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1 Introduction

The paper that follows is based on notes taken by Dr. R. S. Pierce on five lectures
given by the author at the California Institute of Technology in January 1952. They
have been revised by the author but they reflect, apart from minor changes, the
lectures as they were delivered. The subject-matter, as the title suggests, is the
role of error in logics, or in the physical implementation of logics—–in automata-
synthesis. Error is viewed, therefore, not as an extraneous and misdirected or mis-
directing accident, but as an essential part of the process under consideration—–its
importance in the synthesis of automata being fully comparable to that of the fac-
tor which is normally considered, the intended and correct logical structure. Our
present treatment of error is unsatisfactory and ad hoc. It is the author’s convic-
tion, voiced over many years, that error should be treated by thermodynamical
methods, and be the subject of a thermodynamical theory, as information has
been, by the work of L. Szilard and C. E. Shannon (cf. 5.2). The present treatment
falls far short of achieving this, but it assembles, it is hoped, some of the building
materials, which will have to enter into the final structure. The author wants to
express his thanks to K. A. Brueckner and M. Gell-Mann, then at the University
of Illinois, to whose discussions in 1951 he owes some important stimuli on this
subject; to Dr. R. S. Pierce at the California Institute of Technology, on whose ex-
cellent notes this exposition is based; and to the California Institute of Technology,
whose invitation to deliver these lectures combined with the very warm reception
by the audience, caused him to write this paper in its present form, and whose
cooperation in connection with the present publication is much appreciated.

2 A Schematic View of Automata

2.1 Logics and Automata

It has been pointed out by A. M. Turing [5] in 1937 and by W. S. McCulloch
and W. Pitts [2] in 1943 that effectively constructive logics, that is, intuitionistic
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logics, can be best studied in terms of automata. Thus logical propositions can be
represented as electrical networks or (idealized) nervous systems. Whereas logical
propositions are built up by combining certain primitive symbols, networks are
formed by connecting basic components, such as relays in electrical circuits and
neurons in the nervous system. A logical proposition is then represented as a
“black box” which has a finite number of inputs (wires or nerve bundles) and
a finite number of outputs. The operation performed by the box is determined
by the rules defining which inputs, when stimulated, cause responses in which
outputs, just as a propositional function is determined by its values for all possible
assignments of values to its variables.

There is one important difference between ordinary logic and the automata
which represent it. Time never occurs in logic, but every network or nervous sys-
tem has a definite time lag between the input signal and the output response. A
definite temporal sequence is always inherent in the operation of such a real sys-
tem. This is not entirely a disadvantage. For example, it prevents the occurrence of
various kinds of more or less overt vicious circles (related to “non-constructivity”,
“impredicativity”, and the like) which represent a major class of dangers in mod-
ern logical systems. It should be emphasized again, however, that the representa-
tive automaton contains more than the content of the logical proposition which it
symbolizes—–to be precise, it embodies a definite time lag.

Before proceeding to a detailed study of a specific model of logic, it is necessary
to add a word about notation. The terminology used in the following is taken
from several fields of science; neurology, electrical engineering, and mathematics
furnish most of the words. No attempt is made to be systematic in the application
of terms, but it is hoped that the meaning will be clear in every case. It must be
kept in mind that few of the terms are being used in the technical sense which is
given to them in their own scientific field. Thus, in speaking of a neuron, we don’t
mean the animal organ, but rather one of the basic components of our network
which resembles an animal neuron only superficially, and which might equally
well have been called an electrical relay.

2.2 Definitions of the Fundamental Concepts

Externally an automaton is a “black box” with a finite number of inputs and a
finite number of outputs. Each input and each output is capable of exactly two
states, to be designated as the “stimulated” state and the “unstimulated” state,
respectively. The internal functioning of such a “black box” is equivalent to a pre-
scription that specifies which outputs will be stimulated in response to the stimu-
lation of any given combination of the inputs, and also the time of stimulation of
these outputs.

As stated above, it is definitely assumed that the response occurs only after a
time lag, but in the general case the complete response may consist of a succession
of responses occurring at different times. This description is somewhat vague. To
make it more precise it will be convenient to consider first automata of a somewhat
restricted type and to discuss the synthesis of the general automaton later.
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Definition 1. A single output automaton with time delay δ (δ is positive) is a finite set
of inputs, exactly one output, and an enumeration of certain “preferred” subsets of the set
of all inputs. The automaton stimulates its output at time t + δ if and only if at time t
the stimulated inputs constitute a subset which appears in the list of “preferred” subsets,
describing the automaton.

In the above definition the expression "enumeration of certain subsets" is taken
in its widest sense and does not exclude the extreme cases “all” and “none”. If n
is the number of inputs, then there exist 2(2

n) such automata for any given δ.
Frequently several automata of this type will have to be considered simulta-

neously. They need not all have the same time delay, but it will be assumed that
all their time lags are integral multiples of a common value δ0. This assumption
may not be correct for an actual nervous system; the model considered may apply
only to an idealized nervous system. In partial justification, it can be remarked
that as long as only a finite number of automata are considered, the assumption
of a common value δ0 can be realized within any degree of approximation. What-
ever its justification and whatever its meaning in relation to actual machines or
nervous systems, this assumption will be made in our present discussions. The
common value δ0 is chosen for convenience as the time unit. The time variable can
now be made discrete, i.e., it need assume only integral numbers as values, and
correspondingly the time delays of the automata considered are positive integers.

Single output automata with given time delays can be combined into a new
automaton. The outputs of certain automata are connected by lines or wires or
nerve fibers to some of the inputs of the same or other automata. The connecting
lines are used only to indicate the desired connections; their function is to trans-
mit the stimulation of an output instantaneously to all the inputs connected with
that output. The network is subjected to one condition, however. Although the
same output may be connected to several inputs, any one input is assumed to be
connected to at most one output. It may be clearer to impose this restriction on
the connecting lines, by requiring that each input and each output be attached to
exactly one line, to allow lines to be split into several lines, but prohibit the merg-
ing of two or more lines. This convention makes it advisable to mention again
that the activity of an output or an input, and hence of a line, is an all or nothing
process. If a line is split, the stimulation is carried to all the branches in full. No
energy conservation laws enter into the problem. In actual machines or neurons,
the energy is supplied by the neurons themselves from some external source of
energy. The stimulation acts only as a trigger device.

The most general automaton is defined to be any such network. In general It
will have several inputs and several outputs and its response activity will be much
more complex than that of a single output automaton with a given time delay. An
intrinsic definition of the general automaton, independent of its construction as a
network, can be supplied. It will not be discussed here, however.

Of equal importance to the problem of combining automata into new ones is
the converse problem of representing a given automaton by a network of simpler
automata, and of determining eventually a minimum number of basic types for
these simpler automata. As will be shown, very few types are necessary.
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2.3 Some Basic Organs

The automata to be selected as a basis for the synthesis of all automata will be
called basic organs. Throughout what follows, these will be single output au-
tomata.

One type of basic organ is described by Figure 1. It has one output, and may
have any finite number of inputs. These are grouped into two types: Excitatory
and inhibitory inputs. The excitatory inputs are distinguished from the inhibitory
inputs by the addition of an arrowhead to the former and of a small circle to
the latter. This distinction of inputs into two types does actually not relate to the
concept of inputs, it is introduced as a means to describe the internal mechanism of
the neuron. This mechanism is fully described by the so-called threshold function

Figure 1: Basic organ.

ϕ(x) written inside the large circle symbolizing the neuron in Figure 1, according
to the following convention: The output of the neuron is excited at time t + 1 if
and only if at time t the number of stimulated excitatory inputs k and the number
of stimulated inhibitory inputs ` satisfy the relation k > ϕ(`). (It is reasonable
to require that the function ϕ(x) be monotone non-decreasing.) For the purposes
of our discussion of this subject it suffices to use only certain special classes of
threshold functions ϕ(x). E. g.,

(1) ϕ(x) ≥ ψh(x) =

{
0, for x < h;

∞, for x ≥ h;

(i.e., < h inhibitions are absolutely ineffective, > h inhibitions are absolutely
effective), or

(2) ϕ(x) = xh(x) = x + h

(i.e., the excess of stimulations over inhibitions must be > h). We will use xh,
and write the inhibition number h (instead of xh) inside the large circle symbol-
izing the neuron. Special cases of this type are the three basic organs shown in
Figure 2. These are, respectively, a threshold two neuron with two excitatory in-
puts, a threshold one neuron with two excitatory inputs, and finally a threshold
one neuron with one excitatory input and one inhibitory input. The automata

Figure 2: Three basic organs.

with one output and one input described by the networks shown in Figure 3 have
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simple properties: The first one’s output is never stimulated, the second one’s
output is stimulated at all times if its input has been ever (previously) stimulated.
Rather than add these automata to a network, we shall permit lines leading to an
input to be either always non-stimulated, or always stimulated. We call the latter
“grounded” and designate it by the symbol and we call the former “live” and
designate it by the symbol .

Figure 3: “Live” (left) and “grounded” (right) automata.

3 Automata and the Propositional Calculus

3.1 The Propositional Calculus

The propositional calculus deals with propositions irrespective of their truth. The
set of propositions is closed under the operations of negation, conjunction and
disjunction. If a is a proposition, then “not a”, denoted by a−1 (we prefer this
designation to the more conventional ones −a and ∼a), is also a proposition. If
a, b are two propositions, then “a and b”, “a or b”, denoted respectively by ab,
a + b, are also propositions. Propositions fall into two sets, T and F, depending
whether they are true or false. The proposition a−1 is in T if and only if a is in F.
The proposition ab is in T if and only if a and b are both in T, and a + b is in T if
and only if either a or b is in T. Mathematically speaking the set of propositions,
closed under the three fundamental operations, is mapped by a homomorphism
onto the Boolean algebra of the two elements 1 and 0. A proposition is true if
and only if it is mapped onto the element 1. For convenience, we denote by 1 the
proposition a + a−1 , by 0 the proposition aa−1, where a is a fixed but otherwise
arbitrary proposition. Of course, 0 is false and 1 is true.

A polynomial P in n variables, n ≥ 1, is any formal expression obtained from
x1, . . . , xn by applying the fundamental operations to them a finite number of
times, for example [(x1 + x−1

2 )x3]−1 is a polynomial. In the propositional calculus
two polynomials in the same variables are considered equal if and only if for any
choice of the propositions x1, . . . , xn the resulting two propositions are always ei-
ther both true or both false. A fundamental theorem of the propositional calculus
states that every polynomial P is equal to

∑
i1=±1

· · · ∑
in=±1

fi1...in xi1
1 · · · x

in
n ,

where each of the fi1...in is equal to 0 or 1. Two polynomials are equal if and only if
their f ’s are equal. In particular, for each n, there exist exactly 2(2

n) polynomials.
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3.2 Propositions, Automata and Delays

These remarks enable us to describe the relationship between automata and the
propositional calculus. Given a time delay s, there exists a one-to-one corre-
spondence between single output automata with time delay s and the polyno-
mials of the propositional calculus. The number n of inputs (to be designated
nu = 1, . . . , n) is equal to the number of variables. For every combination i1 = ±1,
. . . , in = ±1, the coefficient fi1 ...in = 1, if and only if a stimulation at time t of
exactly those inputs ν for which iν = 1, produces a stimulation of the output at
time t + s.

Definition 2. Given a polynomial P = P(x1, . . . , xn) and a time delay s, we mean by a
P, s-network a network built from the three basic organs of Figure 2, which as an automaton
represents P with time delay s.

Theorem 1. Given any P, there exists a (unique) s∗ = s∗(P), such that a P, s-network
exists if and only if s ≥ s∗.

Proof. Consider a given P. Let S(P) be the set of those s for which a P, s-network
exists. If s′ ≥ s, then tying s′ − s unit-delays, as shown in Figure 44, in series
to the output of a P, s-network produces a P, s′-network. Hence S(P) contains
with an s all s′ > s. Hence if S(P) is not empty, then it is precisely the set of all
s > s∗, where s∗ = s∗(P) is its smallest element. Thus the theorem holds for P if
S(P) is not empty, i.e., if the existence of at least one P, s-network (for some s!) is
established.

Figure 4: Changing a P, s-network into a P, s′-network by adding delays.

Now the proof can be effected by induction over the number p = p(P) of
symbols used in the definitory expression for P (counting each occurrence of each
symbol separately).

If p(P) = 1 then P(x1, ..., xn) = xν (for one of the ν = 1, . . . , n). The "trivial"
network which obtains by breaking off all input lines other than ν, and taking the
input line ν directly to the output, solves the problem with s = 0. Hence s∗(P) = 0.

If p(P) > 1, then P ≡ Q−1 or P ≡ QR or P =≡ Q + R, where p(Q), p(R) <

p(P). For P ≡ Q−1 let the box Q represent a Q, s′-network, with s′ = s∗(Q).
Then the network shown in Figure 5 (left) is clearly a P, s-network, with s = s′+ 1.
Hence s∗(P) < s∗(Q) + 1. For P ≡ QR or Q + R let the boxes Q , R represent
a Q, s′′-network and an R, s′′-network, respectively, with s′′ = max(s∗(Q), s∗(R)).
Then the network shown in Figure 5 (right) is clearly a P, s-network, with P ≡ QR
or Q + R for h = 2 or 1, respectively, and with s′ = s′′ + 1. Hence s∗(P) <

max(s∗(Q), s∗(R)) + 1.
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Figure 5: Left: a P, s-network built upon a Q, s′-network. Right: a P, s-network
built upon a Q, s′-network and a R, s′′-network.

Combine the above theorem with the fact that every single output automaton
can be equivalently described—apart from its time delay s—by a polynomial P,
and that the basic operations ab, a + b, a−1 of the propositional calculus are repre-
sented (with unit delay) by the basic organs of Figure 2. (For the last one, which
represents ab−1, cf. the remark at the beginning of 4.1.1.) This gives:

Definition 3. Two single output automata are equivalent in the wider sense, if they differ
only in their time delays—but otherwise the same input stimuli produce the same output
stimulus (or non-stimulus) in both.

Theorem 2 (Reduction theorem). Any single output automaton r is equivalent in the
wider sense to a network of basic organs of Figure 2. There exists a (unique) s∗ = s∗(r),
such that the latter network exists if and only if its prescribed time delay s satisfies s ≥ s∗.

3.3 Universality. General Logical Considerations

Now networks of arbitrary single output automata can be replaced by networks of
basic organs of Figure 2: It suffices to replace the unit delay in the former system
by s̄ unit delays in the latter, where s̄ is the maximum of the s∗(r) of all the single
output automata that occur in the former system. Then all delays that will have to
be matched will be multiples of s̄, hence ≥ s̄, hence ≥ s∗(r) for all r that can occur
in this situation, and so the Reduction Theorem will be applicable throughout.

Thus this system of basic organs is universal: It permits the construction of
essentially equivalent networks to any network that can be constructed from any
system of single output automata. I.e., no redefinition of the system of basic organs
can extend the logical domain covered by the derived networks.

The general automaton is any network of single output automata in the above
sense. It must be emphasized, that, in particular, feedbacks, i.e., arrangements of
lines which may allow cyclical stimulation sequences, are allowed. (I.e., configu-
rations like those shown in Figure 7. There will be various, non-trivial, examples
of this later.) The above arguments have shown, that a limitation of the underly-
ing single output automata to our original basic organs causes no essential loss
of generality. The question, as to which logical operations can be equivalently
represented (with suitable, but not a priori specified, delays) is nevertheless not
without difficulties.

These general automata are, in particular, not immediately equivalent to all
of effectively constructive (intuitionistic) logics. I.e., given a problem involving (a
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finite number of) variables, which can be solved (identically in these variables) by
effective construction, it is not always possible to construct a general automaton
that will produce this solution identically (i.e., under all conditions). The reason
for this is essentially, that the memory requirements of such a problem may de-
pend on (actual values assumed by) the variables (i.e., they must be finite for any
specific system of values of the variables, but they may be unbounded for the to-
tality of all possible systems of values), while a general automaton in the above
sense necessarily has a fixed memory capacity. I.e., a fixed general automaton can
only handle (identically, i.e., generally) a problem with fixed (bounded) memory
requirements.

We need not go here into the details of this question. Very simple addenda
can be introduced to provide for a (finite but) unlimited memory capacity. How
this can be done has been shown by A. M. Turing [5]. Turing’s analysis loc. cit.
also shows, that with such addenda general automata become strictly equivalent
to effectively constructive (intuitionistic) logics. Our system in its present form
(i.e., general automata with limited memory capacity) is still adequate for the
treatment of all problems with neurological analogies, as our subsequent examples
will show. (Cf. also W. S. McCulloch and W. Pitts [2].) The exact logical domain
that they cover has been recently characterized by Kleene [1]. We will return to
some of these questions in 5.1.

Figure 7: Two examples of feedback loops.

4 Basic Organs

4.1 Reduction of the Basic Components

4.1.1 The Simplest Reductions

The previous section makes clear the way in which the elementary neurons should
be interpreted logically. Thus the ones shown in Figure 2 respectively represent
the logical functions ab, a + b, and ab−1. In order to get b, it suffices to make the
a-terminal of the third organ, as shown in Figure 8, live. This will be abbreviated
in the following, as shown in Figure 8.

Now since ab ≡ ((a−1) + (b−1))−1 and a + b ≡ ((a−1)(b−1))−1, it is clear that
the first organ among the three basic organs shown in Figure 2 is equivalent to
a system built of the remaining two organs there, and that the same is true for
the second organ there. Thus the first and second organs shown in Figure 2 are
respectively equivalent (in the wider sense) to the two networks shown in Figure 9.
This tempts one to consider a new system, in which a g (viewed as a basic
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Figure 8: Network equivalent to b−1 and its representation.

Figure 9: Networks equivalent to the basic organs in Fig. 2.

entity in its own right, and not an abbreviation for a composite, as in Figure 8),
and either the first or the second basic organ in Figure 2, are the basic organs.
They permit forming the second or the first basic organ in Figure 2, respectively,
as shown above, as (composite) networks. The third basic organ in Figure 2 is
easily seen to also equivalent (in the wider sense) to a composite of the above,
but, as was served at the beginning of 4.1.1 the necessary organ is in any case not
this, a g (cf. also the remarks concerning Figure 8), respectively. Thus either
system of new basic organs permits reconstructing (as composite networks) all
(basic) organs of the original system. It is true, that these constructs have delays
varying from 1 to 3, but since unit delays, as shown in Figure 4, are available
in either new system, all these delays can be brought up to the value 3. Then a
trebling of the unit delay time obliterates all differences. To restate: Instead of

Figure 10: Schematic of the basic organs.

the three original basic organs, shown again in Figure 10, we can also (essentially
equivalently) use the two basic organs Nos. one and three or Nos. two and three
in Figure 10.

4.1.2 The Double Line Trick

This result suggests strongly that one consider the one remaining combination,
too: The two basic organs Nos. one and two in Figure 10, as the basis of an
essentially equivalent system.

One would be inclined to infer that the answer must be negative: No network
built out of the two first basic organs of Figure 10 can be equivalent (in the wider
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sense) to the last one. Indeed, let us attribute to T and F, i.e., to the stimulated or
non-stimulated state of a line, respectively, the “truth values” 1 or 0, respectively.
Keeping the ordering 0 < 1 in mind, the state of the output is a monotone non-
decreasing function of the states of the inputs for both basic organs Nos. one and
two in Figure 10, and hence for all networks built from these organs exclusively
as well. This, however, is not the case for the last organ of Figure 10 (nor for the
last organ of Figure 2), irrespectively of delays.

Nevertheless a slight change of the underlying definitions permits one to cir-
cumvent this difficulty, and to get rid of the negation (the last organ of Figure
10) entirely. The device which effects this is of additional methodological interest,
because it may be regarded as the prototype of one that we will use later on in
a more complicated situation. The trick in question is to represent propositions
on a double line instead of a single one. One assumes that of the two lines, at all
times precisely one is stimulated. Thus there will always be two possible states of
the line pair: The first line stimulated, the second non-stimulated; and the second
line stimulated, the first non-stimulated. We let one of these states correspond to
the stimulated single line of the original system—that is, to a true proposition—
and the other state to the unstimulated single line—that is, to a false proposition.
Then the three fundamental Boolean operations can be represented by the three
first schemes shown in Figure 11. (The last scheme shown in Figure 11 relates
to the original system of Figure 2.) In these diagrams, a true proposition corre-
sponds to 1 stimulated, 2 unstimulated, while a false proposition corresponds to 1
unstimulated, 2 stimulated. The networks of Figure 11, with the exception of the
third one, have also the correct delays: Unit delay. The third one has zero delay,
but whenever this is not wanted, it can be replaced by unit delay, by replacing the
third network by the fourth one, making its a1-line live, its a2-line grounded, and
then writing a for its b.

Summing up: Any two of the three (single delay) organs of Figure 10—which
may simply be designated ab, a + b, a−1—can be stipulated to be the basic organs,
and yield a system that is essentially equivalent to the original one.

4.2 Single Basic Organs

4.2.1 The Sheffer Stroke

It is even possible to reduce the number of basic organs to one, although it can-
not be done with any of the three organs enumerated above. We will, however,
introduce two new organs, either of which suffices by itself.

The first universal organ corresponds to the well-known "Sheffer stroke" func-
tion. Its use in this context was suggested by K. A. Brueckner and M. Gell-Mann.
In symbols, it can be represented (and abbreviated) as shown on Figure 2. The
three fundamental Boolean operations can now be performed as shown in Fig-
ure 13. The delays are 2, 2, 1, respectively, and in this case the complication caused
by these delay-relationships is essential. Indeed, the output of the Sheffer-stroke
is an antimonotone function of its inputs. Hence in every network derived from it,
even-delay outputs will be monotone functions of its inputs, and odd-delay out-

10



Figure 11: The double line trick.

puts will be antimonotone ones. Now ab and a+ b are not antimonotone, and ab−1

and a−1 are not monotone. Hence no delay-value can simultaneously accomodate
in this set up one of the two first organs and one of the two last organs.

The difficulty can, however, be overcome as follows: ab and a + b are repre-
sented in Figure 13, both with the same delay, namely 2. Hence our earlier result
(in 4.1.2), securing the adequacy of the system of the two basic organs ab and a + b
applies: Doubling the unit delay time reduces the present set up (Sheffer stroke
only!) to the one referred to above.

4.2.2 The Majority Organ

The second universal organ is the “majority organ”. In symbols, it is shown (and
alternatively designated) in Figure 14. To get conjunction and disjunction, is a
simple matter, as shown in Figure 15. Both delays are 1. Thus ab and a + b
(according to Figure 10) are correctly represented, and the new system (majority
organ only!) is adequate because the system based on those two organs is known
to be adequate (cf. 4.1.2).
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Figure 12: The Sheffer stroke.

Figure 13: Use of the Sheffer stroke.

5 Logics and Information

5.1 Intuitionistic Logic

All of the examples which have been described in the last two sections have had
a certain property in common; in each, a stimulus of one of the inputs at the left
could be traced through the machine until at a certain time later it came out as
a stimulus of the output on the right. To be specific, no pulse could ever return
to a neuron through which It had once passed. A system with this property Is
called circle-free by W. S. McCulloch and W. Pitts [2]. While the theory of circle-
free machines is attractive because of its simplicity, it is not hard to see that these
machines are very limited in their scope.

When the assumption of no circles In the network is dropped, the situation is
radically altered. In this far more complicated case, the output of the machine at
any time may depend on the state of the inputs in the indefinitely remote past.
For example, the simplest kind of cyclic circuit, as shown in Figure 16, is a kind
of memory machine. Once this organ has been stimulated by a. It remains stim-
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Figure 14: The Majority Organ.

Figure 15: Use of the Majority Organ.

ulated and sends forth a pulse in b at all times thereafter. With more complicated
networks, we can construct machines which will count, which will do simple arith-
metic, and which will even perform certain unlimited inductive processes. Some
of these will be illustrated by examples in 6. The use of cycles or feedback in
automata extends the logic of constructable machines to a large portion of intu-
itionistic logic. Not all of intuitionistic logic is so obtained, however, since these
machines are limited by their fixed size. (For this, and for the remainder of this
chapter cf. also the remarks at the end of 3.3.) Yet, if our automata are furnished
with an unlimited memory—for example, an infinite tape, and scanners connected
to afferent organs, along with suitable efferent organs to perform motor operations
and/or print on the tape—the logic of constructable machines becomes precisely
equivalent to intuitionistic logic (see A. M. Turing [5]). In particular, all numbers
computable in the sense of Turing can be computed by some such network.

Figure 16: A feedback loop.
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5.2 Information

5.2.1 General observations

Our considerations deal with varying situations, each of which contains a certain
amount of information. It is desirable to have a means of measuring that amount.
In most cases of importance, this is possible. Suppose an event is one selected
from a finite set of possible events. Then the number of possible events can be re-
garded as a measure of the information content of knowing which event occurred,
provided all events are a priori equally probable. However, instead of using the
number n of possible events as the measure of information, it is advantageous
to use a certain function of n, namely the logarithm. This step can be (heuristi-
cally) justified as follows: If two physical systems I and II represent n and m (a
priori equally probable) alternatives, respectively, then union I + II represents nm
such alternatives. Now it is desirable that the (numerical) measure of information
be (numerically) additive under this (substantively) additive composition I + II.
Hence some function f (n) should be used instead of n, such that

(3) f (nm) = f (n) + f (m).

In addition, for n > m I represents more information than II, hence it is reasonable
to require

(4) n > m implies f (n) > f (m).

Note, that f (n) is defined for n = 1, 2, . . . only. From (3), (4) one concludes easily,
that

(5) f (n) = C ln n

for some constant C > 0. (Since f (n) is defined for n = 1, 2, . . . only, (3) alone
does not imply this, even not with a constant C S 0!) Next, it is conventional to let
the minimum non-vanishing amount of information, i.e., that which corresponds
to. n = 2, be the unit of information—the “bit”. This means that f (2) = 1, i.e.,
C = 1/ ln 2, and so

(6) f (n) = log2 n.

This concept of information was successively developed by several authors in the
late 1920’s and early 1930’s, and finally integrated into a broader system by C. E.
Shannon [3].

5.2.2 Examples

he following simple examples give some illustration: The outcome of the flip of
a coin is one bit. That of the roll of a die is log2 6 = 2.5 bits. A decimal digit
represents log2 10 = 3.3 bits, a letter of the alphabet represents log2 26 = 4.7
bits, a single character from a 44-key, 2-setting typewriter represents log2(44 ×
2) = 6.5 bits. (In all these we assume, for the sake of the argument, although
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actually unrealistically, a priori equal probability of all possible choices.) It follows
that any line or nerve fibre which can be classified as either stimulated or non-
stimulated carries precisely one bit of information, while a bundle of n such lines
can communicate n bits. It is important to observe that this definition is possible
only on the assumption that a background of a priori knowledge exists, namely,
the knowledge of a system of a priori equally probable events.

This definition can be generalized to the case where the possible events are
not all equally probable. Suppose the events are known to have probabilities
p1, p2, . . . , pn. Then the information contained in the knowledge of which of these
events actually occurs, is defined to be

(7) H = −
n

∑
i=1

pi log2 pi (bits).

In case p1 = p2 = . . . = pn = 1/n, this definition is the same as the previous one.
This result, too, was obtained by C. E. Shannon [3], although it is implicit in the
earlier work of L. Szilard.

An important observation about this definition is that it bears close resem-
blance to the statistical definition of the entropy of a thermodynamical system.
If the possible events are just the known possible states of the system with their
corresponding probabilities, then the two definitions are identical. Pursuing this,
one can construct a mathematical theory of the communication of information pat-
terned after statistical mechanics. (See L. Szilard [4] and C. E. Shannon [3].) That
information theory should thus reveal itself as an essentially thermodynamical
discipline, is not at all surprising: The closeness and the nature of the connection
between in formation and entropy is inherent in L. Boltzmann’s classical defini-
tion of entropy (apart from a constant, dimensional factor) as the logarithm of the
“configuration number”. The “configuration number” is the number of a priori
equally probable states that are compatible with the macroscopic description of
the state—i.e., it corresponds to the amount of (microscopic) information that is
missing in the (macroscopic) description.

6 Typical Syntheses of Automata

6.1 The Memory Unit

One of the best ways to become familiar with the ideas which have been intro-
duced, is to study some concrete examples of simple networks. This section is
devoted to a consideration of a few of them.

The first example will be constructed with the help of the three basic organs
of Figure 10. It is shown in Figure 18. It is a slight refinement of the primitive
memory network of Figure 16.

This network has two inputs a and b and one output x. At time t, x is stimu-
lated if and only if a has been stimulated at an earlier time, and no stimulation of b
has occurred since then. Roughly speaking, the machine remembers whether a or
b was the last input to be stimulated. Thus x is stimulated, if it has been stimulated
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Figure 17: Left: Basic network encoding x = (x′ + a)b−1. Right: Memory network
with feedback.

immediately before—to be designated by x′—or if a has been stimulated immedi-
ately before, but b has not been stimulated immediately before. This is expressed
by the formula x = (x′ + a)b−1, i.e., by the network shown in Figure 17. Now x
should be fed back into x′ (since x′ is the immediately preceding state of x). This
gives the network shown in Figure 18, where this branch of x is designated by y.
However, the delay of the first network is 2, hence the second network’s memory
extends over past events that lie an even number of time (delay) units back. I.e.,
the output x is stimulated if and only if a has been stimulated at an earlier time,
an even number of units before, and no stimulation of b has occurred since then,
also an even number of units before. Enumerating the time units by an integer t,
it is thus seen, that this network represents a separate memory for even and for
odd t. For each case it is a simple "off-on", i.e., one bit, memory. Thus it is in its
entirety a two bit memory.

6.2 Scalers

In the examples that follow, free use will be made of the general family of basic
organs considered in 2.3, at least for all ϕ = xh (cf. (2) there). The reduction thence
to elementary organs in the original sense is secured by the Reduction Theorem
in 3.2, and in the subsequently developed interpretations, according to section 4,
by our considerations there. It is therefore unnecessary to concern ourselves here
with these reductions.

The second example is a machine which counts input stimuli by two’s. It will
be called a “scaler by two”. Its diagram is shown in Figure 19.

Figure 19: A scaler by two.

By adding another input—the repressor, the above mechanism can be turned
off at will. The diagram becomes as shown in Figure 20. The result will be called
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a “scaler by two” with a repressor and denoted as indicated by Figure 20.

Figure 20: A scaler by two with repressor.

In order to obtain larger counts, the “scaler by two” networks can be hooked
in series. Thus a “scaler by 2n” is shown in Figure 21 . The use of the repressor is
of course optional here. Scalers by m, where m is not necessarily of the form 2n,
can also be constructed with little difficulty, but we will not go into this here.

Figure 21: A scaler by 2n.

Using these “scalers by 2n” (i.e., n-stage counters), it is possible to construct
the following sort of “learning device”. This network has two inputs a and b. It
is designed to learn that whenever a is stimulated, then, in the next instant, b will
be stimulated. If this occurs 256 times (not necessarily consecutively and possibly
with many exceptions to the rule), the machine learns to anticipate a pulse from
b one unit of time after a has been active, and expresses this by being stimulated
at its b output after every stimulation of a. The diagram is shown in Figure 22.
(The “expression” described above will be made-effective in the desired sense by
the network of Figure 24, cf. its discussion below).

This is clearly learning in the crudest and most inefficient way, only. With some
effort, it is possible to refine the machine so that, first, it will learn only if it re-
ceives no counter-instances of the pattern “b follows a” during the time when it is
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collecting these 256 instances; and, second, having once learned, the machine can
unlearn by the occurrence of 64 counter-examples to “b follows a” if no (positive)
instances of this pattern interrupt the (negative) series. Otherwise, the behaviour
is as before. The diagram is shown in Figure 23. To make this learning effective,
one has to use x to gate a so as to replace b at its normal functions. Let these be
represented by an output c. Then this process is mediated by the network shown
in Figure 24. This network must then be attached to the lines a, b and to the output
x of the preceding network (according to Figure 22, 23).

Figure 22: A basic learning circuit.

Figure 23: A learning machine that may unlearn.

7 The Role of Error

7.1 Exemplification with the Help of the Memory Unit

In all the previous considerations, it has been assumed that the basic components
were faultless in their performance. This assumption is clearly not a very realistic
one. Mechanical devices as well as electrical ones are statistically subject to failure,
and the same is probably true for animal neurons too. Hence it is desirable to find
a closer approximation to reality as a basis for our constructions, and to study this
revised situation. The simplest assumption concerning errors is this: With every
basic organ is associated a positive number ε such that in any operation, the organ
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Figure 24: Using x to gate a.

will fail to function correctly with the (precise) probability ε. This malfunctioning
is assumed to occur statistically independently of the general state of the network
and of the occurrence of other malfunctions. A more general assumption, which
is a good deal more realistic, is this: The malfunctions are statistically dependent
on the general state of the network and on each other. In any particular state,
however, a malfunction of the basic organ in question has a probability of mal-
functioning which is ≤ ε . For the present occasion, we make the first (narrower
and simpler) assumption, and that with a single ε: Every neuron has statistically
independently of all else exactly the probability ε of misfiring. Evidently, it might
as well be supposed ε < 1/2, since an organ which consistently misbehaves with
a probability > 1/2, is just behaving with the negative of its attributed function,
and a (complementary) probability of error < 1/2. Indeed, if the organ is thus
redefined as its own opposite, its ε (> 1/2) goes then over into 1− ε (< 1/2).
In practice it will be found necessary to have ε a rather small number, and one of
the objectives of this investigation is to find the limits of this smallness, such that
useful results can still be achieved.

It is important to emphasize, that the difficulty introduced by allowing error is
not so much that incorrect information will be obtained, but rather that irrelevant
results will be produced. As a simple example, consider the memory organ of
Figure 16. Once stimulated, this network should continue to emit pulses at all
later times; but suppose it has the probability ε of making an error. Suppose the
organ receives a stimulation at time t and no later ones. Let the probability that
the organ is still excited after s cycles be denoted ρs. Then the recursion formula

ρs+1 = (1− ε)ρs + ε(1− ρs)

is clearly satisfied. This can be written(
ρs+1 −

1
2

)
= (1− 2ε)

(
ρs −

1
2

)
and so

(8) ρs −
1
2
= (1− 2ε)s

(
ρ0 −

1
2

)
' e−2εs

(
ρ0 −

1
2

)
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for small ε. The quantity ρs − 1/2 can be taken as a rough measure of the amount
of discrimination in the system after the s-th cycle. According to the above for-
mula, ρs → 1/2 as s → ∞—a fact which is expressed by saying that, after a
long time, the memory content of the machine disappears, since it tends to equal
likelihood of being right or wrong, i.e., to irrelevancy.

7.2 The General Definition

This example is typical of many. In a complicated network, with long stimulus-
response chains, the probability of errors in the basic organs makes the response
of the final outputs unreliable, i.e., irrelevant, unless some control mechanism pre-
vents the accumulation of these basic errors. We will consider two aspects of this
problem. Let the data be these: The function which the automaton is to perform
is given; a basic organ is given (Sheffer stroke, for example); a number ε (< 1/2),
which is the probability of malfunctioning of this basic organ, is prescribed. The
first question is: Given δ > 0, can a corresponding automaton be constructed from
the given organs, which will perform the desired function and will commit an
error (in the final result, i.e., output) with probability < δ? How small can δ be
prescribed? The second question is: Are there other ways to interpret the problem
which will allow us to improve the accuracy of the result?

7.3 An Apparent Limitation

In partial answer to the first question, we notice now that δ, the prescribed max-
imum allowable (final) error of the machine, must not be less than ε. For any
output of the automaton is the immediate result of the operation of a single final
neuron and the reliability of the whole system cannot be better than the reliability
of this last neuron.

7.4 The Multiple Line Trick

In answer to the second question, a method will be analyzed by which this thresh-
old restriction δ > ε can be removed. In fact we will be able to prescribe δ arbitrar-
ily small (for suitable, but fixed, ε). The trick consists in carrying all the messages
simultaneously on a bundle of N lines (N is a large integer) instead of just a single
or double strand as in the automata described up to now. An automaton would
then be represented by a black box with several bundles of inputs and outputs,
as shown in Figure 25. Instead of requiring that all or none of the lines of the
bundle be stimulated, a certain critical (or fiduciary) level ∆ is set: 0 < ∆ < 1/2.
The stimulation of > (1− ∆)N lines of a bundle is interpreted as a positive state
of the bundle. The stimulation of < ∆N lines is considered as a negative state.
All levels of stimulation between these values are intermediate or undecided. It
will be shown that by suitably constructing the automaton, the number of lines
deviating from the “correctly functioning” majorities of their bundles can be kept
at or below the critical level ∆N (with arbitrarily high probability). Such a system
of construction is referred to as "multiplexing". Before turning to the multiplexed
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automata, however, it is well to consider the ways in which error can be controlled
in our customary single line networks.

Figure 25: The Multiple Line Trick.

8 Control of Error in Single Line Automata

8.1 The Simplified Probability Assumption

In 7.3 it was indicated that when dealing with an automaton in which messages
are carried on a single (or even a double) line, and in which the components have a
definite probability ε of making an error, there is a lower bound to the accuracy of
the operation of the machine. It will now be shown that it is nevertheless possible
to keep the accuracy within reasonable bounds by suitably designing the network.
For the sake of simplicity only circle-free automata (cf. 5.1) will be considered in
this section, although the conclusions could be extended, with proper safeguards,
to all automata. Of the various essentially equivalent systems of basic organs
(cf. section 4) it is, in the present instance, most convenient to select the majority
organ, which is shown in Figure 14, as the basic organ for our networks. The
number ε (0 < ε < 1/a2) will denote the probability each majority organ has for
malfunctioning.

8.2 The Majority Organ

We first investigate upper bounds for the probability of errors as impulses pass
through a single majority organ of a network. Three lines constitute the inputs
of the majority organ. They come from other organs or are external inputs of the
network. Let η1, η2, η3 be three numbers (0 < ηi ≤ 1), which are respectively
upper bounds for the probabilities that these lines will be carrying the wrong
impulses. Then ε + η1 + η2 + η3 is an upper bound for the probability that the
output line of the majority organ will act improperly. This upper bound is valid in
all cases. Under proper circumstances it can be improved. In particular, assume:
(i) The probabilities of errors in the input lines are independent, (ii) under proper
functioning of the network, these lines should always be in the same state of
excitation (either all stimulated, or all unstimulated). In this latter case

θ = η1η2 + η1η3 + η2η3 − 2η1η2η3
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is an upper bound for at least two of the input lines carrying the wrong impulses,
and thence

ε′ = (1− ε)θ + ε(1− θ) = ε + (1− 2ε)θ

is a smaller upper bound for the probability of failure in the output line. If all
η1 ≤ η, then ε+ 3η is a general upper bound, and ε+(1− 2ε)(3η2− 2η3) ≤ ε+ 3η2

is an upper bound for the special case. Thus it appears that in the general case each
operation of the automaton increases the probability of error, since ε + 3η > η, so
that if the serial depth of the machine (or rather of the process to be performed)
is very great, it will be impractical or impossible to obtain any kind of accuracy.
In the special case, on the other hand, this is not necessarily so — ε + 3η2 < η is
possible. Hence, the chance of keeping the error under control lies in maintaining
the conditions of the special case throughout the construction. We will now exhibit
a method which achieves this.

8.3 Synthesis of Automata

8.3.1 The Heuristic Argument

The basic idea in this procedure is very simple. Instead of running the incoming
data into a single machine, the same information is simultaneously fed into a
number of identical machines, and the result that comes out of a majority of these
machines is assumed to be true. It must be shown that this technique can really
be used to control error.

Denote by O the given network (assume two outputs in the specific instance
picture in Figure 26). Construct O in triplicate, labeling the copies O1, O2, O3

respectively. Consider the system shown in Figure 26.

Figure 26: Triplicate machine.

For each of the final majority organs the conditions of the special case consid-
ered above obtain. Consequently, if η is an upper bound for the probability of
error at any output of the original network O, then

(9) η∗ = ε + (1− 2ε)
(
3η2 − 2η3) ≡ fε(η)

is an upper bound for the probability of error at any output of the new network
O∗. The graph is the curve η∗ = fε(η), shown in Figure 27.

Consider the intersections of the curve with the diagonal η∗ = η: First, η =

1/2 is at any rate such an intersection. Dividing η − fε(η) by η − 1/2 gives

22



Figure 27: The function η∗ = fε(η).

2
(
(1− 2ε)η2 − (1− 2ε)η + ε

)
, hence the other intersections are the roots of (1−

2ε)η2 − (1− 2ε)η + ε = 0, i.e..

η =
1
2

(
1±

√
1− 6ε

1− 2ε

)

I.e., for ε > 1/6 they do not exist (being complex (for ε > 1/6) or = 1/2 (for
ε = 1/6)); while for ε < 1/6 they are η = η0, 1− η0, where

(10) η0 =
1
2

(
1−

√
1− 6ε

1− 2ε

)
= ε + 3ε2 + · · ·

For η = 0; η∗ = ε > η. This, and the monotony and continuity of η∗ = fε(η)

therefore imply:

• First case, ε ≥ 1/6: 0 ≤ η < 1/2 implies η < η∗ < 1/2; 1/2 < η ≤ 1 implies
1/2 < η∗ < η.

• Second case, ε < 1/6: 0 ≤ η < η0 implies η < η∗ < η0: η0 < η < 1/2 implies
η0 < η∗ < η; 1/2 < η < 1− η0 implies η < η∗ < 1− η0; 1− η0 < η < 1
implies 1− η0 < η∗ < η.

Now we must expect numerous successive occurrences of the situation under
consideration, if it is to be used as a basic procedure. Hence the iterative behavior
of the operation η −→ η∗ = fε(η) is relevant. Now it is clear from the above, that
in the first case the successive iterates of the process in question always converge to
1/2, no matter what the original η; while in the second case these iterates converge
to η0 if the original η < 1/2, and to 1− η0 if the original η > 1/2.

In other words: In the first case no error level other than η ∼ 1/2 can maintain
itself in the long run. I.e., the process asymptotically degenerates to total irrele-
vance, like the one discussed in 7.1. In the second case the error-levels η ∼ η0 and
η ∼ 1− η0 will not only maintain themselves in the long run, but they represent
the asymptotic behavior for any originalη < 1/2 or η > 1/2, respectively.

These arguments, although heuristic, make it clear that the second case alone
can be used for the desired error-level control. I.e., we must require ε < 1/6,
i.e., the error-level for a single basic organ function must be less than ∼ 16%. The
stable, ultimate error-level should then be η0 (we postulate, of course, that the start
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be made with an error-level η < 1/2). η0 is small if ε is, hence ε must be small,
and so

(11) η0 = ε + 3ε2 + · · ·

This would therefore give an ultimate error-level of ∼ 10% (i.e., η0 ∼ .1 for a single
basic organ function error-level of ∼ 8% (i.e. ε ∼ .08).

8.3.2 The Rigorous Argument

To make this heuristic argument binding, it would be necessary to construct an
error controlling network P∗ for any given network P, so that all basic organs in
P∗ are so connected as to put them into the special case for a majority organ,
as discussed above. This will not be uniformly possible, and it will therefore be
necessary to modify the above heuristic argument, although its general pattern
will be maintained.

It is, then desired, to find for any given network P an essentially equivalent
network P∗, which is error-safe in some suitable sense, that conforms with the
ideas expressed so far. We will define this as meaning, that for each output line of
P∗ (corresponding to one of P) the (separate) probability of an incorrect message
(over this line) is ≤ η1 . The value of η1 will result from the subsequent discussion.

The construction will be an induction over the longest serial chain of basic
organs in P, say µ = µ(P).

Consider the structure of P. The number of its inputs i and outputs σ is arbi-
trary, but every output of P must either come from a basic organ in P, or directly
from an input, or from a ground or live source. Omit the first mentioned basic
organs from P, as well as the outputs other than the first mentioned ones, and des-
ignate the network that is left over by Q. This is schematically shown in Figure 28.
(Some of the apparently separate outputs of Q may be split lines coming from a
single one, but this is irrelevant for what follows.)

Figure 28: Definition of Q.

If Q is void, then there is nothing to prove; let therefore Q be non-void. Then
clearly µ(Q) = µ(P)− 1.

Hence the induction permits us to assume the existence of a network Q∗ which
is essentially equivalent to Q, and has for each output a (separate) error-probability
≤ η1.

We now provide three copies of Q∗: Q∗1, Q∗2, Q∗3, and construct P∗ as shown
in Figure 29. (Instead of drawing the, rather complicated, connections across the
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two dotted areas, they are indicated by attaching identical markings to endings
that should be connected.)

Figure 29: Construction of P∗ from Q∗.

Now the (separate) output error-probabilities of Q∗ are (by inductive assump-
tion) ≤ η1. The majority organs in the first column in the above figure (those
without a ) are so connected as to belong into the special case for a majority or-
gan (cf. 8.2), hence their outputs have (separate) error-probabilities ≤ fε(η1). The
majority organs in the second column in the above figure (those with a ) are in
the general case, hence their (separate) error-probabilities are ≤ ε + 3 fε(η1).

Consequently the inductive step succeeds, and therefore the attempted induc-
tive proof is binding, if

(12) ε + 3 fε(η1) ≤ η1.

8.3.3 Numerical Evaluation

Substituting the expression (9) for fε(η) into condition (12) gives

4ε + 3(1− 2ε)(3η2
1 − 2η3

1) ≤ η1,

i.e.,

η3
1 −

3
2

η2
1 +

1
6(1− 2ε)

η1 −
2ε

3(1− 2ε)
≥ 0.

Clearly the smallest η1 > 0 fulfilling this condition is wanted. Since the left hand
side is < 0 for η1 ≤ 0, this means the smallest (real, and hence, by the above,
positive) root of

(13) η3
1 −

3
2

η2
1 +

1
6(1− 2ε)

η1 −
2ε

3(1− 2ε)
= 0.
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We know from the preceding heuristic argument, that ε < 1/6 will be necessary—
but actually even more must be required. Indeed, for η1 = 1/6 the left hand side
of (13) is = −(1 + ε)/(6− 12ε) < 0, hence a significant and acceptable η1 (i.e.,
an η1 < 1/2), can be obtained from (13) only if it has three real roots. A simple
calculation shows, that for ε = 1/6 only one real root exists η1 = 1.425. Hence the
limiting ε calls for the existence of a double root. Further calculation shows, that
the double root in question occurs for ε = .0073 and that its value is η1 = .060.
Consequently ε < .0073 is the actual requirement, i.e., the error-level of a single
basic organ function must be < .73%. The stable, ultimate error-level is then the
smallest positive root η1 of (13). η1 is small if ε is, hence ε must be small, and so
(from (13))

η1 = 4ε + 152ε2 + · · ·

It is easily seen, that e.g. an ultimate error level of 2% (i.e., η1 = .02) calls for a
single basic organ function error-level of .41% (i.e., ε = .0041).

This result shows that errors can be controlled. But the method of construction
used in the proof about threefolds the number of basic organs in P∗ for an increase
of µ(P) by 1, hence P∗ has to contain about 3µ(P) such organs. Consequently the
procedure is impractical. The restriction ε < .0073 has no absolute significance. It
could be relaxed by iterating the process of triplication at each step. The inequality
ε < 1/6 is essential, however, since our first argument showed, that for ε > 1/6
even for a basic organ in the most favorable situation (namely in the “special” one)
no interval of improvement exists.

9 The Technique of Multiplexing

9.1 General Remarks on Multiplexing

The general process of multiplexing in order to control error was already referred
to in 7.4. The messages are carried on N lines. A positive number ∆ (< 1/2) is
chosen and the stimulation of ≥ (l − ∆)N lines of the bundle is interpreted as a
positive message, the stimulation of ≤ ∆N lines as a negative message. Any other
number of stimulated lines is interpreted as malfunction. The complete system
must be organized in such a manner, that a malfunction of the whole automaton
cannot be caused by the malfunctioning of a single component, or of a small
number of components, but only by the malfunctioning of a large number of them.
As we will see later, the probability of such occurrences can be made arbitrarily
small provided the number of lines in each bundle is made sufficiently great.
All of section 9 will be devoted to a description of the method of constructing
multiplexed automata and its discussion, without considering the possibility of
error in the basic components. In section 10 we will then introduce errors in the
basic components, and estimate their effects.
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9.2 The Majority Organ

9.2.1 The Basic Executive Organ

The first thing to consider is the method of constructing networks which will
perform the tasks of the basic organs for bundles of inputs and outputs instead of
single lines.

A simple example will make the process clear. Consider the problem of con-
structing the analog of the majority organ which will accomodate bundles of five
lines. This is easily done using the ordinary majority organ of Figure 12, as shown
in Figure 30. (The connections are replaced by suitable markings, in the same way
as in Figure 29.)

Figure 30: Majority Organ with 5-line bundles.

9.2.2 The Need for a Restoring Organ

It is intuitively clear that if almost all lines of two of the input bundles are stim-
ulated, then almost all lines of the output bundle will be stimulated. Similarly
if almost none of the lines of two of the input bundles are stimulated, then the
mechanism will stimulate almost none of its output lines. However, another fact is
brought to light. Suppose that a critical level ∆ = 1/5 is set for the bundles. Then
if two of the input bundles have 4 lines stimulated while the other has none, the
output may have only 3 lines stimulated. The same effect prevails in the negative
case. If two bundles have just one input each stimulated, while the third bundle
has all of its inputs stimulated, then the resulting output may be the stimulation
of two lines. In other words, the relative number of lines in the bundle, which are
not in the majority state, can double in passing through the generalized majority
system. A more careful analysis (similar to the one that will be gone into in more
detail for the case of the Sheffer organ in 10) shows the following: If, in some
situation, the operation of the organ should be governed by a two-to-one majority
of the input bundles (i.e., if two of these bundles are both prevalently stimulated
or both prevalently non-stimulated, while the third one is in the opposite condi-
tion), then the most probable level of the output error will be (approximately) the
sum of the errors in the two governing input bundles; on the other hand, in an
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operation in which the organ is governed by a unanimous behavior of its input
bundles (i.e., if all three of these bundles are prevalently stimulated or all three
are prevalently non-stimulated), then the output error will generally be smaller
than the (maximum of the) input errors. Thus in the significant case of two-to-one
majorization, two significant inputs may combine to produce a result lying in the
intermediate region of uncertain information. What is needed therefore, is a new
type of organ which will restore the original stimulation level. In other words, we
need a network having the property that, with a fairly high degree of probability,
it transforms an input bundle with a stimulation level which is near to zero or
to one into an output bundle with stimulation level which is even closer to the
corresponding extreme.

Thus the multiplexed systems must contain two types of organs. The first type
is the executive organ which performs the desired basic operations on the bundles.
The second type is an organ which restores the stimulation level of the bundles,
and hence erases the degradation caused by the executive organs. This situation
has its analog in many of the real automata which perform logically complicated
tasks. For example in electrical circuits some of the vacuum tubes perform execu-
tive functions, such as detection or rectification or gateing or coincidence-sensing,
while the remainder are assigned the task of amplification, which is a restorative
operation.

9.2.3 The Restoring Organ

9.2.3.1 Construction. The construction of a restoring organ is quite simple in
principle, and in fact contained in the second remark made in 9.2.2. In a crude
way, the ordinary majority organ already performs this task. Indeed in the sim-
plest case, for a bundle of three lines, the majority organ has precisely the right
characteristics: It suppresses a single incoming impulse as well as a single incom-
ing non-impulse, i.e., it amplifies the prevalence of the presence as well as of the
absence of impulses. To display this trait most clearly, it suffices to split its output
line into three lines, as shown in Figure 31.

Figure 31: A simple restoring organ.

Now for large bundles, in the sense of the remark referred to above, concerning
the reduction of errors in the case of a response induced by a unanimous behavior
of the input bundles, it is possible to connect up majority organs in parallel and
thereby produce the desired restoration. However, it is necessary to assume that
the stimulated (or non-stimulated) lines are distributed at random in the bundle.
This randomness must then be maintained at all times. The principle is illustrated
by Figure 32 (left). The “black box” U is supposed to permute the lines of the
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input bundle that pass through it, so as to restore the randomness of the pulses
in its lines. This is necessary, since to the left of U the input bundle consists of a
set of triads, where the lines of each triad originate in the splitting of a single line,
and hence are always all three in the same condition. Yet, to the right of U the
lines of the corresponding triad must be statistically independent, in order to per-
mit the application of the statistical formula to be given below for the functioning
of the majority organ into which they feed. The way to select such a “randomiz-
ing” permutation will not be considered here—it is intuitively plausible that most
“complicated” permutations will be suited for this “randomizing” role. (Cf. 11.2.)

Figure 32: Left: The randomizing “black box” U. Right: The function α∗ = g(α).

9.2.3.2 Numerical Evaluation. If αN of the N incoming lines are stimulated,
then the probability of any majority organ being stimulated (by two or three stim-
ulated inputs) is

(14) α∗ = 3α2 − 2α3 = g(α).

Thus approximately (i.e., with high probability, provided N is large) α∗N outputs
will be excited. Plotting the curve of α∗ against α, as shown in Figure 32 (right),
indicates clearly that this organ will have the desired characteristics:

This curve intersects the diagonal α∗ = α three times: For α = 0, 1/2, 1. 0 <

α < 1/2 implies 0 < α∗ < α; 1/2 < α < 1 implies α < α∗ < 1. I.e., successive
iterates of this process converge to 0 if the original α < 1/2 and to 1 if the original
α > 1/2.

In other words: The error levels α ∼ 0 and α ∼ 1 will not only maintain
themselves in the long run, but they represent the asymptotic behavior for any
original α < 1/2 or α > 1/2, respectively. Note, that because of g(1 − α) ≡
1− g(α) there is complete symmetry between the α < 1/2 region and the α > 1/2
region.

The process α −→ α∗ thus brings every α nearer to that one of 0 and 1, to
which it was nearer originally. This is precisely that process of restoration, which
was seen in 9.2.2 to be necessary. I.e., one or more (successive)applications of this
process will have the required restoring effect.
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Note, that this process of restoration is most effective when α − α∗ = 2α3 −
3α2 + α has its minimum or maximum, i.e., for 6α2 − 6α + 1 = 0, i.e., for, α =

(3 ±
√

3)/6 = .788, .212. Then α − α∗ = ±.096. I.e., the maximum restoration
is effected on error levels at the distance of 21.2% from 0% or 100%—these are
improved (brought nearer) by 9.6%.

9.3 Other Basic Organs

We have so far assumed that the basic components of the construction are majority
organs. From these, an analog of the majority organ—one which picked out a
majority of bundles instead of a majority of single lines—was constructed. Since
this, when viewed as a basic organ, is a universal organ, these considerations show
that is at least theoretically possible to construct any network with bundles instead
of single lines. However there was no necessity for starting from majority organs.
Indeed, any other basic system whose universality was established in section 4 can
be used instead. The simplest procedure in such a case is to construct an (essential)
equivalent of the (single line) majority organ from the given basic system (cf. 4.2.2),
and then proceed with this composite majority organ in the same way, as was done
above with the basic majority organ.

Thus, if the basic organs are those Nos. one and two in Figure 10 (cf. the
relevant discussion in 4.1.2), then the basic synthesis (that of the majority organ,
cf. above) is immediately derivable from the introductory formula of Figure 14.

9.4 The Sheffer Stroke

9.4.1 The Executive Organ

Similarly, It is possible to construct the entire mechanism starting from the Sheffer
organ of Figure 12. In this case, however, it is simpler not to effect the passage
to an (essential) equivalent of the majority organ (as suggested above), but to
start de novo. Actually, the same procedure, which was seen above to work for
the majority organ, works mutatis mutandis for the Sheffer organ, too. A brief
description of the direct procedure in this case is given in what follows:

Similarly, It Is possible to construct the entire mechanism starting from the
Sheffer organ of Figure 12. In this case, however. It is simpler not to effect the
passage to an (essential) equivalent of the majority organ (as suggested above),
but to start de novo. Actually, the same procedure, which was seen above to work
for the majority organ, works mutatis mutandis for the Sheffer organ, too. A brief
description of the direct procedure in this case is given in what follows:

Again, one begins by constructing a network which will perform the task of
the Sheffer organ for bundles of inputs and outputs instead of single lines. This
is shown in Figure 34 for bundles of five wires. (The connections are replaced by
suitable markings, as in Figures 29 and 30.)

It is intuitively clear that if almost all lines of both input bundles are stimulated,
then almost none of the lines of the output bundle will be stimulated. Similarly, if
almost none of the lines of one input bundle are stimulated, then almost all lines
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Figure 34: Executive organ for the Sheffer stroke for 5-wire bundles.

of the output bundle will be stimulated. In addition to this overall behavior, the
following detailed behavior is found (cf. the detailed consideration in 10.4). If the
condition of the organ is one of prevalent non-stimulation of the output bundle,
and hence is governed by (prevalent stimulation of) both input bundles, then the
most probable level of the output error will be (approximately) the sum of the
errors in the two governing input bundles; if on the other hand the condition
of the organ is one of prevalent stimulation of the output bundle, and hence is
governed by (prevalent non-stimulation of) one or of both input bundles, then the
output error will be on (approximately) the same level as the input error, if (only)
one input bundle is governing (i.e., prevalently non-stimulated), and it will be
generally smaller than the input error, if both input bundles are governing (i.e.,
prevalently non-stimulated). Thus two significant inputs may produce a result
lying in the intermediate zone of uncertain information. Hence a restoring organ
(for the error level) is again needed, in addition to the executive organ.

9.4.2 The Restoring Organ

Again, the above indicates that the restoring organ can be obtained from a spe-
cial case functioning of the standard executive organ, namely by obtaining all
inputs from a single input bundle, and seeing to it that the output bundle has the
same size as the original input bundle. The principle is illustrated by Figure 35.
The “black box” U is again supposed to effect a suitable permutation of the lines
that pass through it, for the same reasons and in the same manner as in the cor-
responding situation for the majority organ (cf. Figure 32). I.e., It must have a
“randomizing” effect.

Figure 35: Principle of the restoration for the Sheffer stroke.
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If αN of the N incoming lines are stimulated, then the probability of any Sheffer
organ being stimulated (by at least one non-stimulated input) is

(15) α+ = 1− α2 ≡ h(α).

Thus approximately (i.e., with high probability provided N is large) ∼ α+N out-
puts will be excited. Plotting the curve of α+ against α discloses some charac-
teristic differences against the previous case (that one of the majority organs, i.e.,
α∗ = 3α2 − 2α3 ≡ g(α), cf. 9.2.3), which require further discussion. This curve is
shown in Figure 36. Clearly α+ is an antimonotone function of α, i.e., instead of

Figure 36: The function α+ = h(α).

restoring an excitation level (i.e., bringing it closer to 0 or to 1, respectively), it
transforms it into its opposite (i.e., it brings the neighborhood of 0 close to 1, and
the neighborhood of 1 close to 0). In addition it produces for a near to 1 an α+ less
near to 0 (about twice farther), but for aα near to 0 an α+ much nearer to 1 (second
order!). All these circumstances suggest, that the operation should be iterated.

Let the restoring organ therefore consist of two of the previously pictured or-
gans in series, as shown in Figure 37. (The "black boxes" U1, U2 play the same role
as their analog U plays in Figure 35.) This organ transforms an input excitation

Figure 37: A restoring organ for the Sheffer stroke.

level aN into an output excitation level of approximately (cf. above) ∼ α++ where

α++ = 1−
(
1− α2)2 ≡ h (h(α)) ≡ k(α),

i.e.,

(16) α++ = 2α2 − α4 ≡ k(α).

This curve of α++ against α is shown in Figure 38. This curve is very similar to
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Figure 38: The function α++ = k(α).

that one obtained for the majority organ (i.e., α∗ = 3α2 − 2α3 ≡ g(α), cf. 9.2.3).
Indeed: The curve intersects the diagonal α++ = α in the interval 0 ≤ α ≤ 1
three times: For α = 0, α0, 1, where α0 = (−1 +

√
5)/2 = .618. (There is a fourth

intersection α = −1 − α0 = −1.618, but this is irrelevant, since it is not in the
interval 0 ≤ α ≤ 1.) 0 < α < α0 implies 0 < α++ < α; α0 < α < 1 implies’
α < α++ < 1.

In other words: The role of the error levels α ∼ 0 and α ∼ 1 is precisely
the same as for the majority organ (cf. 9.2.3), except that the limit between their
respective areas of control lies at α = α0 instead of at α = 1/2. I.e., the process
α −→ α++ brings every α nearer to either 0 or to 1, but the preference to 0 or to
1 is settled at a discrimination level of 61.8% (i.e., α0) instead of one of 50% (i.e.,
1/2). Thus, apart from a certain asymmetric distortion, the organ behaves like
its counterpart considered for the majority organ—i.e., it is an effective restoring
mechanism.

10 Error in Multiplex Systems

10.1 General Remarks

In section 9 the technique for constructing multiplexed automata was described.
However, the role of errors entered at best intuitively and summarily, and therefore
it has still not been proved that these systems will do what is claimed for them—
namely control error. Section 10 is devoted to a sketch of the statistical analysis
necessary to show that, by using large enough bundles of lines, any desired degree
of accuracy (i.e., as small a probability of malfunction of the ultimate output of
the network as desired) can be obtained with a multiplexed automaton.

For simplicity, we will only consider automata which are constructed from the
Sheffer organs. These are easier to analyze since they involve only two inputs.
At the same time, the Sheffer organ is (by itself) universal (cf. 4.2.1), hence every
automaton is essentially equivalent to a network of Sheffer organs.

Errors in the operation of an automaton arise from two sources. First, the indi-
vidual basic organs can make mistakes. It will be assumed as before, that, under
any circumstance, the probability of this happening is just ε. Any operation on
the bundle can be considered as a random sampling of size N (N being the size
of the bundle). The number of errors committed by the individual basic organs
in any operation on the bundle is then a random variable, distributed approxi-
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mately normally with mean εN and standard deviation
√

ε(1− ε)N. A second
source of failures arises because in operating with bundles which are not all in
the same state of stimulation or non-stimulation, the possibility of multiplying
error by unfortunate combinations of lines into the basic (single line) organs is
always present. This interacts with the statistical effects, and in particular with
the processes of degeneration and of restoration of which we spoke in 9.2.2, 9.2.3
and 9.4.2 -

10.2 The Distribution of the Response Set Size

10.2.1 Exact Theory

In order to give a statistical treatment of the problem, consider the Figure 34,
showing a network of Sheffer organs, which was discussed in 9.4.1. Let again
N be the number of lines in each (input or output) bundle. Let X be the set of
those i = 1, . . . , N for which line No. 1 in the first input bundle is stimulated at
time t; let Y be the corresponding set for the second input bundle and time t;
and let Z be the corresponding set for the output bundle, assuming the correct
functioning of all the Sheffer organs involved, and time t + 1. Let X, Y have ξN,
ηN elements, respectively, but otherwise be random—i.e., equidistributed over all
pairs of sets with these numbers of elements. What can then be said about the
number of elements ζN of Z? Clearly ξ, η, ζ are the relative levels of excitation of
the two input bundles and of the output bundle, respectively, of the network under
consideration. The question is then: What is the distribution of the (stochastic)
variable ζ in terms of the (given) ξ, η?

Let W be the complementary set of Z. Let p, q, r be the numbers of elements of
X, Y, W, respectively, so that p = ξN, q = ηN, r = (1− ζ)N. Then the problem is
to determine the distribution of the (stochastic) variable r in terms of the (given)
p, q—i.e., the probability of any given r in combination with any given p, q.

W is clearly the intersection of the sets X, Y: W = X · Y. Let U, V be the
(relative) complements of W in X, Y, respectively: U = X−W, V = Y−W, and let
S be the (absolute, i.e., in the set (1, ..., N)) complement of the sum of X and Y: S =

−(X + Y). Then W, U, V, S are pairwise disjoint sets making up together precisely
the entire set (1, ..., N), with r, p− r, q− r, N − p− q + r elements, respectively.
Apart from this they are unrestricted. Thus they offer together N!/[r! (p− r)! (q−
r)! (N − p − q + r)!] possible choices. Since there are a priori N!/[p! (N − p)!]
possible choices of an X with p elements and a priori N!/[q! (N − q)!] possible
choices of a Y with q elements, this means that the looked for probability of W
having r elements is

ρ =

(
N!

r!(p− r)!(q− r)!(N − p− q + r)!

/
N!

p!(N − p)!
N!

q!(N − q)!

)

=
p!(N − p)!q!(N − q)!

r!(p− r)!(q− r)!(N − p− q + r)!N!

Note, that this formula also shows that ρ = 0 when r < 0 or p − r < 0 or
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q− r < 0 or N − p− q + r < 0, i.e., when r violates the conditions

max(0, p + q− N) ≤ r ≤ min(p, q).

This is clear combinatorially, in view of the meaning of X, Y and W. In terms of
ξ, η, ζ the above conditions become

(17) 1−max(0, ξ + η − 1) ≥ ζ ≥ 1−min(ξ, η).

Returning to the expression for ρ, substituting the ξ, η, ζ expressions for p, q,
r and using Stirling’s formula for the factorials involved, gives

(18) ρ ∼ 1√
2πN

√
a e−θN ,

where

θ = (ζ + ξ − 1) ln(ζ + ξ − 1) + (ξ + η − 1) ln(ξ + η − 1)

+ (1− ζ) ln(1− ζ) + (2− ξ − η − ζ) ln(2− ξ − η − ζ)

− ξ ln ξ − (1− ξ) ln(1− ξ)− η ln η − (1− η) ln(1− η).

From this

∂θ

∂ζ
= ln

(ζ + ξ − 1)(ζ + η − 1)
(1− ζ)(2− ξ − η − ζ)

,

∂2θ

∂ζ2 =
1

ζ + ξ − 1
+

1
ζ + η − 1

+
1

1− ζ
+

1
2− ξ − η − ζ

.

Hence θ = 0, ∂θ/∂ζ = 0 for ζ = 1− ξη, and ∂2θ/∂ζ2 for all ζ (in its entire
interval of variability according to (17)). Consequently θ > 0 for all ζ 6= 1− ξη

(within the interval (17)). This implies, in view of (18) that for all ζ which are
significantly 6= 1− ξη, ρ tends to 0 very rapidly as N gets large. It suffices therefore
to evaluate (18) for ζ ∼ 1− ξη. Now a = 1/[ξ(1− ξ)η(1− η)], ∂2θ/∂ζ2 = 1/[ξ(1−
ξ)η(1− η)] for ζ ∼ 1− ξη. Hence

a =
1

ξ(1− ξ)η(1− η)
,

θ =
(ζ − (1− ξη))2

2ξ(1− ξ)η(1− η)
,

for ζ ∼ 1− ξη. Therefore

(19) ρ ∼ 1√
2πξ(1− ξ)η(1− η)

e−
(ζ−(1−ξη))2 N
2ξ(1−ξ)η(1−η) ,

is an acceptable approximation for ρ.
r is an integer-valued variable, hence ζ = 1− r/N is a rational-valued variable,

with the fixed denominator N. Since N is assumed to be very large, the range of
ζ is very dense. It is therefore permissible to replace it by a continuous one, and
to describe the distribution of ζ by a probability density σ. ρ is the probability
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of a single value of ζ, and since the values of ζ are equidistant, with a separation
dζ = 1/N, the relation between σ and ρ is best described by σ dζ = ρ, i.e., σ = ρN.
Therefore (19) becomes

(20) σ ∼ 1√
2π
√

ξ(1− ξ)η(1− η)/N
e
− 1

2

(
ζ−(1−ξη)√

ξ(1−ξ)η(1−η)/N

)2

.

This formula means obviously the following:
ζ is approximately normally distributed, with the mean 1− ξη and the disper-

sion
√

ξ(1− ξ)η(1− η)/N. Note, that the rapid decrease of the normal distribu-
tion function (i.e., the right hand side of (20)) with N (which is exponential!) is
valid as long as ζ is near to 1− ξη, only the coefficient of N (in the exponent, i.e.

− 1
2

(
(ζ − (1− ξη))/

√
ξ(1− ξ)η(1− η)/N

)2
) is somewhat altered as ζ deviates

from 1− ξ. (This follows from the discussion of θ given above.)
The simple statistical discussion of 9.4 amounted to attributing to ζ the unique

value 1− ξη. We see that this is approximately true:

(21)


ζ = (1− ξη) +

√
ξ(1− ξ)η(1− η)/N δ,

δ is a stochastic variable, normally distributed,

with the mean 0 and the dispersion 1.

10.2.2 Theory with Errors

We must now pass from r, ζ, which postulate faultless functioning of all Sheffer
organs in the network, to r′, ζ ′, which correspond to the actual functioning of all
these organs—i.e., to a probability ε of error on each functioning. Among the r or-
gans each of which should correctly stimulate its output, each error reduces r′ by
one unit. The number of errors here is approximately normally distributed, with
the mean εr and the dispersion

√
ε(1− ε)r (cf. the remark made in 10.1). Among

the N− r organs, each of which should correctly not stimulate its output, each er-
ror increases r′ by one unit. The number of errors here is again approximately nor-
mally distributed, with the mean ε(N − r), and the dispersion

√
ε(1− ε)(N − r)

(cf. as above). Thus r′ − r is the difference of these two (independent) stochastic
variables. Hence it, too, is approximately normally distributed, with the mean
−εr + ε(N − r) = ε(N − 2r), and the dispersion√(√

ε(1− ε)r
)2

+

(√
ε(1− ε)(N − r)

)2

=
√

ε(1− ε)N.

I.e., (approximately)

r′ = r + 2ε

(
N
2
− r
)
−
√

ε(1− ε)N δ′,

where δ′ is normally distributed, with the mean 0 and the dispersion 1. From this

ζ ′ = ζ + 2ε

(
1
2
− ζ

)
+
√

ε(1− ε)/N δ′,
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and then by (21)

ζ ′ = (1− ξη) + 2ε

(
ξη − 1

2

)
+ (1− 2ε)

√
ξ(1− ξ)η(1− η)/N δ−

√
ε(1− ε)/N δ′.

Clearly (1 − 2ε)
√

ξ(1− ξ)η(1− η)/N δ −
√

ε(1− ε)/N δ′, too, is normally dis-
tributed, with the mean 0 and the dispersion√(

(1− 2ε)
√

ξ(1− ξ)η(1− η)/N
)2

+

(√
ε(1− ε)/N

)2

=
√
((1− 2ε)2ξ(1− ξ)η(1− η) + ε(1− ε)) /N.

Hence (21) becomes at last (we write again ζ in place of ζ ′):

(22)


ζ = (1− ξη) + 2ε

(
ξη − 1

2

)
+
√
((1− 2ε)2ξ(1− ξ)η(1− η) + ε(1− ε)) /N δ∗,

δ∗ is a stochastic variable, normally distributed,

with the mean 0 and the dispersion 1.

10.3 The Restoring Organ

This discussion equally covers the situations that are dealt with in Figures 35 and
37, showing networks of Sheffer organs in 9.4.2.

Consider first Figure 35. We have here a single input bundle of N lines, and
an output bundle of N lines. However, the two-way split and the subsequent
"randomizing" permutation produce an input bundle of 2N lines and (to the right
of U) the even lines of this bundle on one hand, and its odd lines on the other
hand, may be viewed as two input bundles of N lines each. Beyond this point the
network is the same as that one of Figure 34, discussed in 9.4.1. If the original
input bundle had ξN stimulated lines, then each one of the two derived input
bundles will also have ξN stimulated lines. (To be sure of this. It is necessary to
choose the “randomizing” permutation U of Figure 35 in such a manner, that it
permutes the even lines among each other, and the odd lines among each other.
This is compatible with its “randomizing” the relationship of the family of all
even lines to the family of all odd lines. Hence it is reasonable to expect, that
this requirement does not conflict with the desired “randomizing” character of
the permutation.) Let the output bundle have ζN stimulated lines. Then we are
clearly dealing with the same case as in (22), except that it is specialized to ξ = η.
Hence (22) becomes:

(23)



ζ = (1− ξ2) + 2ε
(
ξ2 − 1

2

)
+

√(
(1− 2ε)2 (ξ(1− ξ))2 + ε(1− ε)

)
/N δ∗,

δ∗ is a stochastic variable, normally distributed,

with the mean 0 and the dispersion 1.
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Consider next Figure 37. Three bundles are relevant here: The input bundle at
the extreme left, the intermediate bundle issuing directly from the first tier of
Sheffer organs, and the output bundle, issuing directly from the second tier of
Sheffer organs, i.e., at the extreme right. Each one of these three bundles consists
of N lines. Let the number of stimulated lines in each bundle be ζN, ωN, ψN,
respectively. Then (23) above applies, with its ξ, ζ replaced first by ζ, ω and second
by ω, ψ:

(24)



ω = (1− ζ2) + 2ε
(
ζ2 − 1

2

)
+

√(
(1− 2ε)2 (ζ(1− ζ))2 + ε(1− ε)

)
/N δ∗∗,

ψ = (1−ω2) + 2ε
(
ω2 − 1

2

)
+

√(
(1− 2ε)2 (ω(1−ω))2 + ε(1− ε)

)
/N δ∗∗∗,

δ∗∗, δ∗∗∗ are stochastic variables, independently and

normally distributed, with the mean 0 and the dispersion 1.

10.4 Qualitative Evaluation of the Results

In what follows, (22) and (24) will be relevant—i.e., the Sheffer organ networks of
Figures 34 and 37.

Before going into these considerations, however, we have to make an obser-
vation concerning (22). (22) shows that the (relative) excitation levels ξ, η on the
input bundles of its network generate approximately (i.e., for large N and small
ε) the (relative) excitation level ζ0 = 1− ξη on the output bundle of that network.
This justifies the statements made in 9.4.1 about the detailed functioning of the
network. Indeed: If the two input bundles are both prevalently stimulated, i.e.,
if ξ ∼ 1, η ∼ 1 then the distance of ζ0 from 0 is about the sum of the distances
of ξ and of η from 1: ζ0 = (1− ξ) + ξ(1− η). If one of the two input bundles,
say the first one, is prevalently non-stimulated, while the other one is prevalently
stimulated, i.e., if ξ ∼ 0. η ∼ 1 then the distance of ζ0 from 1 is about the distance
of ξ from 0: 1− ζ0 = ξη. If both input bundles are prevalently non-stimulated, i.e.,
if ξ ∼ 0, η ∼ 0, then the distance of ζ0 from 1 is small compared to the distances
of both ξ and η from 0: 1− ζ0 = ξη.

10.5 Complete Quantitative Theory

10.5.1 General Results

We can now pass to the complete statistical analysis of the Sheffer stroke operation
on bundles. In order to do this, we must agree on a systematic way to handle this
operation by a network. The system to be adopted will be the following: The
necessary executive organ will be followed in series by a restoring organ. I.e., the
Sheffer organ network of Figure 34 will be followed in series by the Sheffer organ
network of Figure 37. This means that the formulas of (22) are to be followed by
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those of (24). Thus ξ, η are the excitation levels of the two input bundles, ψ is the
excitation level of the output bundle, and we have:

(25)



ζ = (1− ξη) + 2ε
(
ξη − 1

2

)
+
√
((1− 2ε)2ξ(1− ξ)η(1− η) + ε(1− ε)) /N δ∗,

ω = (1− ζ2) + 2ε
(
ζ2 − 1

2

)
+

√(
(1− 2ε)2 (ζ(1− ζ))2 + ε(1− ε)

)
/N δ∗∗,

ψ = (1−ω2) + 2ε
(
ω2 − 1

2

)
+

√(
(1− 2ε)2 (ω(1−ω))2 + ε(1− ε)

)
/N δ∗∗∗,

δ∗, δ∗∗, δ∗∗∗ are stochastic variables, independently and

normally distributed, with the mean 0 and the dispersion 1.

Consider now a given fiduciary level ∆. Then we need a behavior, like the
“correct” one of the Sheffer stroke, with an overwhelming probability. This means:
The implication of ψ ≤ ∆ by ξ ≥ 1− ∆, η ≥ 1− ∆; the implication of ψ ≥ 1− ∆
by ξ ≤ ∆, η ≥ 1− ∆; the implication of ψ ≥ 1− ∆ by ξ ≤ ∆, η ≤ ∆. (We are, of
course, using the symmetry in ξ, η.)

This may, of course, only be expected for N sufficiently large and ε sufficiently
small. In addition, it will be necessary to make an appropriate choice of the
fiduciary level ∆.

If N is so large and ε is so small, that all terms in (25) containing factors
1/
√

N and ε can be neglected, then the above desired “overwhelmingly probable”
inferences become even strictly true, if ∆ is small enough. Indeed, then (25) gives
ζ = ζ0 = 1− ξη, ω = ω0 = 1− ζ2, ψ = ψ0 = 1− ω2, i.e., ψ = 1−

(
2ξη − (ξη)2)2.

Now it is easy to verify ψ = O
(
∆2) for ξ ≥ 1− ∆, η ≥ 1− ∆; ψ = 1−O

(
∆2) for

ξ ≤ ∆, η ≥ 1− ∆; ψ = 1−O
(
∆4) for ξ ≤ ∆, η ≤ ∆. Hence sufficiently small ∆

will guarantee the desiderata stated further above.

10.5.2 Numerical Evaluation

Consider next the case of a fixed, finite N and a fixed, positive ε. Then a more elab-
orate calculation must be based on the complete formulae of (25). This calculation
will not be carried out here, but its results will be described.

The most favorable fiduciary level ∆, from the point of view of this calculation
turns out to be ∆ = .07 . I.e., stimulation of at least 93% of the lines of a bundle
represents a positive message; stimulation of at most 7% of the lines of a bundle
represents a negative message; the interval between 7% and 93% is a zone of
uncertainty, indicating an effective malfunction of the network.

Having established this fiduciary level, there exists also an upper bound for
the allowable values of ε. This is ε = .0107. In other words, if ε > .0107, the risk of
effective malfunction of the network will be above a fixed, positive lower bound,
no matter how large a bundle size N is used. The calculations were therefore
continued with a specific ε < .0107, namely, with ε = .005.
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With these assumptions, then, the calculation yields an estimate for the proba-
bility of malfunction of the network, i.e., of the violation of the desiderata stated
further above. As is to be expected, this estimate is given by an error integral. This
is

(26)


ρ(N) = 1√

2π

∫ ∞
k e−

1
2 x2

dx ∼ 1√
2πk

e−
1
2 k2

where

k = .062
√

N

expresses, in a certain sense, the total allowable error divided by a composite
standard deviation. The approximation is of course valid only for large N. It can
also be written in the form

(27) ρ(N) ∼ 6.4√
N

10−
8.6 N
10 000

The following table gives a better idea of the dependency expressed by the for-
mula:

N = number of lines in a bundle ρ(N) = probability of malfunction

1 000 2.7× 10−2

2 000 2.6× 10−3

3 000 2.5× 10−4

5 000 4 × 10−6

10 000 1.6× 10−10

20 000 2.8× 10−19

25 000 1.2× 10−23

Notice that for as many as 1000 lines in a bundle, the reliability (about 3%) is
rather poor. (Indeed, it is inferior to the ε = .005, i.e., 1/2%, that we started with.)
However, a 25 fold increase in this size gives very good reliability.

10.5.3 Examples

10.5.3.1 First Example. To get an idea of the significance of these sizes and the
corresponding approximations, consider the two following examples.

Consider first a computing machine with 2500 vacuum tubes, each of which is
actuated on the average once every 5 microseconds. Assume that a mean free path
of 8 hours between errors is desired. In this period of time there will have been
1
5 × 2 500× 8× 3 600× 106 = 1.4× 1013 actuations, hence the above specification
calls for δ ∼ 1/[1.4× 1013] = 7× 10−14. According to the above table this calls
for an N between 10 000 and 20 000—interpolating linearly on 10 log δ gives N =

14 000. I.e., the system should be multiplexed 14 000 times.
It is characteristic for the steepness of statistical curves in this domain of large

numbers of events, that a 25 percent increase of N, i.e., N = 17 500, gives (again
by interpolation) δ = 4.5× 10−17, i.e., a reliability which is 1 600 times better.
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10.5.3.2 Second Example. Consider second a plausible quantitative picture for
the functioning of the human nervous system. The number of neurons involved
is usually given as 1010, but this number may be somewhat low, also the synaptic
end-bulbs and other possible autonomous sub-units may increase it significantly,
perhaps a few hundred times. Let us therefore use the figure 1013 for the number
of basic organs that are present. A neuron may be actuated up to 200 times per
second, but this is an abnormally high rate of actuation. The average neuron
will probable be actuated a good deal less frequently. In the absence of better
information 10 actuations per second may be taken as an average figure of at least
the right order. It is hard to tell what the mean free path between errors should be.
Let us take the view that errors properly defined are to be quite serious errors, and
since they are not ordinarily observed, let us take a mean free path which is long
compared to an ordinary human life, say 10 000 years. This means 1013 × 10 000×
31 536 000 × 10 = 3.2 × 1025 actuations, hence it calls for δ ∼ 1/(3.2 × 1025) =

3.2 × 10−26. According to the table this lies somewhat beyond N = 25 000 —
extrapolating linearly on — 10 log δ gives N = 28 000.

Note, that if this interpretation of the functioning of the human nervous system
were a valid one (for this cf. the remark of 11.1), the number of basic organs
involved would have to be reduced by a factor 28,000. This reduces the number of
relevant actuations and increases the value of the necessary δ by the same factor.
I.e.,δ = 9 × 10−22 , and hence N = 23 000. The reduction of N is remarkably
small—only 20%! This makes a reevaluation of the reduced N with the new N,
δ unnecessary: In fact the new factor, i.e., 23 000, gives δ = 7.4× 10−22 and this
with the approximation used above, again N = 23 000. (Actually the change of N
is ∼ 120, i.e., only 1/2%!)

Replacing the 10 000 years, used above rather arbitrarily, by 6 months, intro-
duces another factor 20 000, and therefore a change of about the same size as
the above one—now the value is easily seen to be N = 23 000 (uncorrected) or
N = 19 000 (corrected).

10.6 Conclusions

All this shows, that the order of magnitude of N is remarkably insensitive to
variations in the requirements, as long as these requirements are rather exacting
ones, but not wholly outside the range of our (industrial or natural) experience.
Indeed, the N obtained above were all ∼ 20 000, to within variations lying between
−30% and +40%.

10.7 The General Scheme of Multiplexing

This is an opportune place to summarize our results concerning multiplexing, i.e.,
the sections 9 and 10. Suppose it is desired to build a machine to perform the
logical function f (x, y, . . .) with a given accuracy (probability of malfunction on
the final result of the entire operation) η, using Sheffer neurons whose reliability
(or accuracy , i.e., probability of malfunction on a single operation) is ε. We assume
ε = .005. The procedure is then as follows.
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First, design a network R for this function f (x, y, . . .) as though the basic (Shef-
fer) organs had perfect accuracy. Second, estimate the maximum number of single
(perfect) Sheffer organ reactions (summed over all successive operations of all
the Sheffer organs actually involved) that occur in the network R in evaluating
f (x, y, . . .)—say m such reactions. Put δ = η/m. Third, estimate the bundle size
N that is needed to give the multiplexed Sheffer organ like network (cf. 10.5.2) an
error probability of at most δ. Fourth, replace each single line of the network R by
a bundle of size N, and each Sheffer neuron of the network R by the multiplexed
Sheffer organ network that goes with this N (cf. 10.5.1)—this gives a network
R(N). A “yes” will then be transmitted by the stimulation of more than 93% of the
strands in a bundle, a “no” by the stimulation of less than 7%, and intermediate
values will signify the occurrence of an essential malfunction of the total system.

It should be noticed that this construction multiplies the number of lines by
N and the number of basic organs by 3N. (In 10.5.3 we used a uniform factor of
multiplication N. In view of the insensitivity of N to moderate changes in δ, that
we observed in 10.5.3.2, this difference is irrelevant.) Our above considerations
show, that the size of N is ∼ 20 000 in all cases that interest us immediately. This
implies, that such techniques are impractical for present technologies of compo-
nentry (although this may perhaps not be true for certain conceivable technologies
of the future), but they are not necessarily unreasonable (at least not on grounds
of size alone) for the micro-componentry of the human nervous system.

Note, that the conditions are significantly less favorable for the non- multiplex-
ing procedure to control error described in section 8. That process multiplied the
number of basic organs by about 3µ, µ being the number of consecutive steps (i.e.,
basic organ actuations) from input to output, (cf. the end of 8.4). (In this way of
counting, iterative processes must be counted as many times as iterations occur.)
Thus for µ = 160, which is not an excessive “logical depth”, even for a conven-
tional calculation, 3160 ∼ 2× 1076, i.e., somewhat above the putative order of the
number of electrons in the universe. For µ = 200 (only 25 percent more!) then
3200 ∼ 2.5× 1095, i.e., 1.2× 1019 times more —in view of the above this requires no
comment.

11 General Comments on Digitalization and Multiplexing

11.1 Plausibility of Various Assumptions Regarding the Digital vs. Ana-
log Character of the Nervous System

We now pass to some remarks of a more general character.
The question of the number of basic neurons required to build a multiplexed

automaton serves as an introduction for the first remark. The above discussion
shows, that the multiplexing technique is impractical on the level of present tech-
nology, but quite practical for a perfectly conceivable, more advanced technol-
ogy, and for the natural relay-organs (neurons). I.e., it merely calls for micro-
componentry which is not at all unnatural as a concept on this level. It is therefore
quite reasonable to ask specifically, whether it, or something more or less like it,
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is a feature of the actually existing human (or rather: animal) nervous system.
The answer is not clear cut. The main trouble with the multiplexing systems,

as described in the preceding section, is that they follow too slavishly a fixed plan
of construction—and specifically one, that is inspired by the conventional proce-
dures of mathematics and mathematical logics. It is true, that the animal nervous
systems, too, obey some rigid “architectural” patterns in their large-scale construc-
tion, and that those variations, which make one suspect a merely statistical design,
seem to occur only in finer detail and on the micro-level. (It is characteristic of this
duality, that most investigators believe in the existence of overall laws of large-
scale nerve-stimulation and composite action that have only a statistical character,
and yet occasionally a single neuron is known to control a whole reflex-arc.) It is
true, that our multiplexing scheme, too, is rigid only in its large-scale pattern (the
prototype network R, as a pattern, and the general layout of the executive-plus-
restoring organ, as discussed in 10.7 and in 10.5.1), while the “random” permuta-
tion “black boxes” (cf. the relevant Figures 32, 35, 37 in 9.2.3 and 9.4.2) are typical
of a “merely statistical design”. Yet the nervous system seems to be somewhat
more flexibly designed. Also, its “digital” (neural) operations are rather freely
alternating with “analog” (humoral) processes in their complete chains of causa-
tion. Finally the whole logical pattern of the nervous system seems to deviate In
certain important traits qualitatively and significantly from our ordinary mathe-
matical and mathematical-logical modes of operation: The pulse-trains that carry
“quantitative” messages along the nerve fibres do not seem to be coded digital
expressions (like a binary or a [Morse or binary coded] decimal digitalization) of a
number, but rather “analog” expressions of one, by way of their pulse-density, or
something similar—although much more than ordinary care should be exercised
In passing judgments in this field, where we have so little factual Information.
Also, the “logical depth” of our neural operations—i.e., the total number of basic
operations from (sensory) input to (memory) storage or (motor) output seems to
be much less than it would be in any artificial automaton (e.g. a computing ma-
chine) dealing with problems of anywhere nearly comparable complexity. Thus
deep differences in the basic organizational principles are probably present.

Some similarities, in addition to the one referred to above, are nevertheless
undeniable. The nerves are bundles of fibres—like our bundles. The nervous sys-
tem contains numerous “neural pools” whose function may well be that of organs
devoted to the restoring of excitation levels. (At least of the two [extreme] levels,
e.g. one near to 0 and one near to 1, as in the case discussed in section 9, espe-
cially in 9.2.2 and 9.2.3, 9.4.2. Restoring one level only—by exciting or quenching
or establishing some intermediate stationary level—destroys rather than restores
information, since a system with a single stable state has a memory capacity 0 [cf.
the definition given in 5.2]. For systems which can stabilize [i.e., restore] more
than two excitation levels, cf. 12.6.)
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11.2 Remarks Concerning the Concept of a Random Permutation

The second remark on the subject of multiplexed systems concerns the problem
(which was so carefully sidestepped in section 9) of maintaining randomness of
stimulation. For all statistical analyses, it is necessary to assume that this random-
ness exists. In networks which allow feedback, however, when a pulse from an
organ gets back to the same organ at some later time, there is danger of strong
statistical correlation. Moreover, without randomness, situations may arise where
errors tend to be amplified instead of cancelled out. E.g., it is possible, that the
machine remembers its mistakes, so to speak, and thereafter perpetuates them.
A simplified example of this effect is furnished by the elementary memory organ
of Figure 16, or by a similar one, based on the Sheffer stroke, shown in Figure
39. We will discuss the latter. This system, provided it makes no mistakes, fires
on alternate moments of time. Thus it has two possible states: Either it fires at
even times or at odd times. (For a quantitative discussion of Figure 16, cf. 7.1.)
However, once the mechanism makes a mistake, i.e., if it falls to fire at the right
parity, or if it fires at the wrong parity, that error will be remembered, i.e., the
parity is now lastingly altered, until there occurs a new mistake. A single mis-
take thus destroys the memory of this particular machine for all earlier events.
In multiplex systems, single errors are not necessarily disastrous: But without the
“random” permutations introduced In section 9, accumulated mistakes can be still
dangerous.

Figure 39: An elementary memory organ based on the Sheffer stroke.

To be more specific: Consider the network shown In Figure 35, but without the
line-permuting “black box” U. If each output line is now fed back into its input
line (l.e.. into the one with the same number from above), then pulses return to the
identical organ from which they started, and so the whole organ is in fact a sum
of separate organs according to Figure 39, and hence it is just as subject to error
as a single one of those organs acting independently. However, if a permutation
of the bundle is interposed, as shown, in principle, by U in Figure 35, then the
accuracy of the system may be (statistically) Improved. This is, of course, the trait
which is being looked for by the insertion of U, l.e., of a “random” permutation in
the sense of section 9. But how is it possible to perform a “random” permutation?

The problem is not immediately rigorously defined. It is, however, quite proper
to reinterpret it as a problem that can be stated in a rigorous form, namely: It is
desired to find one or more permutations which can be used in the "black boxes"
marked with U or U1, U2 in the relevant Figures 35, 37, so that the essential
statistical properties that are asserted there are truly present. Let us consider the
simpler one of these two, i.e., the multiplexed version of the simple memory organ
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of Figure 39—i.e., a specific embodiment of Figure 35. The discussion given in 10.3
shows that it is desirable, that the permutation U of Figure 35 permute the even
lines among each other, and the odd lines among each other. A possible rigorous
variant of the question that should now be asked is this.

Find a fiduciary level ∆ > 0 and a probability ε > 0, such that for any η > 0
and any s = 1, 2, . . . there exists an N = N(η, s) and a permutation U = U(N),
satisfying the following requirement: Assume that the probability of error in a
single operation of any given Sheffer organ is ε. Assume that at the time t all
lines of the above network are stimulated, or that all are not stimulated. Then
the number of lines stimulated at the time t + s will be ≥ (1− ∆)N or ≤ ∆N,
respectively, with a probability ≥ 1− δ. In addition N(η, s) ≤ C ln(s/η), with a
constant C (which should not be excessively great).

Note, that the results of section 10 make the surmise seem plausible, that ∆ =

.07, ε = .005 and C ∼ 10 000/[8.6× ln 10] ∼ 500 are suitable choices for the above
purpose.

The following surmise concerning the nature of the permutation U(N) has a
certain plausibility: Let N = 2`. Consider the 2` commplexes (d1, d2, . . . , d`) (dλ =

0, 1 for λ = 1, . . . , `). Let these correspond in some one to one way to the 2`

integers i = 1, . . . , N:

(28) i
 (d1, d2, . . . , d`).

Now let the mapping

(29) i −→ i′ = U(N)i

be induced, under the correspondence (28), by the mapping

(30) (d1, d2, . . . , d`) −→ (d`, d1, . . . , d`−1).

Obviously, the validity of our assertion is independent of the choice of the corre-
spondence (28). Now (30) does not change the parity of

`

∑
λ=1

dλ

hence the desideratum that U(N), i.e., (29), should not change the parity of i
(cf. above) is certainly fulfilled, if the correspondence (28) is so chosen as to let
i have the same parity as

`

∑
λ=1

dλ.

This is clearly possible, since on either side each parity occurs precisely 2`−1 times.
This U(N) should fulfill the above requirements.
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11.3 Remarks Concerning the Simplified Probability Assumption

The third remark on multiplexed automata concerns the assumption made in
defining the unreliability of an individual neuron. It was assumed that the prob-
ability of the neuron failing to react correctly was a constant ε, independent of
time and of all previous inputs. This is an unrealistic assumption. For example,
the probability of failure for the Sheffer organ of Figure 12 may well be differ-
ent when the inputs a and b are both stimulated, form the probability of failure
when a and not b is stimulated. In addition, these probabilities may change with
previous history, or simply with time and other environmental conditions. Also,
they are quite likely to be different from neuron to neuron. Attacking the problem
with these more realistic assumptions means finding the domains of operability
of individual neurons, finding the intersection of these domains (even when drift
with time is allowed) and finally, carrying out the statistical estimates for this far
more complicated situation. This will not be attemted here.

12 Analog Possibilities

12.1 Further Remarks Concerning Analog Procedures

There is no valid reason for thinking that the system which has been developed in
the past pages is the only or the best model of any existing nervous system or of
any potential error-safe computing machine or logical machine. Indeed, the form
of our model-system is due largely to the influence of the techniques developed
for digital computing and to the trends of the last sixty years in mathematical
logics. Now, speaking specifically of the human nervous system, this is an enor-
mous mechanism—at least 106 times larger than any artifact with which we are
familiar—and its activities are correspondingly varied and complex. Its duties
include the interpretation of external sensory stimuli, of reports of physical and
chemical conditions, the control of motor activities and of internal chemical levels,
the memory function with its very complicated procedures for the transformation
of and the search for information, and of course, the continuous relaying of coded
orders and of more or less quantitative messages. It is possible to handle all these
processes by digital methods (i.e., by using numbers and expressing them in the
binary system—or, with some additional coding tricks, in the decimal or some
other system), and to process the digitalized, and usually numericized, informa-
tion by algebraical (i.e., basically arithmetical) methods. This is probably the way a
human designer would at present approach such a problem. It was pointed out in
the discussion in 11.1, that the available evidence, though scanty and inadequate,
rather tends to indicate that the human nervous system uses different principles
and procedures. Thus message pulse trains seem to convey meaning by certain
analogic traits (within the pulse notation—i.e., this seems to be a mixed, part dig-
ital, part analog system), like the time density of pulses in one line, correlations of
the pulse time series between different lines in a bundle, etc.

Hence our multiplexed system might come to resemble the basic traits of the
human nervous system more closely, if we attenuated its rigidly discrete and dig-
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ital character in some respects. The simplest step in this direction, which is rather
directly suggested by the above remarks about the human nervous system, would
seem to be this.

12.2 A Possible Analog Procedure

12.2.1 The Set Up

In our prototype network R each line carries a “yes” (i.e., stimulation) or a “no”
(i.e., non-stimulation) message—these are interpreted as digits 1 and 0, respec-
tively. Correspondingly, in the final (multiplexed) network R(N) (which is derived
from R) each bundle carries a “yes” = 1 (i.e., prevalent stimulation) or a “no” = 0
(i.e., prevalent non-stimulation) message. Thus only two meaningful states, i.e.,
average levels of excitation ξ, are allowed for a bundle—actually for one of these
ξ ∼ 1 and for the other ξ ∼ 0.

Now for large bundle sizes N the average excitation level is an approximately
continuous quantity (in the interval 0 ≤ ξ ≤ 1)—the larger N, the better the ap-
proximation. It is therefore not unreasonable to try to evolve a system in which ξ

is treated as a continuous quantity in 0 ≤ ξ ≤ 1. This means an analog procedure
(or rather, in the sense discussed above, a mixed, part digital, part analog proce-
dure). The possibility of developing such a system depends, of course, on finding
suitable algebraic procedures that fit into it, and being able to assure its stability
in the mathematical sense (i.e., adequate precision) and in the logical sense (i.e.,
adequate control of errors). To this subject we will now devote a few remarks.

12.2.2 The Operations

Consider a multiplex automaton of the type which has just been considered in
12.2.1, with bundle size N. Let ξ denote the level of excitation of the bundle at
any point, that is, the relative number of excited lines. With this interpretation,
the automaton is a mechanism which performs certain numerical operations on a
set of numbers to give a new number (or numbers). This method of interpreting
a computer has some advantages, as well as some disadvantages in comparison
with the digital, “all or nothing”, interpretation. The conspicuous advantage is
that such an interpretation allows the machine to carry more information with
fewer components than a corresponding digital automaton. A second advantage
is that it is very easy to construct an automaton which will perform the elementary
operations of arithmetics. (Or, to be more precise: An adequate subset of these. Cf.
the discussion in 12.3.) For example, given ξ and η, it is possible to obtain 2

(
ξ + η)

as shown in Figure 40 (left). Similarly, it is possible to obtain αξ + (1− α)η for any
constant α with 0 ≤ α ≤ 1. (Of course, there must be α = M/N, M = 0, 1, . . . , N,
but this range for α is the same “approximate continuum” as that one for ξ, hence
we may treat the former as a continuum just as properly as the latter.) We need
only choose αN lines from the first bundle and combine them with (1− α)N lines
from the second. To obtain the quantity 1− ξη requires the set-up shown in Figure
40 (right). Finally we can produce any constant excitation level, α (0 ≤ α ≤ 1), by
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originating a bundle so that αN lines come from a live source and (1− α)N from
ground.

Figure 40: Left: Analog circuit evaluating 1
2 (ξ + η). Right: Analog circuit evaluat-

ing 1− ξη.

12.3 Discussion of the Algebraic Calculus Resulting from the Above
Operations

Thus our present analog system can be used to build up a system of algebra where
the fundamental operations are

(31)


α

αξ + (1− α)η

} {
(for any constant α

in 0 ≤ α ≤ 1),

1− ξη

All these are to be viewed as functions of ξ, η. They lead to a system, in which
one can operate freely with all those functions f (ξ1, ξ2, . . . , ξk) of any k variablesξ1,
ξ2, . . . , ξk, that the functions of (31) generate. I.e., with all functions that can be
obtained by any succession of the following processes:

(A) In the functions of (31) replace ξ, η by any variables ξi, ξ j.

(B) In a function f (ξ∗1 , . . . , ξ∗` ) that has already been obtained, replace the vari-
ables ξ∗1 , . . . , ξ∗` , by any functions g1(ξ1, . . . , ξk), . . . , g`(ξ1, . . . , ξk) respec-
tively, that have already been obtained.

To these, purely algebraical-combinatorial processes we add a properly analyti-
cal one, which seems justified, since we have been dealing with approximative
procedures, anyway:

(C) If a sequence of functions fu(ξ1, . . . , ξk), u = 1, 2, . . . that have already been
obtained, converges uniformly (in the domain 0 ≤ ξ1 ≤ 1, . . . , 0 ≤ ξk ≤ 1)
for u→ ∞ to f (ξ1, . . . , ξk), then form this f (ξ1, . . . , ξk).

Note, that in order to have the freedom of operation as expressed by (A), (B),
the same “randomness” conditions must be postulated as in the corresponding
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parts of sections 9 and 10. Hence “randomizing” permutations U must be in-
terposed between consecutive executive organs (i.e., those described above and
reenumerated in (A)), just as in the sections referred to above.

In ordinary algebra the basic functions are different ones, namely:

(32)


α

ξ + η

} {
(for any constant α

in 0 ≤ α ≤ 1),

ξη

It is easily seen, that the system (31) can be generated (by (A), (B)) from the system
(32), while the reverse is not obvious (not even with (C) added). In fact (31) is
intrinsically more special than (32), i.e., the functions that (31 ) generates are fewer
than those that (32) generates (this is true for (A), (B), and also for (A), (B), (C))—
the former do not even include ξ + η. Indeed all functions of (31), i.e., of (A)
based on (31), have this property: If all variables lie in the interval 0 ≤ ξ ≤ 1,
then the function, too, lies in that interval. This property is conserved under the
applications of (B), (C). On the other hand ξ + η does not possess this property—
hence it cannot be generated by (A), (B), (C) from (31). (Note, that the above
property of the functions of (31), and of all those that they generate, is a quite
natural one: They are all dealing with excitation levels, and excitation levels must,
by their nature, be numbers ξ with 0 ≤ ξ ≤ 1.)

In spite of this limitation, which seems to mark it as essentially narrower than
conventional algebra, the system of functions generated (by (A), (B), (C)) from (31)
is broad enough for all reasonable purposes. Indeed, it can be shown that the
functions so generated comprise precisely the following class of functions:

All functions f (ξ1, ξ2, . . . , ξk) which, as long as their variables ξ1, . . . ,
ξk lie in the interval0 ≤ ξ ≤ 1, are continuous and have their value
lying in that interval, too.

We will not give the proof here, it runs along quite conventional lines.

12.4 Limitations of this System

This result makes it clear, that the above analog system, i.e., the system of (31),
guarantees for numbers ξ with 0 ≤ ξ ≤ 1 (i.e., for the numbers that it deals with,
namely excitation levels) the full freedom of algebra and of analysis.

In view of these facts, this analog system would seem to have clear superiority
over the digital one. Unfortunately, the difficulty of maintaining accuracy levels
counterbalances the advantages to a large extent. The accuracy can never be ex-
pected to exceed 1/N. In other words, there is an intrinsic noise level of the order
1/N, i.e., for the N considered in 10.5.2 and 10.5.3 (up to ∼ 20 000) at best 10−4.
Moreover, in its effects on the operations of (31), this noise level rises from 1/N
to 1/

√
N. (E.g., for the operation 1− ξη, cf. the result (21) and the argument that

leads to it.) With the above assumptions, this is at best 10−2, i.e., 1%! Hence after
a moderate number of operations, the excitation levels are more likely to resemble
a random sampling of numbers than mathematics.
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It should be emphasized, however, that this is not a conclusive argument that
the human nervous system does not utilize the analog system. As was pointed
out earlier, it is in fact known for at least some nervous processes that they are
of an analog nature, and that the explanation of this may, at least in part, lie in
the fact that the “logical depth” of the nervous network is quite shallow in some
relevant places. To be more specific: The number of synapses of neurons from the
peripheral sensory organs, down the afferent nerve fibres, through the brain, back
through the efferent nerves to the motor system may not be more than ∼ 10. Of
course the parallel complexity of the network of neurons is indisputable. “Depth”
introduced by feedback in the human brain may be overcome by some kind of self-
stabilization. At the same time, a good argument can be put up that the animal
nervous system uses analog methods (as they are interpreted above) only in the
crudest way, accuracy being a very minor consideration.

12.5 A Plausible Analog Mechanism: Density Modulation by Fatigue

Two more remarks should be made at this point. The first one deals with some
more specific aspects of the analog element in the organization and functioning of
the human nervous system. The second relates to the possibility of stabilizing the
precision level of the analog procedure that was outlined above.

This is the first remark. As we have mentioned earlier, many neurons of the
nervous system transmit Intensities (i.e., quantitative data) by analog methods,
but, in a way entirely different from the method described in 12.2, 12.3 and 12.4.
Instead of the level of excitation of a nerve (i.e., of a bundle of nerve fibres) vary-
ing, as described in 12.2, the single nerve fibres fire repetitiously, but with varying
frequency in time. For example, the nerves transmitting a pressure stimulus may
vary in frequency between, say, 6 firings per second and, say, 60 firings per second.
This frequency is a monotone function of the pressure. Another example is the
optic nerve, where a certain set of fibres responds in a similar manner to the inten-
sity of the incoming light. This kind of behavior is explained by the mechanism
of neuron operation, and in particular with the phenomena of threshold and of
fatigue. With any peripheral neuron at any time can be associated a threshold in-
tensity: A stimulus will make the neuron fire if and only if its magnitude exceeds
the threshold intensity. The behavior of the threshold intensity as a function of the
time after a typical neuron fires is qualitatively pictured in Figure 42. After firing,
there is an “absolute refractory period” of about 5 milliseconds, during which no
stimulus can make the neuron fire again. During this period, the threshold value
is infinite. Next comes a “relative refractory period” of about 10 milliseconds,
during which time the threshold level drops back to its equilibrium value (it may
even oscillate about this value a few times at the end). This decrease is for the most
part monotonic. Now the nerve will fire again as soon as it is stimulated with an
intensity greater than its excitation threshold. Thus if the neuron is subjected to
continual excitation of constant intensity (above the equilibrium intensity), it will
fire periodically with a period between 5 and 15 milliseconds, depending on the
intensity of the stimulus.
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Figure 42: Threshold intensity vs. time after firing for a typical neuron.

Another interesting example of a nerve network which transmits intensity by
this means is the human acoustic system. The ear analyzes a sound wave into its
component frequencies. These are transmitted to the brain through different nerve
fibres with the intensity variations of the corresponding component represented
by the frequency modulation of nerve firing.

The chief purpose of all this discussion of nervous systems is to point up the
fact that it is dangerous to Identify the real physical (or biological) world with the
models which are constructed to explain it. The problem of understanding the
animal nervous action is far deeper than the problem of understanding the mech-
anism of a computing machine. Even plausible explanations of nervous reaction
should be taken with a very large grain of salt.

12.6 Stabilization of the Analog System

We now come to the second remark. It was pointed out earlier, that the analog
mechanism that we discussed may have a way of stabilizing excitation levels to a
certain precision for its computing operations. This can be done in the following
way.

For the digital computer, the problem was to stabilize the excitation level at
(or near) the two values 0 and 1. This was accomplished by repeatedly passing
the bundle through a simple mechanism which changed an excitation level ξ into
the level f (ξ), where the function f (ξ) had the general form shown in Figure 43
(left). The reason that such a mechanism is a restoring organ for the excitation
levels ξ ∼ 0 and ξ ∼ 1 (i.e., that it stabilizes at—or near—0 and 1) is that f (ξ) has
this property: For some suitable b (0 ≤ b ≤ 1) 0 < ξ < b implies 0 < f (ξ) < ξ;
b < ξ < 1 implies ξ < f (ξ) < 1. Thus ξ = 0, 1 are the only stable fixpoints of f (ξ).
(Cf. the discussion in 9.2.3 and 9.4.2.)

Now consider another f (ξ), which has the form shown in Figure 43 (right).
I.e., we have: 0 = a0 < b1 < a1 < . . . < aν−1 < bν < aν=1, for i = 1, . . . , ν:
ai−1 < ξ < bi implies ai−1 < f (ξ) < ξ; bi < ξ < ai implies ξ < f (ξ) < ai.

Here a0(= 0), a1, . . . , aν−1, aν(= 1) are f (ξ)’s only stable fixpoints, and such a
mechanism is a restoring organ for the excitation levels ξ ∼ a0(= 0), a1, . . . , aν−1,
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Figure 43: Left: A stabilizing function for the extreme levels 0 and 1. Right: A
stabilizing function for multiple levels.

aν(= 1). Choose, e.g., ai = i/ν (i = 0, 1, . . . , ν), with ν−1 < δ, or more generally,
just ai − ai−1 < δ (i = 0, 1, . . . , ν), with some suitable ν. Then this restoring organ
clearly conserves precisions of the order δ (with the same prevalent probability
with which it restores).

13 Concluding Remark

13.1 A Possible Biological Interpretation

There remains the question, whether such a mechanism is possible, with the
means that we are now envisaging. We have seen further above, that this is the
case, if a function f (ξ) with the properties just described can be generated from
(31). Such a function can indeed be so generated. Indeed, this follows immediately
from the general characterization of the class of functions that can be generated
from (31), discussed in 12.3. However, we will not go here into this matter any
further.

It is not inconceivable that some “neural pools” in the human nervous system
may be such restoring organs, to maintain accuracy in those parts of the network
where the analog principle is used, and where there is enough “logical depth” (cf.
12.4) to make this type of stabilization necessary.
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