  ant i c i pat or y s uppor t  at t r i but e d 
t o Bi  by i t s  anc e s t or s  and X( Bi )  r e pr e s e nt s  t he  
e vi de nt i al  s uppor t  r e c e i ve d byBi  f r om i t s  di agnos t i c  
de s c e ndant s .  The  t ot al  s t r e ngt h of  be l i e f  i n Bi  
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The likelihood of the various states of B would, in general, depend on the entire
data observed so far, i.e., data from the tree rooted at B, the tree rooted at C and
the tree above A. However, the fact that B can communicate directly only with its
father (A) and its sons (F and E) means that the influence of the entire network
above B on B is completely summarized by the likelihood it induces on the states
of A. More formally, let Dd(B) stand for the data obtained from the tree rooted
at B and Du(B) for the data obtained from the network above B. The presence of
only one link connecting Du(B) and (B) implies:

P(Bj|Ai, Du(B)) = P(Bj|Ai) (1)

This structural assumption of local communication immediately dictates what is
normally called "Conditional Independence": if C and B are siblings and A is their
parent, then

P(Bj, Ck|Ai) = P(Bj|Ai) · P(Ck|Ai) (2)

because the data C = Ck is part of Du(B) and hence (1) implies P(Bj|Ck, Ai) =
P(Bj|Ai), from which (2) follows.

Note the difference between the weak form of conditional independence in
(2) and the overrestrictive form adapted by Pednault et al. [8], who also asserted
independence with respect to the complements Ai.

3



Combining Top and Bottom Evidences

Our structural assumption (1) also dictates how evidences above and below some
variable B should be combined. Assume we wish to find the likelihood of the
states of B induced by some data D, part of which, Du(B), comes from above B
and part, Dd(B), from below. Bayes theorem, together with (1), yields the product
rule:

P[Bi|Du(B), Dd(B)] = α P[Dd(B)|Bi] · P[Bi|Du(B)], (3)

where α is a normalization constant. This is a generalization of the celebrated
Bayes formula for binary variables:

O(H|E) = λ(E)O(H), (4)

where λ(E) = P(E|H)/P(E|H̄) is known as the likelihood ratio, and O(H) =
P(H)/P(H̄) as the prior odds [2].

Equation (3) generalizes (4) in two ways. First, it permits the treatment of
non-binary variables where the mental task of estimating P(E|H̄) is often unnat-
ural, and where conditional independence with respect to the negations of the
hypotheses is normally violated (i.e., P(E1, E2|H̄) 6= P(E1|H̄)P(E2|H̄)). Second, it
identifies a surrogate to the prior probability term for any intermediate node in
the tree, even after obtaining some evidential data. According to, the multiplicative
role of the prior probability in Equation (4) is taken over by the conditional prob-
ability of a variable based only on the evidence gathered by the network above it,
excluding the data collected from below. Thus, the product rule (3) can be applied
to any node in the network, without requiring prior probability assessments.

The root is the only node which requires a prior probability estimation. Since
it has no network above, Du(B) should be interpreted as the available background
knowledge which remains unexplicated by the network below. This interpretation
renders P(Bi|Du(B)) identical to the classical notion of subjective prior probability.
The probabilities of all other nodes in the tree are uniquely determined by the arc-
matrices, the data observed and the prior probability of the root.

Equation (3) suggests that the probability distribution of every variable in the
network can be computed if the node corresponding to that variable contains the
parameters

λ(Bi)
∆
= P(Dd(B)|Bi), (5)

and
q(Bi)

∆
= P(Bi|Du(B)). (6)

q(Bi) represents the anticipatory support attributed to Bi by its ancestors and λ(Bi)
represents the evidential support received by Bi from its diagnostic descendants.
The total strength of belief in Bi would be given by the product

P(Bi) = α λ(Bi) q(Bi). (7)

Whereas only two parameters, λ(E) and O(H), were sufficient for binary vari-
ables, an n-state variable needs to be characterized by two n-tuples:

λ(B) = λ(B1), λ(B2), . . . , λ(Bn)

q(B) = q(B1), q(B2), . . . , q(Bn).
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Propagation of Information Through the Network

Assuming that the vectors λ and q are stored with each node of the network, our
task is now to prescribe how the influence of new information spreads through the
network. Traditional probability theory, together with some efficiency considera-
tions [9], dictate the following propagation scheme which we first report without
proofs.

1. Each processor computes two message vectors: P and r. P is sent to every
son while r is delivered to the father. The message P is identical to the
probability distribution of the sender and is computed from λ and q using
Equation (7). r is computed from λ using the matrix multiplication:

r = M · λ (8)

where M is the matrix quantifying the link to the father. Thus, the dimen-
sionality of r is equal to the number of hypotheses managed by the father.
Each component of r represents the diagnostic contribution of the data below
the host processor to the belief in one of the father’s hypotheses.

2. When processor B is called to update its parameters, it simultaneously in-
spects the P(A) message communicated by the father A and the messages
r1, r2, . . . , communicated by each of its sons and acknowledges receiving the
latter. Using these inputs, it then updates λ and q as follows:

3. Bottom-up propagation: λ is computed using a term-by-term multiplication
of the vectors r1, r2, . . . :

λ(Bi) = (r1)i × (r2)i × · · · = ∏
k
(rk)i (9)

4. Top-down propagation: q is computed using:

q(Bi) = β ∑
j

P(Bi|Aj)P(Aj)/(r′)j (10)

where β is a normalization constant and r′ is the last message from B to A
acknowledged by the father A. (The division by r′ amounts to removing
from P(A) the contribution due to Dd(B) as dictated by the definition of q
in Equation (6)).

5. Using the updated values of λ and q, the messages P and r are then recom-
puted as in step 1 and are posted on the message-boards dedicated for the
sons and the father, respectively. This updating scheme is shown schemati-
cally in the diagram below, where multiplications and divisions of any two
vectors stand for term-by-term operations.
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woul d be  gi ve n by t he  pr oduc t  

P( Bi )  = aX( Bi )  q( Bi ) .  ( 7)  

Whe r e as  onl y t wo par ame t e r s ,  x( E)  and O( H) , we r e  
s uf f i c i e nt  f or  bi nar y var i abl e s ,  an n- s t at e  var i abl e  
ne e ds  t o be  c har ac t e r i z e d by t wo n- t upl e s :  

Pr opagat i on of  I nf or mat i on Thr ough t he  Ne t wor k 

As s umi ng t hat  t he  ve c t or s  h and 9 ar e  s t or e d 
wi t h e ac h node  of  t he  ne t wor k,  our  t as k i s  now t o 
pr e s c r i be  how t he  i nf l ue nc e  of  ne w i nf or mat i on 
s pr e ads  t hr ough t he  ne t wor k.  Tr adi t i onal  pr obabi -  
l i t y  t he or y,  t oge t he r  wi t h s ome  e f f i c i e nc y c ons i -  
de r at i ons  [ 9] ,  di c t at e  t he  f ol l owi ng pr opagat i on 
s c he me  whi c h we  f i r s t  r e por t  wi t hout  pr oof s .  

1 .  Eac h pr oc e s s or  c omput e s  t wo me s s age  ve c t or s :  
P and r .  P i s  s e nt  t o  e ve r y s on whi l e  r  i s  de l i v-  
e r e d t o- t he -  f at he r .  The  me s s age  p i s  i de nt i c al  t o  
t he  pr obabi l i t y  di s t r i but i on of  t he  s e nde r  and i s  
c omput e d f r om h and 4 us i ng Equat i on ( 7) .  r  i s  
c omput e d f r om x us i ng t he  mat r i x mul t i pl i c at i on:  -  

r =M=aA (8) -  -  

whe r e  f i  i s  t he  mat r i x quant i f yi ng t he  l i nk t o t he  
f at he r .  Thus ,  t he  di me ns i onal i t y  of  r  i s  e qual  t o  
t he  numbe r  of  hypot he s e s  manage d by t he  f at he r .  
Eac h c ompone nt  of  r  r e pr e s e nt s  t he  di agnos t i c  c on-  
t r i but i on of  t he  dat a be l ow t he  hos t  pr oc e s s or  t o 
t he  be l i e f  i n one  of  t he  f at he r ' s  hypot he s e s .  

2 .  Whe n pr oc e s s or  B i s  c al l e d t o updat e  i t s  
par ame t e r s ,  i t  s i mul t ane ous l y i ns pe c t s  t he  P( A)  
me s s age  c ommuni c at e d by t he  f at he r  A and t he  me s -  
s age s  g,~2, .  .  .  ,  c ommuni c at e d by e ac h of  i t s  s ons  
and ac knowl e dge s  r e c e i vi ng t he  l at t e r .  Us i ng 
t he s e  i nput s ,  i t  t he nupdat e s  h and 4 as  f ol l ows :  -  

3 .  Bot t om- up pr opagat i on:  h i s  c omput e d us i ng 
a t e r m- by- t e r m mul t i pl i c at i on of  t he  ve c t or s  ~1,  
9, . . . : 

X( Bi )  = ( VJ) i  X ( Q) i  X . . .  = n( c k) j  ( 9)  
k 

4.  Top- down pr opagat i on:  4  i s  c omput e d us i ng:  

q(Bi) = B 1 P(BilAj)P(Aj)/(~‘)j 
j 

(10) 

whe r e  B i s  a  nor mal i z at i on c ons t ant  and r '  i s  t he  
l as t  me s s age  f r om B t o A ac knowl e dge d by- t he  f at he r  
A.  ( The  di vi s i on by c '  amount s  t o  r e movi ng f r om 
P( A)  t he  c ont r i but i on due  t o Dd( B)  as  di c t at e d by 
The  de f i ni t i on of  q i n Equat i on ( 6) ) .  

5 .  Us i ng t he  updat e d val ue s  of  1  and 4,  t he  
me s s age s  c  and r  ar e  t he n r e c omput e d as  i n s t e p 1 
and ar e  pos t e d on t he  me s s age - boar ds  de di c at e d f or  
t he  s ons  and t he  f at he r ,  r e s pe c t i ve l y.  Thi s  upda-  
t i ng s c he me  i s  s hown s c he mat i c al l y  i n t he  di agr am 
be l ow,  whe r e  mul t i pl i c at i ons  and di vi s i ons  of  any 
t wo ve c t or s  s t and f or  t e r m- by- t e r m ope r at i ons .  

The  t e r mi nal  node s  i n 
boundar y c ondi t i ons .  He r e  
be t we e n t he  t wo c as e s :  

CURRENTMES%lCE TO 
ALL SONS 

t he  t r e e  r e qui r e  s pe c i al  
we  have  t o di s t i ngui s h 

1.  Ant i c i pat or y node :  an obs e r vabl e  var i abl e  
whos e  s t at e  i s  s t i l l  unknown.  For  s uc h var i abl e s ,  

t he r e f or e ,  we  s houl d s e t  

2 .  Dat a- node :  an obs e r vabl e  var i abl e  wi t h a 
known s t at e .  Fol l owi ng Equat i on ( 5) ,  i f  t he  j t h 
s t at e  of  B was  obs e r ve d t o be  t r ue ,  s e t  x  = 
( O, O. . . O, l , O. . . )  wi t h 1 at  t he  j t h pos i t i on.  

Si mi l ar l y,  t he  boundar y c ondi t i ons  f or  t he  r oot  
node  i s  obt ai ne d by s ubs t i t ut i ng t he  pr i or  pr oba-  
bi l i t y  i ns t e ad of  t he  me s s age  P- ( A)  e xpe c t e d f r om 
t he  f at he r .  

A Toke n Game  I l l us t r at i on 

Fi gur e  2 s hows  s i x  s uc c e s s i ve  s t age s  of  be l i e f  
pr opagat i on t hr ough a s i mpl e  bi nar y t r e e ,  as s umi ng 
t hat  updat i ng i s  ac t i vat e d by c hange s  i n t he  be l i e f  
par ame t e r s  of  ne i ghbor i ng pr oc e s s e s .  Initially 
( Fi gur e  2a) ,  t he  t r e e  i s  i n e qui l i br i um and al l  
t e r mi nal  node s  ar e  ant i c i pat or y.  As  s oon as  t wo 
dat a node s  ar e  ac t i vat e d ( Fi gur e  2b) ,  whi t e  t oke ns  
ar e  pl ac e d on t he i r  l i nks ,  di r e c t e d t owar ds  t he i r  
f at he r s .  In t he  ne xt  phas e ,  t he  f at he r s ,  ac t i vat e d 
by t he s e  t oke ns ,  abs or b t he  l at t e r  and manuf ac t ur e  
t he  appr opr i at e  numbe r  of  t oke ns  f or  t he i r  ne i ghbor s  
( Fi gur e  2c ) ,  whi t e  t oke ns  f or  t he i r  f at he r s  and 
bl ac k one s  f or  t he  c hi l dr e n ( t he  l i nks t hr oughwhi c h 
t he  abs or be d t oke ns  have  e nt e r e d do not  r e c e i ve  ne w 
t oke ns ,  t hus  r e f l e c t i ng t he  di vi s i on of  P by r l ) ,  
The  r oot  node  now r e c e i ve s  t wo whi t e  t oke ns ,  one  
f r om e ac h of  i t s de s c e ndant s .  That  t r i gge r s  t he  
pr oduc t i on of  t wo bl ac k t oke ns  f or  t op- down de l i v-  
e r y ( Fi gur e  2d) .  The  pr oc e s s  c ont i nue s  i n t hi s  
f as hi on unt i l  ,  af t e r  s i x  c yc l e s ,  al l  t oke ns  ar e  
abs or be d and t he  ne t wor k r e ac he s  a ne w e qui l i br i um.  
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Figure 1.

The terminal nodes in the tree require special boundary conditions. Here we
have to distinguish between the two cases:

1. Anticipatory node: an observable variable whose state is still unknown.
For such variables, therefore, we should set λ = (1, 1, . . . , 1) (also implying
r = (1, 1, . . . , 1)).

2. Data-node: an observable variable with a known state. Following Equation
(5), if the j-th state of B was observed to be true, set λ = (0, 0, ..., 0, 1, 0, ...)
with 1 at the j-th position.

Similarly, the boundary conditions for the root node is obtained by substituting
the prior probability instead of the message P(A) expected from the father.

A Token Game Illustration

Figure 2 shows six successive stages of belief propagation through a simple binary
tree, assuming that updating is activated by changes in the belief parameters of
neighboring processes. Initially (Figure 2a), the tree is in equilibrium and all ter-
minal nodes are anticipatory. As soon as two data nodes are activated (Figure 2b),
white tokens are placed on their links, directed towards their fathers. In the next
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phase, the fathers, activated by these tokens, absorb the latter and manufacture
the appropriate number of tokens for their neighbors (Figure 2c), white tokens for
their fathers and black ones for the children (the links through which the absorbed
tokens have entered do not receive new tokens, thus reflecting the division of P
by r′), The root node now receives two white tokens, one from each of its descen-
dants. That triggers the production of two black tokens for top-down delivery
(Figure 2d). The process continues in this fashion until, after six cycles, all tokens
are absorbed and the network reaches a new equilibrium.

Fi gur e  2 

Pr ope r t i e s  of  t he  Updat i ng Sc he me  

1.  The  l oc al  c omput at i ons  r e qui r e d by t he  pr o-  
pos e d s c he me  ar e  e f f i c i e nt  i n bot h s t or age  andt i mp.  
For  an m- ar y t r e e  wi t h n s t at e s  pe r  node ,  e ac h pr o-  
c e s s or  s houl d s t or e  n2+mnt 2n r e al  numbe r s ,  and pe r -  
f or m 2n2t mn+2n mul t i pl i c at i ons  pe r  updat e .  The s e  
e xpr e s s i ons  ar e  on t he  or de r  of  t he  numbe r  of  r ul e s  
whi c h e ac h var i abl e  i nvoke s .  

2 .  The  l oc al  c omput at i ons  ar e  e nt i r e l yi nde pe n-  
de nt  of  t he  c ont r ol  me c hani s m whi c h ac t i vat e s  t he  
updat i ng s e que nc e .  The y c an be  ac t i vat e d by e i t he r  
dat a- dr i ve n or  goal  dr i ve n ( e . g . ,  r e que s t s  f or  
e vi de nc e )  c ont r ol  s t r at e gi e s ,  by a c l oc k or  at  
r andom.  

3.  Ne w i nf or mat i on di f f us e s  t hr ough t he  ne t -  
wor k i n a s i ngl e  pas s .  I nf i ni t e  r e l axat i ons  have  
be e n e l i mi nat e d by mai nt ai ni ng a t wo- par ame t e r  s ys -  
t e m ( 4 and r )  t o  de c oupl e  t op and bot t om e vi de nc e s .  
The  t i me  r e qui r e d f or  c ompl e t i ng t he  di f f us i on ( i n 
par al l e l )  i s  e qual  t o  t he di ame t e r of  t he  ne t wor k.  

A Summar y of  Pr oof s  

Fr om t he  f ac t  t hat  X i s  onl y i nf l ue nc e d by 
c hange s  pr opagat i ng f r om t he  bot t om and 9 onl y by 
c hange s  f r om t he  t op,  i t  i s  c l e ar  t hat  t he  t r e e  
wi l l  r e ac h e qui l i br i um af t e r  a f i ni t e  numbe r  of  up-  
dat i ng s t e ps .  It r e mai ns  t o s howt hat , at e qui l i br i um,  
t he  updat e d par ame t e r s  P( Vi ) ,  i n e ve r y node  V,  c or r e -  
s pondt ot he c or r e c t pr obabi l i t i e s  P( Vi l DU( V) , Dd( V) )  
or  ( s e e  Equat i on ( 3) ) , t hat t he  e qui l i br i umval ue s  of  
h( Vi )  and q( Vi ) ac t ual l ye qual  t he  pr obabi l i t i e s  
P( Dd( V) I Vi ) and P( Vi l D' ( V) )  Thi s  c an be  s hown byi nduc -  
t i on bot t om- up f or &and t he n t op- down f or  4.  

Val i di t y of  A:  x i s  c e r t ai nl y val i d f or  l e af  
node s ,  as  was  e xpl ai ne d above  i n s e t t i ng t he  boun-  
dar y c ondi t i ons .  As s ummi ng t hat  t he X' s  ar e  val i d 
at  al l  c hi l dr e n of  node  B,  t he  val i di t y of  x( B)  
c omput e d t hr ough s t e ps  ( 8)  and ( 9)  f ol l ows Ji r e c t l y  
f r om t he  c ondi t i onal  i nde pe nde nc e  of  t he  dat a be -  
ne at h B' s  c hi l dr e n ( Equat i on ( 2) ) .  

Val i di t y of  q:  i f  al l  t he  X' s  ar e  val i d,  t he n 
P i s  val i d f or  t he  r oot  node .  ‘ i i s s umi ng now t hat  
P( A)  i s  val i d,  l e t  us  e xami ne  t he  val i di t y of  q( B) ,  
whe r e  B i s  any c hi l d of  A.  By de f i ni t i on ( e quat i on 
( 6) ) ,  q( B)  s houl d s at i s f y:  

whe r e  S de not e s  t he  s e t  of  B' s  s i bl i ngs .  The  s e c -  
ond f ac t or  i n t he  s ummat i on di f f e r s  f r om P( Aj )  = 
P( Aj j D' ( A) , Dd( A) )  i n t hat  t he  l at t e r  has  al s o i n-  
c or por at e d B' s  me s s age  ( r ' ) j  i n t he  f or mat i on of  

bi l i t y  e ns ue s .  

Whe n we  di vi de  P( Aj )  by 
( l o) ,  t he  c or r e c t  pr oba-  

Conc l us i ons  

The  pape r  de mons t r at e s  t hat  t he  c e nt ur i e s - ol d 
Baye s  f or mul a s t i l l  r e t ai ns  i t s  pot e nc y f or  s e r vi ng 
as  t he  bas i c  be l i e f  r e vi s i ng r ul e  i n l ar ge ,  mul t i -  
hypot he s e s ,  i nf e r e nc e  s ys t e ms .  It i s  pr opos e d,  
t he r e f or e ,  as  a  s t andar d poi nt  of  de par t ur e  f or mor e  
s ophi s t i c at e d mode l s  of  be l i e f  mai nt e nanc e  and 
i ne xac t  r e as oni ng.  

m 

PI 

c31 

c41 

[ 51 

[61 

[71 

I31 

L-91 

REFERENCES 

Shor t l i f f e ,  E. H. ,  and Buc hanan, B. G. , "AMode l  of  
Inexact Re as oni ng i n Me di c i ne ".  Mat h. Bi os c i . ,  
23 ( 1975) ,  351- 379.  

Duda,  R. O. ,  Har t ,  P. E.  and Ni l s s on,  N.  J., "Sub-  
j e c t i ve  Baye s i an Me t hods  f or  Rul e - Bas e d I nf e r -  
e nc e  Sys t e ms ".  Te c h.  Not e  124,  AI Ce nt e r ,  SRI 
I nt e r nat i onal ,  Me nl o Par k,  CA;  al s o Pr oc .  1976 
NCC ( AFI Ps  Pr e s s ) .  

Duda,  R. ,  Har t ,  P. ,  Bar r e t t ,  P. ,  Gas hni g,  J., 
Konol i ge ,  K. ,  Re boh,  R.  and Sl oc um J., “Devel- 
opme nt  of  t he  Pr os pe c t or  Cons ul t at i on Sys t e m 
f or  Mi ne r al  Expl or at i on".  AI Ce nt e r ,  SRI In- 
t e r nat i onal ,  Me nl o Par k,  CA,  Se pt .  1976.  

Le s s e r ,  V. R.  and Er man,  L. D. ,  "A Re t r os pe c t i ve  
Vi e w of  HEARSAY II Ar c hi t e c t ur e ".  Pr oc .  5t h I nt .  
Joi nt  Conf .  AI, Cambr i dge ,  MA, l 977,  790- 800.  

DDI Handbook f or  De c i s i on Anal ys i s ,  De c i s i on 
and De s i gn Inc., Mc Le an,  VA,  1973.  

Rume l har t ,  D. E. ,  "Towar d an I nt e r ac t i ve  Mode l  
of  Re adi ng".  Ce nt e r  f or  Human I nf o.  Pr oc . CHI P-  
56,  UC La Jol l a ,  Mar c h 1976.  

Sc hum,  D.  and Mar t i n,  A. ,  "Empi r i c al  St udi e s  of  
Cas c ade d I nf e r e nc e  i n Jur i s pr ude nc e :  Me t hodo-  
l ogi c al  Cons i de r at i on".  Ri c e  Uni v. ,  Ps yc hol ogy 
Re s e ar c h Re por t ,  #80- 01,  May 1980.  

Pe dnaul t ,  E. P. D. ,  Zuc ke r ,  S. W.  and Mur e s an,  L. V. ,  
"On t he  I nde pe nde nc e  As s umpt i on Unde r l yi ng 
Subj e c t i ve  Baye s i an Updat i ng".  Ar t .  Intel., 
Vol .  16,  No.  2 ,  May 1981,  213- 222.  

Pe ar l ,  J., "Be l i e f  Pr opagat i on i n Hi e r ar c hi c al  
I nf e r e nc e  St r uc t ur e s ".  UCLA- ENG- CSL- 8211,  UC 
Los  Ange l e s ,  Januar y 1982.  

q( Bi ) =P( Bi I D' ( B) ) = CP( Bi l Aj ) P( Aj I D' ( A) , Dd( S) )  
j  

136 

Figure 2.

Properties of the Updating Scheme

1. The local computations required by the proposed scheme are efficient in both
storage and time. For an m-ary tree with n states per node, each processor
should store n2 + mn + 2n real numbers, and perform 2n2 + mn + 2n multi-
plications per update. These expressions are on the order of the number of
rules which each variable invokes.

2. The local computations are entirely independent of the control mechanism
which activates the updating sequence. They can be activated by either data-
driven or goal driven (e.g., requests for evidence) control strategies, by a
clock or at random.

3. New information diffuses through the network in a single pass. Infinite
relaxations have been eliminated by maintaining a two-parameter system
(q and r) to decouple top and bottom evidences. The time required for
completing the diffusion (in parallel) is equal to the diameter of the network.
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A Summary of Proofs

From the fact that λ is only influenced by changes propagating from the bottom
and q only by changes from the top, it is clear that the tree will reach equilibrium
after a finite number of updating steps. It remains to show that, at equilibrium, the
updated parameters P(Vi), in every node V, correspond to the correct probabilities
P(Vi|Du(V), Dd(V)) or (see Equation (3)), that the equilibrium values of λ(Vi) and
q(Vi) actually equal the probabilities P(Vi|Du(V), Dd(V)). This can be shown by
induction bottom-up for λ and then top-down for q.

Validity of λ: λ is certainly valid for leaf nodes, as was explained above in
setting the boundary conditions. Assumming that the λ’s are valid at all children
of node B, the validity of λ(B) computed through steps (8) and (9) follows directly
from the conditional independence of the data beneath B’s children (Equation (2)).

Validity of q: if all the λ’s are valid, then P is valid for the root node. Assuming
now that P(A) is valid, let us examine the validity of q(B), where B is any child
of A. By definition (equation (6)), q(B) should satisfy:

q(Bi) = P(Bi|Du(B)) = ∑
j

P(Bi|Aj)P(Aj|Du(A), Dd(S))

where S denotes the set of B’s siblings. The second factor in the summation differs
from P(Aj) = P(Aj|Du(A), Dd(A)) in that the latter has also incorporated B’s
message (r′)j in the formation of λ(Aj) (equation (9)). When we divide P(Aj) by
(r′)j, as prescribed in (10), the correct probability ensues.

Conclusions

The paper demonstrates that the centuries-old Bayes formula still retains its po-
tency for serving as the basic belief revising rule in large, multi-hypotheses, infer-
ence systems. It is proposed, therefore, as a standard point of departure for more
sophisticated models of belief maintenance and inexact reasoning.
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